
Embedding Scheme in Java

by

Brian D. Carlstrom

S.B., Massachusetts Institute of Technology (1995)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2001

c© Brian D. Carlstrom, 2000. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

February 6, 2001

Certified by. .
Dr. Olin Shivers

Research Scientist, Artificial Intelligence Laboratory
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

2

Embedding Scheme in Java

by

Brian D. Carlstrom

Submitted to the Department of Electrical Engineering and Computer Science
on February 6, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract

Extension languages are an important part of modern applications development. Java
as a platform does not provide a standard extension language. Scheme is one possible
choice as an extension language for Java. There are a variety of techniques for im-
plementing Scheme in Java varying from interpreting s-expressions to compiling into
Java byte-codes. The historical evolution of one implementation is discussed over
the course of several years. The design of the Java-to-Scheme and Scheme-to-Java
interfaces is reviewed. The advantages and disadvantages of Java and Scheme are
compared.

Thesis Supervisor: Dr. Olin Shivers
Title: Research Scientist, Artificial Intelligence Laboratory

3

4

Contents

1 Introduction 15

2 Interpretation Strategies 17

2.1 Expression Interpreter . 17

2.2 Statement Interpreter . 18

2.3 Byte-code Interpreter . 18

2.4 Byte-code Generation . 18

3 First-Pass Implementation 21

3.1 Beginning . 21

3.2 Expression.eval . 22

3.3 Procedure.apply . 23

3.4 Syntax . 24

3.5 Scheme types and their Java representation 25

3.5.1 SelfEvaluating . 26

3.5.2 booleans . 26

3.5.3 symbols . 26

3.5.4 numbers . 26

3.5.5 characters . 26

3.5.6 strings . 27

3.5.7 pairs . 27

3.5.8 vectors . 27

3.5.9 procedures . 28

5

3.5.10 ports . 28

3.6 Reader . 28

3.7 Expression.analyze . 28

3.8 Loader . 29

3.9 Writer . 30

3.10 Primitives . 30

3.11 Script . 31

3.12 REPL . 31

3.13 ScriptException . 32

3.14 Java-to-Scheme API . 32

3.15 Extensions to Scheme for Java . 33

3.15.1 java.lang.Object . 33

3.15.2 java.util.* . 35

3.15.3 Processes . 36

3.15.4 Mail . 36

3.16 Analysis of First-Pass Implementation 36

3.16.1 Performance . 36

3.16.2 Maintainability . 38

3.16.3 Standard Compliance . 38

4 Second-Pass Implementation 41

4.1 Removing SelfEvaluating Expression 41

4.1.1 Expression Inheritance Cleanup 42

4.1.2 Primitive Type Marshalling 44

4.2 Compiler . 45

4.2.1 CompileTimeEnvironment . 46

4.2.2 GlobalVariables as Cells . 46

4.2.3 Table-Driven Syntax . 48

4.3 Primitives . 50

4.3.1 I/O Primitives . 51

6

4.3.2 Externalizing Primitive Definitions 52

4.3.3 Removing Non-Primitive Primitives 53

4.3.4 Partitioning Primitive Definitions 54

4.4 Arrays . 54

4.4.1 StringBuffer to char[] . 55

4.4.2 Arguments from Vector to Object[] 55

4.5 Application Special Cases . 55

4.5.1 Unrolling Primitives . 58

4.6 Handling of Exceptions . 59

4.7 Debugging . 59

4.7.1 Java Debugger . 60

4.7.2 Stack Traces . 61

4.7.3 Source . 62

4.7.4 REPLServer . 63

4.8 Analysis of Second-Pass Implementation 63

4.8.1 Modules . 64

4.8.2 Performance . 64

4.8.3 Macros . 66

5 Third-Pass Implementation 67

5.1 let Optimization . 67

5.2 Closure Analysis . 69

5.2.1 Stack . 70

5.2.2 Until . 71

5.2.3 Closure Analysis at Compile Time 72

5.2.4 Closure Analysis at Run Time 74

5.3 Quoted . 75

5.4 Removing Implicit Begin . 75

5.5 Analysis of Third-Pass Implementation 76

5.5.1 Analysis of let Optimization 76

7

5.5.2 Analysis of Closure Analysis 77

6 Fourth-Pass Implementation 79

6.1 Applet . 79

6.1.1 java.net.URL . 79

6.1.2 Syntax Checking . 80

6.1.3 ScriptException . 80

6.1.4 Script Widget . 81

6.2 Reflection . 81

6.2.1 java.lang.reflect . 81

6.2.2 Reflection Extensions . 82

6.2.3 Reflection Performance . 84

6.3 Multi-engine . 85

6.3.1 Procedures . 86

6.3.2 Thread-Local Storage versus Stack 87

6.4 Internationalization . 87

6.5 Performance . 88

6.5.1 GrowOnlyHashtable . 88

6.5.2 new Integer . 88

6.5.3 char[] to String . 89

6.6 Analysis of Fourth-Pass Implementation 89

6.6.1 Applet versus Reflection . 89

6.6.2 Primitives in Applet Environment 90

6.6.3 Multi-Engine versus REPLServer versus HTML 91

6.6.4 Remaining Limitations to Scheme for Java 92

7 Java and Scheme 95

7.1 Java Advantages . 95

7.1.1 Portability . 95

7.1.2 Language . 97

7.1.3 Platform . 101

8

7.2 Java Disadvantages . 102

7.2.1 Threads . 102

7.2.2 Synchronization . 103

7.2.3 Classes . 106

7.2.4 RuntimeExceptions . 108

7.2.5 Assert and Macros . 109

7.2.6 Numbers . 109

7.2.7 else if . 109

7.2.8 Exit . 110

7.2.9 Tail Recursion . 110

7.3 Scheme Advantages . 111

7.3.1 Size . 111

7.3.2 Garbage Collection . 111

7.3.3 Functional Programming . 111

7.4 Scheme Disadvantages . 112

7.4.1 Language . 112

7.4.2 Libraries . 116

7.4.3 I/O . 118

7.4.4 Platform . 120

7.4.5 Testing . 120

7.4.6 Goals . 121

8 Language Discussion 123

8.1 Code-Data Duality . 123

8.2 Packages and Modules . 124

8.3 Type Safety . 125

8.4 Dynamic Invocation . 126

8.4.1 C . 126

8.4.2 Scheme . 127

8.4.3 Java . 127

9

8.5 Threads, Dynamic Variables, and Thread-Local Storage 128

8.6 Syntax . 129

9 Comparative Analysis 131

9.1 Comparative Analysis with other Scheme systems 131

9.1.1 Java Scheme Systems . 132

9.1.2 Non-Java Scheme Systems . 138

9.2 Comparative Analysis with other Scheme-like Java systems 143

9.2.1 The scheme package . 143

9.2.2 PS3I . 143

9.2.3 LISC . 143

9.2.4 HotScheme . 144

9.2.5 MIT Scheme in Java . 144

9.2.6 PAT . 144

9.2.7 LispkitLISP Compiler in Java 144

9.3 Comparative Analysis with other Java extension systems 145

9.3.1 HotTea . 145

9.3.2 Rhino . 145

9.3.3 Jacl . 145

9.3.4 JPython . 146

9.3.5 BeanShell . 146

9.3.6 DynamicJava . 146

10 Future Work 147

11 Conclusion 149

11.1 Scheme-to-Java API . 149

11.2 Java-to-Scheme API . 150

11.3 Java Performance Lessons . 152

11.3.1 Thou shall not synchronize . 152

11.3.2 Thou shall not allocate . 153

10

11.3.3 Thou shall not abuse exceptions 153

11.3.4 Thou shall not forsake buffering 154

11.3.5 Thou shall not forsake arrays 154

11.3.6 Thou shall honor pointer equality 154

11.4 Final Thoughts . 155

12 Acknowledgments 157

A Benchmark Results 159

A.1 Script . 160

A.1.1 Sun JDK 1.3.0 . 160

A.1.2 Sun JDK 1.2.2 . 160

A.1.3 Sun JDK 1.1.8 . 160

A.1.4 IBM JDK 1.3.0 . 161

A.1.5 IBM JDK 1.1.8 . 161

A.1.6 Microsoft SDK for Java 3.1 161

A.2 Kawa . 162

A.2.1 Sun JDK 1.3.0 . 162

A.2.2 Sun JDK 1.2.2 . 162

A.2.3 Sun JDK 1.1.8 . 162

A.2.4 IBM JDK 1.3.0 . 163

A.2.5 IBM JDK 1.1.8 . 163

A.2.6 Microsoft SDK for Java 3.1 163

A.3 SILK . 164

A.3.1 Sun JDK 1.3.0 . 164

A.3.2 Sun JDK 1.2.2 . 164

A.3.3 Sun JDK 1.1.8 . 164

A.3.4 IBM JDK 1.3.0 . 165

A.3.5 IBM JDK 1.1.8 . 165

A.3.6 Microsoft SDK for Java 3.1 165

A.4 Skij . 166

11

A.4.1 Sun JDK 1.3.0 . 166

A.4.2 Sun JDK 1.2.2 . 166

A.4.3 Sun JDK 1.1.8 . 166

A.4.4 IBM JDK 1.3.0 . 167

A.4.5 IBM JDK 1.1.8 . 167

A.4.6 Microsoft SDK for Java 3.1 167

A.5 WinScheme based on Scheme 48 0.52 168

A.5.1 without ,bench . 168

A.5.2 with ,bench . 168

A.6 SCM 5d3 . 169

A.7 MIT Scheme 7.5.10 . 170

A.7.1 plain load . 170

A.7.2 sf load . 170

A.7.3 cf load . 170

12

List of Tables

3.1 Expression subclasses . 22

3.2 Scheme types and their Java representation 25

3.3 ScriptException subclasses . 32

4.1 Variable and Assignment replacement Expression subclasses 46

13

14

Chapter 1

Introduction

Extension languages are an important part of modern applications development.

They allow the end user to tailor an application to needs that could not be fore-

seen by the developer. Early examples of extension languages were often tied directly

to one application, as is the case with Emacs Lisp in GNU Emacs. [32] A later trend

was to provide an extension language as a reusable library, as is the case with Tcl/Tk.

[34] [35] Recently the trend has been to provide an interface between applications that

desire scripting and libraries that can provide it, allowing users to use their language

of choice, as is the case with ActiveX Scripting. [42]

Java provides a new twist for extension languages. A pure Java application can-

not use any of the non-Java extension languages without compromising portability.

However, a new extension language built in Java would inherit some of its parent lan-

guage’s benefits, such as cross platform support, modern garbage collector technology,

and just-in-time compiler support. [16]

Scheme is a good choice as an extension language for Java. Scheme is a small

well-defined language making it easier on language users and language implemen-

tors alike. Although Scheme is small, it is a general-purpose programming language

providing traditional data-structures as well as object-oriented techniques. Scheme’s

data-structures are easily represented by standard Java classes making interoperabil-

ity straightforward. [28]

After discussing possible implementation strategies, the history of one particular

15

Scheme in Java system will be discussed. This system had four discrete implementa-

tion passes, each with a different motivations:

1. minimal quick implementation and simple embedding API

2. maturation of libraries and simple performance optimizations

3. serious performance work based on application memory and CPU profiling

4. full-featured embedding API and focus on Java environment support

Each pass will offer analysis of the implementation at that point in time. A language

implementation faces various tradeoffs between run-time speed, run-time memory

usage, implementation size, complexity, extensiblity, usability, and even correctness,

these will be reviewed in their historical context.

This will be followed up by a pros and cons discussion of the Java and Scheme

programming languages as well as more general thoughts on programming languages.

Finally, comparative analysis, future work, and conclusions are presented.

16

Chapter 2

Interpretation Strategies

A variety of implementation techniques exists implementing Scheme in Java, varying

from interpreting s-expressions to compiling into Java byte-codes. Tradeoffs exist for

each approach, such as speed, size, and implementation complexity. Ruling out the

extremes of a simple s-expression interpreter for its unnecessarily poor analysis and

a Java byte-code system for its complexity, a suitable strategy must lie somewhere in

between.

2.1 Expression Interpreter

An expression interpreter is one step up from an s-expression interpreter. This uses a

simple compiler to do syntax analysis as well as translation of derived syntax into a

smaller kernel syntax. Expressions in this kernel syntax would be represented directly

by subclasses of a Java class Expression that would implement an eval method. Pro-

cedures would in turn be represented by subclasses of a Java class Procedure that

would implement an apply method. Such an interpreter could also do traditional

lexical analysis to improve variable access. It could also special-case apply to min-

imize allocation during primitive procedure application. However, because Scheme

functions are mapped in Java method calls on the Java stack, general support for tail

recursion cannot be implemented.

17

2.2 Statement Interpreter

The next logical step would be to take expression analysis a step further to create a

statement interpreter. This interpreter would be at the register-machine level with

different subclasses of a Java class Statement providing the instruction set of the

machine. This explicit control over the stack would bring back the possibility of tail

recursion. However, there is still a cost of doing a Java method call per Statement

that is not negligible.

2.3 Byte-code Interpreter

Taking matters to an even lower level of interpretation, the compiler for the statement

interpreter could produce its own byte-codes. The byte-code interpreter would be like

taking the logic of all the subclasses of Statement and merging into one Java method.

This would remove the expense of the Java method overhead and instead use the Java

virtual machine switch byte-code. Having one large method instead of many small

ones also gives the Java just-in-time compiler a better chance to significantly improve

the performance of the interpreter. This is similar to the approach taken by Scheme

48, which implements Scheme on top of a byte-code interpreter implemented in the

C programming language. [29]

2.4 Byte-code Generation

Instead of implementing a byte-code interpreter in Java, another implementation

approach would be to generate byte-codes for the Java virtual machine. [33] This

approach is taken by Kawa, another Scheme implemented in Java. [7] However,

because this implies use of the Java stack for control flow, it suffers from the same

issues regarding tail-recursion as the expression interpreter described above. However,

it is possible to do some simple analysis to translate simple tail-recursive loops into

regular iteration. This apporach is taken by Pseudoscheme to implement Scheme on

top of Common Lisp, with a similar approach used by Kawa. [47] MIT Scheme’s

18

C language backend also uses analysis to cope with an underlying language lacking

tail recursive semantics. [14] Some proposals exist for extending the Java virtual

machine to support the needs of languages besides Java, but none are available in

Sun’s reference implementations today. [55]

19

20

Chapter 3

First-Pass Implementation

The goal for the first-pass implementation was to get a quick and dirty implementation

working with Java 1.0, specifically JDK 1.0.2. Performance and extensibility were not

concerns, instead effort was placed into making the implementation multi-threaded

and to provide a simple hook-style API from Java into Scheme.

3.1 Beginning

The Scheme implementation described here was originally started as a way of build-

ing more experience with Java. Having recently reviewed the second edition of the

Structure and Interpretation of Computer Programs, also known as SICP, it was de-

cided to build a little Scheme-like interpreter in Java, perhaps with an Algol syntax.

As such, the implementation is based on the SICP chapter-four interpreter. [1]

The implementation later found use in a Java server application with the following

requirements:

1. provide customization logic through small code extensions

2. must be able to change customizations without restarting application

3. must be able to interactively test and iterate customizations

4. long-term desire to expose scripting through GUI tool

21

Scheme’s clean language semantics were desired, although there was concern that

an s-expression syntax was off-putting to users. Because the original plan was to

make a Scheme-like language, and not necessarily a standards-compliant Scheme im-

plementation, the implementation avoided the use of the term Scheme and instead

used the terms script and scripting instead of Scheme.

3.2 Expression.eval

The implementation revolves around the abstract Expression class, with a single

eval method to implement the logic for each category of Expression. The concrete

subclasses of Expression with their corresponding traditional syntax in the first pass

were:

Definition (define symbol value)
Variable symbol
Assignment (set! symbol value)
Quoted (quote ...)
Begin (begin ...)
If (if predicate consequent alternative)
Lambda (lambda ...)
Application (...)
Do (do ...)
Procedure See analysis

Table 3.1: Expression subclasses

The signature of the Expression.eval method originally was:

abstract public Expression eval (Environment environment);

The sole argument to eval is the current environment, which is used to evaluate

this Expression, and passed, possibly modified or extended, when evaluating any sub-

Expressions. The Environment contains an instance field referencing its enclosing

Environment as well as a static class reference to the GlobalEnvironment.

The initial implementations of the Expressions were as straightforward as possi-

ble to get an implementation working quickly. Definition modified the Environment

22

by defining a new Variable. Variable searched through the Environments and then

the GlobalEnvironment to retrieve the value matching its name. Assignment per-

formed a similar search through the Environment to modify a value. Quoted ignored

the Environment, simply returning its quoted value. Begin, If, and Application

pass their Environment argument unmodified as they evaluate their sub-Expressions.

Lambda created a new Compound Procedure in the current Environment. Do first eval-

uated its inital values in the current Environment, then extended the Environment

by binding these initial values, and then evaluated its body and condition sub-

Expressions in the newly extended Environment.

The return result of calling eval is another Expression, possibly and probably a

Procedure or SelfEvaluating Expression, which can contain any java.lang.Object.

3.3 Procedure.apply

eval cannot be discussed without its meta-circular companion apply. In this imple-

mentation apply is an abstract method on the abstract class Procedure:

public abstract Expression apply (Vector arguments)

throws ScriptException;

Because eval returned an Expression object, apply accepts a Vector of Expression

objects. Also for symmetry with eval, Procedure.apply’s calculated return value is

also an Expression. 1

Besides numerous primitive Procedure subclasses, there also exists the Compound

subclass of Procedure. As mentioned above, a Compound Procedure is created by

Lambda.eval, keeping a pointer to the Environment it was created in, as well the

Lambda Expression itself. When Compound.apply is invoked, it takes the Vector of

arguments and uses them to extend its remembered Environment, using the variable

1 In retrospect, Expression.eval should take arguments of type java.lang.Objects and return
a value of type java.lang.Object. More on this in section 3.16.1 on page 36 and in section 4.1 on
page 41.

23

bindings stored in the Lambda Expression. The apply method then finishes by evalu-

ating the body sub-Expressions of the Lambda in this newly extended Environment,

returning the value of the last sub-Expression as the value of the apply.

3.4 Syntax

Since no syntax had been decided upon yet, simple programs were constructed in

Java, not text files, using Expressions subclasses directly for testing the interpreter.

eval would then be called on the top level Expression object.

For example, the Scheme program:

;; + is the R5RS function

;; (define + ...)

(define 1+ (lambda (n) (+ n 1)))

(1+ 23)

would translate into the Java program:

System.out.println(

new Begin(new Vector(new Object[] {

new Definition(new Symbol("+"),

new Plus()),

new Definition(new Symbol("1+"),

new Lambda(new Vector("n"),

new Application(

new Variable("+"),

new Variable("n"),

new SelfEvaluating(

new Integer(1)))))

new Application(

new Variable("1+",

new SelfEvaluating(

24

new Integer(23))))})).eval(new Environment()));

The original plan was to avoid the s-expression syntax and instead use something

Algol-like to make it more familar to users. This is a familar story for Lisp implemen-

tations because even in the early Lisp system the syntax was considered temporary.

[39]

JavaCC, the Sun Java Parser generator, provided a first attempt to produce a

non-s-expression grammar for scripting. However, after finding that JavaCC could

not even parse Java with the official Sun supplied grammar, the effort was abandoned.

3.5 Scheme types and their Java representation

Before continuing in the syntax discussion, note that the above example shows the

number one being represented by a java.lang.Integer. It is hard to make any

progress at this point without nailing down these data-representation issues.

The following table lays out the standard Scheme types and their Java represen-

tations:

discriminator Java class example

null? SelfEvaluating ’()
boolean? java.lang.Boolean #t #f
symbol? Symbol ’a
integer? java.lang.Integer 1
real? java.lang.Double 1.0
number? java.lang.Number 1 1.0
char? java.lang.Character #\a #\space
string? java.lang.String or StringBuffer ”string”
pair? Pair (cons 1 2)
vector? java.util.Vector (vector 1 2 3)
procedure? Procedure (lambda ...)
eof-object? SelfEvaluating #{EOF}
input-port? java.io.PushbackInputStream (open-input-file ”file”)
outut-port? java.io.PrintStream (open-output-file ”file”)

Table 3.2: Scheme types and their Java representation

25

3.5.1 SelfEvaluating

null, the eof-object, and the unspecified value are static instances of the SelfEvaluating

class. SelfEvaluating is a simple Expression subclass that wraps a java.lang.Object.

Besides the static instances representing these values, SelfEvaluating are allocated

to wrap non-Expression values that are passed to and returned from Expression.eval

and Procedure.apply

3.5.2 booleans

Originally booleans were also implemented as static instances of SelfEvaluating

but it was quickly realized that for ease of integration with Java, it would be simplest

to reuse the java.lang.Boolean class. Its two static instances, Boolean.TRUE and

Boolean.FALSE represent Scheme #t and #f respectively.

3.5.3 symbols

The Symbol subclass of Expression is used to represent Scheme symbols. It remem-

bers the name of the Symbol, as well as using that for display with Object.toString.

In that way it is similar to the SelfEvaluating class, although they are separate

classes so that the symbol? will return false for null and the eof-object.

3.5.4 numbers

As already mentioned, integers are represented with java.lang.Integer. real

values are stored using java.lang.Double. In general, numbers can be any subclass

of java.lang.Number, such as Byte, Short, Integer, Long, Float, and Double, or

even java.math.BigDecimal and java.math.BigInteger.

3.5.5 characters

characters are represented simply as java.lang.Character.

26

3.5.6 strings

It would seem natural to represent strings with java.lang.String. However, there

is an mismatch between Scheme strings and java.lang.Strings. The problem is

that while Scheme strings are mutable, as it true for most conventional program-

ming languages, Java makes a significant departure from most common languages by

making Strings immutable.

Although Java does have a related class java.lang.StringBuffer that does al-

low mutation, most Java APIs are in terms of the java.lang.String class. To make

integration easier, it was decided that string operations such as string-length and

string-ref would work with both String and StringBuffer instances, although

string-set! would signal an error if used with a String instance. make-string re-

turns instances of StringBuffer, so most existing Scheme code dealing with Strings

will get the behavior they expect.

3.5.7 pairs

cons pairs are represented in memory with the Pair class which simply contains

pointers to two Expressions, the car and the cdr. The Pair class includes an

implementation of toString that correctly handles dotted notation, as well as hiding

the dots in list structures.

3.5.8 vectors

vectors are represented with java.util.Vectors, although an Object array would

perhaps be more accurate. Unlike Scheme vectors, java.util.Vectors are resizable.

However, most Java APIs are expressed in terms of Vectors, so once again, for

interoperability, convenience wins out over exactness. Since Java Vectors provide a

superset of functionality over Scheme vectors, this should not be problematic.

27

3.5.9 procedures

As mentioned above, the Procedure subclass of Expression is used to represent

procedures.

3.5.10 ports

input-ports and output-ports are represented with PushbackInputStream and

PrintStream respectively. PushbackInputStream provides the necessary functional-

ity to implement peek-char, while PrintStream can output any java.lang.Object,

not just byte arrays.

3.6 Reader

With Java representations for Scheme booleans, numbers, characters, strings,

pairs, and vectors nailed down, it was now possible to write a reader to cre-

ate them from an input-port. The Reader class parses s-expressions from any

java.io.InputStream and returns Expressions, which correspond to the the Java

representation of any of the aformentioned Scheme types, possibly wrapped in a

SelfEvaluating Expression.

In addition to creating s-expressions, the Reader also supports the standard reader

macros for quote, quasiquote, unquote, and unquote-splicing.

java.util.StreamTokenizer provides the basis for the Reader, providing simple

tokenization and the removing of comments. However, writing a lexer from scratch

probably would have been just as easy, in retrospect.

3.7 Expression.analyze

Once the Reader was completed, an analyze method was added to abstract Expression

class:

public Expression analyze () throws ScriptException

28

Expression.analyze would be called on the Expression returned from the Reader

and translate the s-expressions into a program. This method basically performed a

type analysis on the Expression being analyzed. Symbols would be converted into

Variable Expressions. Non-Pairs such as Strings and Numbers would be con-

verted into Quoted Expressions. Pairs would be analyzed further based by first

recursively analyzing the car of the Pair. If the resulting Expression was not

a Variable, then that compiled Expression is assumed to be the operator of an

Application Expression and the cdr of the Pair is compiled to form the operands

of the Expression.

If the car of the Pair compiled to a Variable, then before the compiler can assume

that the Expression is an Application, the compiler first has to check for special

forms. The kernel special-form syntax consists of define, set!, quote, begin, if,

lambda, and do, which map into Expressions as shown in the table above. However,

to support the remainder of Scheme syntax, s-expressions are rewritten to transform

the special forms let, and, or, and cond, into kernel special forms such as lambda and

if. After such rewriting, the new code would in turn be compiled. In the case that

the Variable Expression’s name did not match any special forms, the Pair was

assumed to represent an Application Expression and the operands were compiled

as-noted above. When compiling kernel special forms, each special form provided for

any necessary compiling of the cdr of the Pair itself.

3.8 Loader

The next step was to write a Loader class. The Loader repeatedly calls the Reader

class. In each iteration it invokes Expression.analyze on the result of read. It then

calls Expression.eval on the Expression returned and displays the results using

System.out.println. For the first time the implementation was a working Scheme

system that would translate Scheme s-expressions into results.

29

3.9 Writer

There is a problem with using System.out.println to display Scheme values. println

converts java.lang.Objects to Strings using the Object.toString method. For

classes such Pairs, Procedure, etc., the classes can provide their own implementation

toString to suit the Scheme behavior, as mentioned above with regard to Pair.

SelfEvaluating provides an implementation that simply calls toString on the

Object it is wrapping. This works well for printing out java.lang.Numbers, since

the Java supplied toString is what is desired for Scheme as well. It also knows

to print the static instances of null, the eof object, and the unspecified as (),

#{EOF}, and #{unspecified} respectively.

However, for other Java classes, the standard toString behavior does not match

what Scheme defines. For example Booleans, Characters, Strings, and Vector

do not print the way that Scheme users would expect. To provide the expected be-

havior of the Scheme write function, SelfEvaluating.toString is extended with

additional code to handle displaying java.* classes with the expected Scheme se-

mantics. It does this by checking for the known special cases first, such as those

mentioned above, using the Java instanceof operator and then falling through to

use the toString in the common case.

A simple Writer class bundles SelfEvaluating’s ability to convert Objects to

Strings with a write method that performs the conversion and then sends the results

to an output-port implemented as a PrintStream.

3.10 Primitives

Although functions like cons, car, and cdr as well as Church numerals could be

defined using lambda alone, it seems like more practical ways of defining primitives

are necessary. This is done by defining primitives in the GlobalEnvironment in Java,

as was done in the test Java program shown above:

Environment.globalEnvironment.define("+", new Plus());

30

Some of the interesting early primitives include read, write, and load, which

wrap the Reader, Writer, and Loader classes respectively.

3.11 Script

The Script class started out as a sort of catch all class. Originally it housed the

SelfEvaluating instances for values such as Null, EOFObject, and Unspecified.

Later it housed the Script.init method for defining the primitive Procedures as

shown above.

Evenually, after a sufficient set of primitives were defined, additional standard

functions could be added in Scheme itself. A Scheme file was created to contain

these functions. A new method Script.load was added to invoke the Loader.

Script.init was extended to load this system initialization file as well.

3.12 REPL

At this point, a simple Read Eval Print Loop, or REPL, was written to pull the pieces

of the Script, Reader, and Expression.analyze, together into an interactive sys-

tem. Script.init would be called first to initialize the GlobalEnvironment and its

Procedures. Then a Reader was initialized on System.in. Then the REPL class would

loop printing a prompt, using the Reader to read from System.in. If something other

than eof-object was returned, it would be compiled with Expression.analyze.

If the compilation suceeded, Expression.eval would be called on the returned

Expression. If the result was other than Script.Unspecified, its value would

be displayed. Although the REPL was not intended to be the interface to this Scheme

system, it did provide a great tool for testing and benchmarking.

31

3.13 ScriptException

There have been a couple of references to ScriptException in various method sig-

natures and APIs. At this point it seems worthwhile to summarize the common

ScriptExceptions and their causes:

ArgumentCountException Procedure.apply incorrect number of arguments
ArgumentTypeException Procedure.apply incorrect type of argument
BoundsException Vector and String vector or string index out of bounds
ParseException Reader and I/O primitives generally java.io.IOException
ScriptError Error.apply allow user functions to signal error
SyntaxException Expression.analyze syntax errors
UndefinedVarException Variable reading or writing undefined variable

Table 3.3: ScriptException subclasses

3.14 Java-to-Scheme API

The purpose of this implementation is to provide an embedded Scheme language

to extend a Java application. To accomplish this, an API is defined for the Java

application to interact with the Scheme system. Script.load is the first example of

such an API.

Loading from a File is really just a special case of loading from an InputStream.

Once there is generalized load from an InputStream, a version can be created to load a

script from a String in memory as well as using a java.io.ByteArrayInputStream.

This leaves us with three versions of Script.load:

• Script.load(InputStream input, String location)

• Script.load(File file)

• Script.load(String script, String location)

The location argument is used to identify what is being loaded for error reporting

purposes, which defaults to the File’s name in the File case.

Script.load is a good starting place, but is not too helpful for integrating Scheme

logic into a Java application. Taking an example from Emacs and its use of elisp,

32

the most common form of user extension is the hook. A hook is basically a function

defined by the user that is called at a certain point by the application to allow

the user to guide the course of execution. The hook function receives a defined set

of arguments, and may alter the state of the application through side effects, and

perhaps also alter the flow by way of its return value, if the application chooses to

use the hook in that manner.

To provide hook functionality, two new methods, Script.procedure and Script.call

were added. Script.procedure looks up the value of a Variable by name using a

third new function, Script.lookup, and returns it after making sure the value is

in fact a Procedure. Script.call then allows that Procedure to be called with

arguments as many times as is desired by the application.

One final requirement is for all of this to work in a multi-threaded environment.

Specifically it must be possible for multiple java.lang.Threads to simultaneously

invoke the Script APIs without any danger. Since in this early implementation the

only piece of shared state is the GlobalEnvironment, basically this comes down to

using appropriate Java synchronize statements to allow only one Thread to modify

or access the GlobalEnvironment at a time.

3.15 Extensions to Scheme for Java

The last section discussed a Java API for calling Scheme. This section discusses

additions to Scheme for accessing parts of Java.

3.15.1 java.lang.Object

java.lang.Object is a superclass of all Java classes. As such, it contains a number

of methods that apply to all Java objects, including therefore the implementation’s

Scheme objects in Java.

One such method is Object.toString. While Scheme provides a selection of

*->string functions to convert various Scheme types to strings, the implementation

also provides a more general to-string function that converts any Scheme value to

33

a string.

Another important method is Object.equals. By default equals uses pointer

equality to compare two Java objects for equality. However, classes can override

this simple notion to define class-specific definitions of equality. The most common

example of this is the String class, which defines equality by comparing the chars

of each String for equality.

Scheme has its own share of definitions of equality including eq?, eqv?, equal?,

char=?, string=?, and =. For Java, equals? is added to this mix which uses

Object.equals for comparing two Objects. The definition of equal? is extended

to use equals? as a last-resort comparison when testing objects for equality.

Java allows the creation of a new Object instance from a String class name

with the combination of the Class.forName and Class.newInstance methods. This

functionality is provided through the new function. This allows us to create many

different types of objects besides the ones that the Scheme system knows about out

of the box.

Another similar sort of operation commonly found in the Java system is the ability

to get and set the fields of an object by name. JavaBeans is one such system, although

others exist. However, this general concept of reflection was not available to this

implementation because it needed to run in a Java 1.0 environment.

However an alternative was provided for those willing to implement a simple

interface. Called ValueSource, this interface allows a class to implement a JavaBeans-

like protocol through simple getFieldValue and setFieldValue methods. This

functionality is then accessed by get and set primitive Scheme functions. This

allows code to manipulate fields of objects without having to extend the system

with primitive Procedures for each case, at least for classes willing to implement

the ValueSource interface. Fortunately, this concept was used extensively in the

embedding application to allow a metadata-driven user interface, so it worked out

well for the script programmers as well.

34

3.15.2 java.util.*

The next set of classes to expose to Scheme are the java.util.* utility classes

Vector, Hashtable, Enumeration, and Date.

As mentioned before, java.util.Vector provides a superset of what is needed

to implement Scheme vectors. To access some of the additions, the extensions

vector-addElement, vector-removeElement, and vector-removeAllElements pro-

vide access to the Vector methods addElement, removeElement, removeAllElements

respectively.

Although Scheme provides a variety of association-list functionality, it is based on

list data-structures. Java provides a better performing alternative to association lists,

the java.util.Hashtable class. Hashtables can be created with the new function

as mentioned above.

At first, Hashtable access was overloaded into the get and set functions men-

tioned above. This was confusing from a user perspective, since they expected the

Hashtable names of get and put instead. It also unnecessarily slowed down get

and set because they had to perform an instanceof test to determine if they were

dealing with a ValueSource or a Hashtable. Eventually, to avoid the confusion and

cost, separate hashtable-get and hashtable-put functions were introduced.

Although hashtable-get and hashtable-put allowed access to individual ele-

ments, it did not allow a program to iterate over the keys and elements. To enable this,

hashtable-keys and hashtable-elements were added. These return objects of type

java.lang.Enumeration. In order to make these return values useful, the functions

hasMoreElements and nextElement were added to wrap Enumeration.hasMoreElements

and Enumeration.nextElement methods respectively.

java.util.Date objects can be created with the new function mentioned above.

A get-time function was added to access the contained numeric value. This was

primarily used to compare times when perform benchmarking of the implementation.

35

3.15.3 Processes

A useful ability of most scripting system is the ability to invoke external commands

in sub-processes. Java provides this ability with java.lang.Runtime.exec, which

creates a java.lang.Process. To provide this through Scheme, the implementa-

tion provides a simple exec function that returns the Process. The matching wait

function takes the Process and returns its exit code.

For dealing with the current process, the exit function wraps the System.exit

function, allowing a user to exit the REPL process with or without an error code,

making it useful for batch operations.

3.15.4 Mail

Another commonly desired ability for scripting systems is sending email. On Unix

systems, this can be accomplished by just using the above process machinery to call

the standard sendmail program. However, for portability in Java, especially to Win32,

a send-mail function is provided. This originally was a simple SMTP implementation

in Java, but now has been made into a wrapper around the Sun javax.mail package.

3.16 Analysis of First-Pass Implementation

Having completed this working first-pass implementation, there are some issues to

highlight.

3.16.1 Performance

As mentioned above, Expression.eval returns an Expression. In retrospect, this re-

turn value should have nothing to do with Expression, since the tree of Expressions

represents the static structure of the program, not the run-time values the program

produces. This was not just silliness but in fact a serious performance problem, as

the cost of allocating wrapper SelfEvaluating Expressions and having primitive

Procedures doing unnecessary and costly instanceof operations.

36

Because eval accepted and returned Expressions, Pair, Symbol, and Procedure

were made subclasses of Expression. This avoided having to wrap these classes of

objects up in SelfEvaluating Expressions, but is a symptom of the same problem.

One performance problem that was addressed was the unnecessary use of Exceptions

for detecting problems. Although Java works hard to make try-catch blocks inex-

pensive when there is nothing to catch, using Exceptions for control flow does have a

cost. Although Java works hard to keep the cost of actually throwing and catching an

Exception as low as possible, its performance is particularly high when running in the

debugger. In many cases, Exceptions can be avoided, reserved for truly exceptional

conditions.

The first problem along this line was caused by the String2Number.string2number

method. This method is shared between the string->number primitive Procedure

and the Reader. For string->number there was not really a problem because it is

almost always called by code passing in an actual numeral. However, the performance

problem particularly was problematic in the Reader. For each String token returned

by the StreamTokenizer, the Reader would try to use string2number to see if the

token was a number or a symbol. string2number first tried to parse the value as an

Integer, and if that failed, as a Double, and if that failed, returned Boolean.FALSE.

However, the each failure would result in a NumberFormatException being thrown

and caught.

The reason why this was particularly expensive for the Reader is that statistically

most tokens are Symbols, not Numbers. In the Reader, Exceptions where being used

for control flow in the common case, not the exceptional case. The solution was to

add some quick tests to guess if the String was a number. Specifically, if the String

was empty, or its first character was not a digit or “.” or “-”, Boolean.FALSE was

returned immediately. Then if the String did not contain “.”, it was attempted to be

parsed as an Integer, while if it did, it would be parsed as a Double. Since Symbols

start with an alphabetic Character, string2number avoids the Exception in the

common case, leaving the Exception for the truly exceptional case where something

that looks like a number to the quick test turns out not to be.

37

The second problem along this line was caused by the Java application calling

Script.load with a large number of non-existent files. The application intended

these files to be optional scripting libraries, so it was not really an error that they

were not there. However, the Java run-time was throwing FileNotFoundException

which the implementation was catching and rethrowing as a ParseException. By

simply calling File.exists before trying to load a file, the application was changed

to avoid this cost. This application change ensured the system would start up without

any ScriptExceptions, greatly increasing startup performance in the debugger.

Finally, on a more positive note, SICP talks about syntax analysis being a perfor-

mance improvement over the standard s-expression interpreter. [48] Syntax analysis

basically is performing the parsing of the text form into the language into data-

structures first, and then interpreting that pre-parsed format, instead of reparsing

the s-expression on each evaluation. However, because the implementation was in

Java and no syntax was defined at the time the core evaluation logic was built, this

style fell out naturally by default.

3.16.2 Maintainability

One frustrating limitation of the early implementation is the number of hard coded

special cases. The syntax is extensible only from within the implementation of

Expressions, not via user macros. Similarly, there is no way to add new primi-

tives except through Java.

3.16.3 Standard Compliance

One serious limitiation of this implementation is that it does not support tail recur-

sion. This is primarily because the implementation uses the Java stack for control

flow through Expression.eval. The current implementation is not a total waste

however, because many of the pieces from the primitives to the Expression tree

could be reused in the future for a different tail-recursive implementation. What is

needed is to translate the Expression tree into statements similar to the SICP chap-

38

ter 5 style explicit control evaluator and compiler. As there was no tail recursion,

there was no easy way to generally implement let loop, and it was omitted.

At this point, a full set of standard library functions was not present. They were

added in groups as needed over time. The special function call-with-current-continuation

was specifically omitted because of the lack of control over the Java stack used to im-

plement Expression.eval.

39

40

Chapter 4

Second-Pass Implementation

The first-pass implementation was actually employed for some time. It was not com-

plete or well performing but it met the needs of the application using it. More

and more primitives and syntax were added to flush out the implementation to more

closely approximate standard Scheme. With the amount of effort going into new prim-

itives, work was performed to simplify the writing and addition of new primitives to

the system. Performance was improved by simplifying run-time representations and

by performing simple compile-time analysis. As the implementation became more

widely used, support for debugging the implementation as well as Scheme programs

running in the implementation became a new priority.

4.1 Removing SelfEvaluating Expression

As mentioned above, Expression.eval mistakenly returned an Expression instead

of a java.lang.Object. This meant that all java.* arguments needed to be wrapped

in a SelfEvaluating Expression.

Because Expressions were passed at run-time, primitive Procedures expecting

non-Procedure arguments had to check that the arguments were first SelfEvaluating

Expressions, as well as then checking the type that the SelfEvaluating Expression

contained. Here is an example from Plus making sure its argument is a java.lang.Number:

if (!(object instanceof SelfEvaluating))

41

throw new ArgumentTypeException("Number", object);

SelfEvaluating se = (SelfEvaluating)object;

if (!(se.object instanceof Number))

throw new ArgumentTypeException("Number", se.object);

Number n = (Number) se.object;

In addition, each primitive Procedure needed to encapsulate its return value,

because as mentioned, Procedure.apply returned an Expression for symmetry with

Expression.eval, again an example from Plus:

return new SelfEvaluating(new Integer(intResult));

In retrospect, the cost of constructing and destructing all of the SelfEvaluating

Expressions seems confusing and expensive. The confusion stemmed from SICP

where the Scheme interpreter is written in Scheme. In this system, expressions and

s-expression are both represented with pairs and other simple values, and although

these detail are hidden behind abstraction barriers, apparently that can still cloud

the mind of a reader.

With the cleanup of Expression.eval and Procedure.apply, their method sig-

natures are changed as follows to more natural forms returning java.lang.Object:

public abstract Object eval (Environment environment);

public abstract Object apply (Vector arguments)

throws ScriptException;

4.1.1 Expression Inheritance Cleanup

The cleanup of the Expression.eval and Procedure.apply method signatures en-

abled various cleanup work in the Expression inheritance tree.

42

Pair,Symbol, and Procedure

It was now clear that is was not meaningful or useful to have Pair, Symbol, and

Procedure as subclasses of Expression. Now that eval and apply were cleaned up,

these classes were cleaned up as well by simply changing to subclass java.lang.Object

and by removing their eval methods. In addition, the Pair class’s car and cdr fields

were changed from holding Expressions to java.lang.Objects.

Reader

Now that Pair and friends were no longer Expressions, the Reader had to be

changed to return java.lang.Objects instead of Expressions as well. This meant

the Reader could stop wrapping java.* values in SelfEvaluating Expressions.

Expression.analyze

Now that the Reader returned Objects, the Expression.analyze method could no

longer be an instance method on Expression so it was changed to be a static method

instead:

public static Expression analyze (Object o) throws ScriptException

sub-Expressions

Most Expression subclasses contain sub-Expressions. In the change from Expression

to Object these were also converted. This meant that quoted values no longer had

to be boxed with an Expression.

However, then eval could no longer simply be an instance method on Expression.

To cope witht his, a static eval method was added to Expression. It simply

checked if the Object to evaluate was an instance of Expression. If so, it returned

Expression.eval. Otherwise, it simply returned the Object itself to handle the case

of quoted values such as Integers and Strings.

43

Constant

As mentioned before, null, the eof object, and the unspecified object were in-

stances of the SelfEvaluating class. A new Constant class, a simple subclass of

java.lang.Object, was created to replace this use of SelfEvaluating Expression.

Instances of the Constant class remember a String value to display when Object.toString

is called. This allows them to display themselves as (), #{EOF}, and #{unspecified}

respectively.

Writer

The Writer class had heavily relied on the implementation of SelfEvaluating.toString.

Now that java.* types were no longer encapsulated in a SelfEvaluating object, the

logic to print these objects was moved directly to the already static Writer.write

method.

SelfEvaluating and Quoted

With these changes made, the SelfEvaluating and Quoted and Expression classes

were no longer used and they were removed.

4.1.2 Primitive Type Marshalling

Removing SelfEvaluating Expression meant visiting all of the primitve Procedures

to cleanup their argument type handling code. The primitives had largely grown

through cut-and-paste, so there was a lot of duplicate code for common argument

validation. Where argument parsing code had not been cut-and-paste, subtle differ-

ences in behavior had arisen in some cases.

Since all primitives were being revisited, a set of helper functions was created.

The Script class took on this new type-marshalling role.

Script.string was the first such method introduced. It handled automatic con-

version of StringBuffers used to represent mutable Scheme strings into immutable

Java Strings as needed for interfacing with Java code.

44

This was soon followed by Script.object, which handled converting from the

Constant Script.Null to the Java null value, as well as possibly converting StringBuffers

to Strings. Script.object would be used by any code such as hashtable-put that

received a java.lang.Object, where the implementation would want to convert from

its representations into something more expected for Java code.

Although both Script.object and Script.string could convert StringBuffers

to Strings, there are differences. Basically, Script.string would raise an ArgumentTypeException

if it did not receive a String or StringBuffer. In Script.object, the conversion

was done if appropriate, but any other values would pass through without raising any

ArgumentTypeException.

As time went on, many type-marshalling methods were added to Script to deal

with all the common types, from Number to to Vector to Hashtable to Enumeration

to Date, etc. All of these marshalling functions throw an ArgumentTypeException

if the expected type is not passed and not derivable from the type passed, such as

converting a StringBuffer to a String, with the as-noted Script.object which

can handle any value.

These type-marshalling methods simplifed all of the primitives greatly because all

of error handling for most functions moved to helper methods. This made the Java

code have a more functional style and improved readabilty. It also made it easier

for programmers to add new primitives by allowing the primitives to focus on their

specific task, and not on the Scheme representation details.

4.2 Compiler

Some of the biggest changes in the second pass revolved around the new Compiler

class. Expression.analyze was moved out of Expression to form Compiler.compile

which was then enhanced.

45

4.2.1 CompileTimeEnvironment

The first change was to introduce CompileTimeEnvironments. By using CompileTimeEnvironments

the Compiler can take advantage of lexical scoping to change run-time searching of

the Environment into a compile-time search of a CompileTimeEnvironment. There-

fore, as part of the move from Expression.analyze to Compiler.compile, a new

CompileTimeEnvironment argument was added, resulting in the following signature:

public static Expression compile (

Object object,

CompileTimeEnvironment environment)

throws ScriptException

The CompileTimeEnvironment argument is extended with a new CompileTimeEnvironment

whenever a lambda special form is compiled. The extended CompileTimeEnvironment

remembers the variables bound by the Lambda Expression.

In order to take advantage of the CompileTimeEnvironment information, it is nec-

essary to replace the Variable and Assignment Expression classes. Variables that

are found in the CompileTimeEnvironment are represented with LexicalAddress

Expressions, while those that are not found are represented with GlobalVariable

Expressions. Assignments are represented with LexicalAssignment and GlobalAssignment

respectively. The new classes are summarized in the following table:

GlobalVariable symbol
GlobalAssignment (set! symbol value)
LexicalAddress symbol
LexicalAssignment (set! symbol value)

Table 4.1: Variable and Assignment replacement Expression subclasses

4.2.2 GlobalVariables as Cells

The GlobalEnvironment’s implementation started out using a Hashtable mapping

String variable names to values. GlobalVariable.eval and GlobalAssignment.eval

were implemented with Hashtable.get and Hashtable.put.

46

While a Hashtable lookup is usually constant time, as mentioned before all ac-

cess to the GlobalEnvironment’s Hashtable had to be synchronized to ensure

safe multi-threaded access. This meant that the GlobalEnvironment had become a

bottleneck.

To solve this, the GlobalEnvironment’s Hashtable was converted from storing

values to storing cells. The cell contains the value of the variable, and GlobalVariable

and GlobalAssignment references the cell, reducing the cost of access to a field ref-

erence and assignment. Instances of the previously static GlobalVariable class are

used to represent the cells.

By simply changing GlobalVariable access from a synchronized Hashtable

access to a compile-time Hashtable lookup with a run-time field reference, the per-

formance of (fib 30) improved by 25%.

Symbol

While changing GlobalVariables into cells, it was discovered that the Symbol class

redefined Object.equals to using String.equals instead of simple pointer equality.

Apparently this dated back to the early Java test days when new Symbol was used

when writing test programs, as shown above in section 3.4 on page 24. Symbols

should be interned, so that if two symbols have the same name, they should be the

same object, that is, pointer equals.

To fix this, the Symbol constructor was made private, and a new Symbol.get

method was added. Symbol.get creates a new Symbol for a name only if one does

not exist, otherwise it returns the existing Symbol. Since this method uses a global

symbol table, it needs to be synchronized to prevent safe multi-threaded access.

Although the Scheme standard references the concept of an uninterned symbol, it

is not required and is not supported by this implementation.

47

4.2.3 Table-Driven Syntax

In the older Expression.analyze, Pairs were compiled by compiling the car, and

if it was a Variable, then checking the Variable name exhaustively for both kernel

special forms and syntax that needed to be rewritten into kernel special forms. In

the move to Compile.compile, this was changed to handle syntax in an extensible

manner.

The new GlobalVariable cells were extended with a type field, which has the pos-

sible values of Location, Special, or Macro. Location indicates that the GlobalVariable

is simply a traditional location containing a value. Special indicates that the

GlobalVariable is holding a SpecialFormCompiler. Finally, Macro indicates that

the GlobalVariable is holding a rewriter Procedure.

So now, instead of exhaustively searching to see if the name matches a special

form or syntax to rewrite, when the compiler compiles the operator position of a

Pair to a GlobalVariable, it simply looks at the GlobalVariable’s type field to

decide what to do next, the details of which follow.

Special Forms

The first case the compiler checks for is Special GlobalVariables. If one is found,

Compiler.compile passes the Pair and CompileTimeEnvironment to the SpecialFormCompiler

contained in the GlobalVariable’s cell. SpecialFormCompiler is an interface with

one method:

public Expression compileSpecial (

Pair pair,

CompileTimeEnvironment environment)

throws ScriptException

This is basically the same signature as the Compiler.compile method, although

in this case the compiler has already determined that it is compiling a Pair and not

just any java.lang.Object. The SpecialFormCompiler throws ScriptException,

usually to indicate that SyntaxException has occured.

48

The old special-form code from Expression.analyze was moved to several new

SpecialFormCompilers classes. These SpecialFormCompilers are registered by the

new Compiler.init method, which plays a similar role to Script.init. In this case

it initializes the SpecialFormCompilers, as opposed to primitive Procedures, into

the GlobalEnvironment.

Macros

The second case the compiler checks for is Macro GlobalVariables. If one is found,

the compiler creates and evaluates an Application Expression, using the value of

the GlobalVariable’s cell as a Procedure, and the Pair as the sole argument. The

resulting s-expression is then compiled in place of the original.

The syntax let, cond, or, and and are handled as Macros with rewriter Procedures

defined in Java. However, a new primitive function define-rewriter was added

which takes a symbol and a function, defining not a normal Location GlobalVariable,

but a Macro GlobalVariable. This allows user-defined syntax. For example, let*,

quasiquote, case, letrec, and delay are all defined using define-rewriter. The

simplest example is delay:

;; promises

(define make-promise

(lambda (proc)

(let ((result-ready? #f)

(result #f))

(lambda ()

(if result-ready?

result

(let ((x (proc)))

(if result-ready?

result

(begin (set! result-ready? #t)

(set! result x)

49

result))))))))

(define-rewriter ’delay

(lambda (expr)

(list ’make-promise ‘(lambda () . ,(cdr expr)))))

(define (force promise)

(promise))

A gensym function was added to generate unique symbols for use in define-rewriter

macros. gensym created symbols beginning with --- so they will not conflict with

symbols that might appear in Scheme program source. An error function was added

to allow macro writers to signal their own syntax errors from macro rewriter functions.

Locations

Finally, if the GlobalVariable is not Special or Macro, then it is simply a Location,

and the Pair is compiled as an Application.

NaryLambda

As part of the Compiler work, as a prerequisite to filling in missing standard scheme

functions, support for n-ary arguments was added. This was done within the scope of

the lambda SpecialFormCompiler. NaryLambda was added as a subclass of Lambda.

It differs in that it creates an NaryCompound when eval is called as well in that it

overrides toString to handle the correct printing of the argument list. NaryCompound

is a subclass of Compound that handles the allocation of the list from any optional

arguments passed to apply.

4.3 Primitives

With a working language implementation from the first pass, a lot of the effort in the

second pass went to filling out missing primitives and cleaning up existing ones, as

50

well as the mechanisms supporting them.

4.3.1 I/O Primitives

Several Scheme I/O functions rely on a default value for their input or output port, for

example, read and write. The functions with-input-from-file and with-output-to-file

can change this default value during the execution of a thunk.

In a multi-threaded Scheme implementation, a simple global value cannot be used

to track the current value of these default ports. This implementation uses thread-

local storage to track the defaults per thread using the primitives hashthread-state.

The String keys current-input-port, current-output-port, and current-error-port

are used to track the different default ports uniquely for each thread.

Although in later Java APIs thread local storage is provided, in Java 1.0 and Java

1.1 an implementation has to provide its own. For this implementation, Thread.currentThread

is used to index into a Hashtable that maps from Threads to a Hashtable of thread

local state. The inner Hashtable maps from String keys in the various values. Two

primitive Procedures set-hashthread-state and hashthread-state allow access

to these values from Scheme.

One problem with this simple Java 1.0 implemention is there is no general way

to garbage collect the thread-local storage when a Thread exits. One approach is

to override Thread.run or provide a wrapper Runnable to cleannup the thread-local

storage when the Thread exits. One improvement in Java 1.1 is the ability to use

java.lang.ref.WeakReferences to create a hastable that will allow the Threads

keys values to be garbage collected.

In addition to thread-local storage, the dynamic-wind function was added and

used to implement with-input-from-file and with-output-to-file. The imple-

mentation of these functions utilizes dynamic-wind with a begin thunk that uses

hashthread-state to remember the old value and set-hashthread-state to set

the new value followed by an after thunk that then restores the old value using

set-hashthread-state.

transcript-on and transcript-off also require some special support in ma-

51

nipulating the default ports. When a transcript is turned on, any output to the

current-input-port, or the implementation extension current-error-port, needs

to be redirected to the transcript file. To do this, the PrintStream used to represent

the output ports is replaced with a special MultiPrintStream. The MultiPrintStream

subclass of PrintStream multiplexes output methods over several PrintStreams.

This allows output to be automatically sent both to the normally intended destina-

tion as well as the transcript without having to change the I/O primitives to be aware

of the new transcript functionality. However, the REPL class was changed to be aware

of the transcript so that if a transcript is on, the interactively input expression is sent

to the transcript as well as the resulting value.

4.3.2 Externalizing Primitive Definitions

As mentioned before, added primitive functions are registered by Script.init, which

means adding new primitives requires changing Java code and recompiling. In ad-

dition, as mentioned, Compiler.init defines rewriters for some special forms in the

similar hard-coded way. This is problematic because it prevents application users

from easily extending the system with their own primitives without modifying the

interpreter sources.

However, the Java new extension function already presents a tidy solution to this

problem. As mentioned before, the new function takes a Java String class name and

creates an instance of that class. Since the primitives are simply Java classes, this

means the implementation can use new to define all of the primitives in Scheme itself,

with the special exception of the new primitive itself. The result looks like this:

(define eq? (new "Eq"))

This also lets us remove the similar code in Compiler.init as well, since first

define-rewriter can be defined and then define-rewriter can be used to register

the new sytax:

;; Syntax extension

(define define-rewriter (new "DefineRewriter"))

52

(define gensym (new "GenSym"))

(define-rewriter ’let (new "Let2Application"))

(define-rewriter ’cond (new "Cond2If"))

(define-rewriter ’or (new "Or2If"))

(define-rewriter ’and (new "And2If"))

4.3.3 Removing Non-Primitive Primitives

Cleaning up the hard-coded primitives from Java showed that there was a lot of

unnecessary Java code in the initialization of the system. Further inspection of the

existing primitives shows there are was a lot more unnecessary Java code in the

implementation of the primitives.

Some simple examples of unnecessary Java code are classes like NullP and BooleanP

which can be replaced with Scheme code such as:

(define (null? x) (eq? x ’()))

(define (boolean? x) (or (eq? x #t) (eq? x #f)))

In other cases, adding one new Java primitive can obsolete many others. A new

instanceof? primitive function allows access to the Java instanceof operator from

Scheme. By using it, the system can leverage the knowledge of Java implementation

to reduce the number of Java primitives. For example, all of the type discriminators

were replaced as follows:

(define (pair? x) (instanceof? x "Pair"))

(define (symbol? x) (instanceof? x "Symbol"))

(define (procedure? x) (instanceof? x "Procedure"))

(define (vector? x) (instanceof? x "java.util.Vector"))

(define (input-port? x) (instanceof? x "java.io.PushbackInputStream"))

(define (output-port? x) (instanceof? x "java.io.PrintStream"))

(define (char? x) (instanceof? x "java.lang.Character"))

(define (number? x) (instanceof? x "java.lang.Number"))

(define (real? x) (instanceof? x "java.lang.Double"))

53

(define (integer? x) (instanceof? x "java.lang.Integer"))

(define (string? x) (or (instanceof? x "java.lang.String")

(instanceof? x "java.lang.StringBuffer")))

Even access to certain magic values such as Script.Unspecified can be created from

existing code:

(define (unspecific) (if #f #f))

The unspecific function was useful when defining standard functions or macros that are

supposed to return an unspecific value, without having them return some arbitrary value

or adding a primitive just to access it from Java.

4.3.4 Partitioning Primitive Definitions

Now that the primitive Procedure definition has been externalized and minimized, it is

beneficial to put in place some additional structure. This is done by splitting the primitives

and other definitions that have accumulated into three categories: standard Scheme, Java

extensions, and application extensions.

The three categories are split into three separate Scheme files: system.scm, util.scm,

and application.scm. Now an interpreter can choose what set of definitions to provide.

The REPL used for testing for example only loads the system.scm and util.scm definitions.

The embedding application can choose to load its own extensions with Script.load after

it calls Script.init.

4.4 Arrays

One general representational change in the second-pass implementation was to switch to

use Java arrays in place of other higher level data structures. Although these can require

more work to use in general, they do provide performance benefits. One performance

benefit is lowered memory usage. Usually a higher level data-structure is just a wrapper

around an array, so using the array on its own removes the encapsulating object. Another

performance benefit is faster access. Using a wrapper object places read and write access,

even length access, behind the extra cost of a method call. Using an array directly removes

54

these extra costs. Additionally, higher level data-structures may also provide unnecessary

synchronization overhead when objects are used within a single thread.

4.4.1 StringBuffer to char[]

One major representation change was to change the Java representation of Scheme strings

from StringBuffers to char[]. This turned out to be quite easy in fact, thanks to the

conversion to using Script.string. A few rare places did need to treat String and char[]

separately but were easily found because they were the same places the code used to special

case StringBuffer.

As discussed above, StringBuffer was originally chosen because Strings are im-

mutable. However, StringBuffers have additional functionality such as the ability to grow

which is not needed to implement Scheme string semantics. In addition, all operations on

StringBuffers are synchronized, which does have a cost, even when the StringBuffer

is not shared between Threads.

4.4.2 Arguments from Vector to Object[]

In addition, a number of internal Vectors where changed to use Object[]. The most visible

place for this was in Procedure.apply, which changed to this form:

public Object apply (Object[] arguments)

throws ScriptException

Vector remained as the Java representation for Scheme vectors for ease of integration,

but internally in most cases its resizability and implicit synchronization were not needed.

4.5 Application Special Cases

When changing Procedure.apply to take a Object[] instead of a Vector, it became clear

that it would be better if it did not have to take even an Object[]. For example, the Cons

Procedure should be able to get its two argments without allocating an argument array to

hold them.

55

This is in fact a relatively easy change conceptually, although it does mean changing

all the primitive Procedures in mechanical ways. First the Procedure class is changed not

just have one apply method, but several, corresponding to different numbers of arguments:

abstract public Object apply0 ()

throws Exception;

abstract public Object apply1 (Object o1)

throws ScriptException;

abstract public Object apply2 (Object o1, Object o2)

throws ScriptException;

abstract public Object apply3 (Object o1, Object o2, Object o3)

throws ScriptException;

abstract public Object apply4 (Object o1, Object o2, Object o3, Object o4)

throws ScriptException;

abstract public Object applyN (Object[] objects)

throws ScriptException;

Then convenience subclasses Procedure0, Procedure1, Procedure2, Procedure3, Procedure4,

and ProcedureN are provided for primitives to use. Procedure2 looks like this:

public abstract class Procedure2 extends Procedure {

public Object apply0 ()

throws ScriptException {

throw new ArgumentCountException(2, 0);}

public Object apply1 (Object o1)

throws ScriptException {

throw new ArgumentCountException(2, 1);}

public abstract Object apply2 (Object o1, Object o2)

throws ScriptException;

public Object apply3 (Object o1, Object o2, Object o3)

throws ScriptException {

throw new ArgumentCountException(2, 3);}

public Object apply4 (Object o1, Object o2, Object o3, Object o4)

throws ScriptException {

throw new ArgumentCountException(2, 4);}

56

public Object applyN (Object objects[])

throws ScriptException {

throw new ArgumentCountException(2, objects.length);}}

This reduces the Cons Procedure down to the simple and efficient:

public class Cons extends Procedure2 {

public Object apply2 (Object o1, Object o2) {

return new Pair(o1, o2);}}

Most primitives now have no argument count checking at all, since it is implied by their

superclass. However, some classes are not so simple, and for them ProcedureN is provided.

It is used for functions that can take more than 4 arguments, such as send-mail, or a

varying number of arguments and want to share one applyN method, such as + and -. To

facilitate this, the apply0, apply1, apply2, apply3, and apply4 methods of ProcedureN

simply package up their arguments in an array and call applyN:

public abstract class ProcedureN extends Procedure {

public Object apply0 ()

throws ScriptException {

return applyN(new Object[] {};)}

public Object apply1 (Object o1)

throws ScriptException {

return applyN(new Object[] {o1});}

public Object apply2 (Object o1, Object o2)

throws ScriptException {

return applyN(new Object[] {o1, o2});}

public Object apply3 (Object o1, Object o2, Object o3)

throws ScriptException {

return applyN(new Object[] {o1, o2, o3});}

public Object apply4 (Object o1, Object o2, Object o3, Object o4)

throws ScriptException {

return applyN(new Object[] {o1, o2, o3, o4});}

abstract public Object applyN (Object objects[])

throws ScriptException;}

57

In addition, if a Procedure can take a variable number of arguments, such as read,

additional apply methods can be overriden, instead of just the abstract one, without re-

sorting to ProcedureN. In addition one apply method can call another, as in the case of

read where apply0 can call apply1 with the defaulted input-port argument.

However, simply changing Procedure and its subclasses is not enough. The Application

Expression class which called Procedure.apply needs to be expanded into Application0,

Application1, Application2, Application3, Application4, and ApplicationN which

each call their respective apply method.

As mentioned, the Compiler creates Application Expressions when compiling a Pair

that is not a special form or a macro. The new Compiler.makeApplication method now an-

alyzes the argument list to the application to decide which type of Application Expression

to create. In addition to the Compiler itself, the apply primitive and Script.call

API are also changed to use Compiler.makeApplication, so they can create the correct

Application object at run-time.

4.5.1 Unrolling Primitives

In order to further cut down on unnecessary allocations in argument passing, something

more can be done about subclasses of ProcedureN, which still pass their arguments in an

Object[]. Usually subclasses of ProcedureN are for primitive functions with an unlimited

number of arguments such as such as apply, =, <, -, +, *.

These primitives are structured with an internal loop to handle the arbitrary number

of arguments. However, in most cases, they are called with a small number of arguments,

usually within the bounds of our Application special cases for zero to four arguments. To

take advantage of this, the loop provided for the applyN case can be unrolled, specializing

it for smaller numbers of arguments. For values that are too small to be legal, a method can

be overriden to throw an ArgumentCountException as Procedure2 demonstrated above.

By adding these special versions of primitives, the time to run (fib 30) by reduced by

33%.

58

4.6 Handling of Exceptions

The implementation tries to protect the caller of Script.eval from any Exceptions arris-

ing out of executing a possible user supplied script. However, in practice it is not practical

do this, and sometimes it is not even desired.

Java exceptions are really all subclasses of java.lang.Throwable. Throwable in turn

is partitioned in subclasses of java.lang.Error and java.lang.Exception. In general,

Errors should not be caught, and including things such java.lang.LinkageErrors result-

ing from class files that are corrupt, such as through truncation, or invalid, such as those

with circular inheritance hierarchies.

Futhermore, java.lang.Exception is partitioned, albeit less symmetrically, into classes

that are subclasses of java.lang.RuntimeException, and those that are not. RuntimeExceptions

include common programming errors such as NullPointerExceptions and ClassCastExceptions.

Non-RuntimeExceptions are Exceptions that are explictly declared by a method. Since

the implementation has control over the signature of Expression.eval, it knows that the

only non-RuntimeException thrown is its own ScriptException.

However, sometimes a RuntimeException may not be the fault of the script itself, and

should not be surpressed. An example of this is in a transactional system were a deadlock

has been detected and a higher level part of the system may want to retry the transaction

after first rolling back. To handle this case, the Script class allows the registration of

certain classes of RuntimeExceptions that are to be rethrown automatically if they are

encountered, to allow higher level handling to run. The signature of Script.eval does not

need to change because it is not necessary to declare the rethrowing of RuntimeExceptions.

4.7 Debugging

Debugging features are not part of the language standard and as such usually get little

attention and poor support. One type of debugging was needed to aid in the implementation

of the new compiler features. In addition, as the focus shifted from work on the interpreter

to actually using the interpreter, there was a need to aid programmers in debugging their

Scheme code.

59

4.7.1 Java Debugger

As mentioned, one type of debugging is debugging the interpreter itself. Most debugging of

the interpreter was done using the standard Java jdb debugger.

When inspecting run-time data-structures, jdb allows Objects to be inspected with the

two commands dump and print. The dump command displays each field of an object in

a standard format, but is not good for getting a high level view of a data strucutre. For

example, a Hashtable is displayed as two parallel Object[] along with other fields for the

usage and size etc., not a mapping from keys to values. However, the print command

uses the Object.toString method to render the Object for display, resulting in a usually

more useful presentation of information. For example, a Hashtableis displayed as a simple

text table showing the mapping of keys to values. To improve debugging within the jdb

debugger, it is therefore important to provide useful Object.toString implementations for

the implementations various classes.

Run-Time Values

Table 3.2 on 25 provided a list of the system’s various run-time values. For the Java classes

Boolean, Integer, Double, Number, Character, String, Vector, PushbackInputStream,

and PrintStream, the system already provides a reasonable Object.toString implemen-

tation. 1 In the discussion of the Constant, Symbol, and Pair classes, it was mentioned

that an Object.toString method was defined to provide a useful display representation.

That leaves the Procedure class as the one class that does not have a toString imple-

mentation. An Object.toString method could be added to each of the approximately one

hundred primitive Procedures in the system, but that would mean duplicating the names

of functions both in the Scheme file that defines them and in the implementation of the

Procedures themselves.

Instead, a Symbol name field was added to the Procedure class. The Definition

Expression was changed so that when a top level define is evaluated, it checks to see if the

value is a Procedure, and if so, stores the Symbol being defined in the Procedure’s name

field. Then the new Procedure.toString method can include the name of the Procedure

1 Remember that the Writer class does exists to display many of these Java objects in their
correct Scheme form, however the default toString is good enough for use in jdb.

60

if one is available, or the default Object.toString if one is not. One might not be available

if the Procedure is anonymous or was assigned to a global variable with set! instead of

with define. The run-time cost of this mechanism is low, because global variables are

usually only defined once and afterwords are usually changed with set!.

After this, all of the Script type marshalling code that could cause ArgumentTypeEx-

ceptions, such as Script.string and Script.pair etc., were changed to take a Procedure

argument. The implementation of these type marshallers could then let programmers know

not only that they had passed an integer where was a pair was expected, but also that

the procedure expecting the pair was named car. In addition, ArgumentCountException

was extended to take a Procedure as well for a similar usability improvement.

Expression values

In addition to providing Object.toString for run-time data values, the Expression classes

also need to be inspected in the debugger. Although, as mentioned above, Expression only

defined one abstract eval method for subclasses to override, it is now convenient to also

have each override Object.toString. For example, the If class would display as (if ...

... ...), in effect reversing the compilation.

One problem is with the introduction of LexicalAddress with CompileTimeEnvironment

and GlobalVariable cells, variables no longer remembered their Symbol name since it was

no longer necessary at run-time. However, in order to provide debugging, these specific

Expressions needed to be changed to store more symbolic information for debugging. The

Compiler can then store that information into the Expressions as it creates them.

Even Lambdas do not need to remember the names of the variables they bind, and

likewise the run-time Environment class no longer knows the names of the variables stored

within it. However, to make both of these more useful for debugging, the Compiler was

changed to store this information in Lambda, and the Compound Procedure passes this

information when it extends the Environment.

4.7.2 Stack Traces

While these debugging changes had some positive impact on the Scheme developer, they

were targeted primarily at the Scheme implementor. While it is helpful to know that cons

61

was called with the wrong number of arguments, a program might call cons in a lot of

places. A programmer needs to know the context for any given error. One form of context

that is useful is a stack trace showing the currently pending computations.

Providing a stack trace turned out to be relatively easy. As mentioned above, all

Expression evaluation is now funneled through a static Expression.eval method. A

Java try/catch block was put around the static eval method’s invocation of the instance

eval method. The catch block would catch any ScriptExceptions that were thrown. It

would handle the ScriptException by printing out the Expression being evaluated using

the Expression.toString discussed earlier and then rethrow the ScriptException.

When a ScriptException occured, the Java stack would unwind the call to the static

Expression.eval method, printing the Expression that was being evalutated, and then

rethrowing the ScriptException to the next level. At the top level, Script.eval would

then print the ScriptException itself. The output then contained both the error as well

as the context that the error occured in.

One additional detail is the handling of RuntimeException. Script.eval used to han-

dle these RuntimeExceptions at the top level to prevent them from escaping to the calling

program. However, now a RuntimeException would pass through the stack trace machinery

without providing the context information. To fix this, the Application Expression classes

were changed to catch the RuntimeException and convert it into a new ScriptException

subclass, PrimitiveException. Then when Application catches the RuntimeException

and throws its PrimitiveException, the stack trace machinery will behave properly.

4.7.3 Source

One problem with the stack trace mechanism is its use of Expression.toString. While

the Scheme implementor might be happy to see code in terms close to its internal kernel

representation, programmers would prefer to see their code the way they wrote it using

syntactic sugar.

In order to provide this programmer context, the Expression class changed to optionally

remember the Pair it was compiled from. Then the stack trace can display the users code

instead of the internal representation when it is available.

Sometimes a user might not know the location of the code even if shown the source,

62

perhaps because the system is large or is a collaboration between multiple users. In order to

provide file and line number information for source code, a new DebugPair class was added.

DebugPair is a subclass of Pair that can remember the source location for a Pair. The

Reader was changed to create DebugPair’s when loading source code. Expression.eval

can then including the location of the source for the stack trace.

This simple implementation has the unfortunate side effect of retaining the full source

code in memory as s-expressions. Traditionally, systems just remember the location of the

source and then read it in from the original location as needed for reporting errors. One

problem with the traditional method is that it usually depends on the fact that all source

comes from the file system, which is not necessarily true in an embedded system. In practice,

the extra memory has not been a concern, since it is only allocated once at compile-time

and not repeatedly at run-time.

4.7.4 REPLServer

One more interesting debugging feature was the REPLServer. The REPL class was cleaned

up to not include initialization of Script and the various dependencies on the standard Java

streams System.in, System.out, and System.err were factored out. This allowed multiple

REPLs to run simultaneously. Now a simple service was created to allow telnet access to

the running application, which would run a REPL using the existing initalized Script state,

performing interaction over the network connection instead of the console. This allowed

testing of code and inspection of the application state from outside the application.

4.8 Analysis of Second-Pass Implementation

After the second-pass implementation, some issues have been resolved. Objects are passed

around at run-time, not Objects wrapped with SelfEvaluating Expressions. The im-

plementation is easier to maintain and extend with the externalization of initialization of

primitive functions and syntax rewriters. The Compiler was introduced, with the resulting

compile-time analysis resulting in improve run-time performance. However, even with these

improvements, there are still issues to discuss.

63

4.8.1 Modules

The attempt to separate the implementation into system.scm and util.scm was not

as clean as one would like. The goal was to place only standard R5RS definitions into

system.scm and place all the non-standard extensions into util.scm. However, because

some of the system.scm implementations depended on the util.scm extensions this clean

split was not possible. Some examples of util.scm functions needed by system.scm men-

tioned previously are new, instanceof?, define-rewriter, gensym, and error.

What is needed is a module system. This would allow the system to be built upon non-

standard internals, but not necessarily expose them in the environment. Then a programmer

could choose from a standard Scheme environment or optionally import modules providing

specific extensions.

4.8.2 Performance

There were a number of performance issues related to the second-pass implementation.

Symbol Performance

The Symbol performance problem was a surprise to find in hindsight. However, it does not

seem that such poor performance is not standards-compliant. According to R5RS, section

6.3.3 Symbols:

Symbols are objects whose usefulness rests on the fact that two symbols are

identical (in the sense of eqv?) if and only if their names are spelled the same

way.

Similarly, R5RS section 6.1, Equivalence predicates, defines eqv? in terms of string=?

and symbol->string:

The eqv? procedure returns #t if:

• . . .

• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

64

\Longrightarrow \#t

• . . .

So in fact, the implementation is standards-compliant. However, later in section 6.1:

Eq? and eqv? are guaranteed to have the same behavior on symbols. . .

So first eqv? is defined in terms of string=? and then later eq? on symbols is defined

to be the same as eqv?. Finally, the discussion sheds some light:

Rationale: It will usually be possible to implement eq? much more efficiently

than eqv?, for example, as a simple pointer comparison instead of as some more

complicated operation.

In fact, looking back at the original implementation of Eq primitive Procedure before

the Symbol interning change, it did in fact special case Symbol equality as defined in section

6.1. After the interning change, Eq was cleaned up to follow the intent in the Rationale.

I/O Performance

As mentioned before, the implementation uses java.io.PushbackInputStream and java.io.PrintStream

to represent input-ports and output-ports respectively. However, using these directly

without using underlying java.io.BufferedInputStreams and java.io.BufferedOutputStreams

meant suffering with character-at-a-time input and output. Once again, this was easy to

correct once known. Most standard language libraries specify the details of buffering, but

once again the Scheme standard does not address the subject.

Buffering is not just a performance issue but is also affects the writing of programs. For

example, this simple script approximates the REPL. Note the (newline) after the display

of the prompt. Now a flush function is needed to flush the buffering at arbitrary points.

(define (repl)

(let ((prompt (lambda ()

(display "> ")

(newline) ; (newline) to force flush of prompt

(read))))

(do ((s-expression (prompt) (prompt)))

65

((eof-object? s-expression) (exit))

(write (eval s-expression (interaction-environment)))

(newline))))

(repl)

4.8.3 Macros

The define-rewriter macros are similar to most non-standard macro extensions. The

R5RS standard with macros was not published when the implementation reached this point

so they were not implemented.

R5RS macros are a much better approach besides the resolution of namespace issues

since they are much easier to write. A major problem encountered with the define-rewriter

macros is that it is too easy to tolerate unexpected syntax by not properly checking the

structure of s-expressions. Code that manually parses s-expressions often overlooks error

cases. Even the internal if SpecialFormCompiler had a problem of accidentally tolerating

the illegal (if 1 2 3 4).

At the very least define-rewriter should probably be made source compatible with

Lisp style defmacro syntax. The world does not need yet another macro system.

66

Chapter 5

Third-Pass Implementation

The second-pass implementation was the first deployed in an application. Additional per-

formance analysis on the overall application pointed out some additional performance issues

in the implementation resulting in another pass over the implementation.

Even with the optimizations for Procedure[01234N] and Application[01234N], the

implementation still allocates a significant number of Object[] to pass arguments. This

is because Compound Procedures are a subclass of ProcedureN. One approach could have

been to create classes Lambda[01234N] and Compound[01234N]. However, Compound needs

to extend the Environment, which contains an Object[] of values. To address this,

new Environment[01234N] classes could be introduced but then the LexicalAddress

Expression would go from using an array reference to an overloaded method call to fetch

its value. Even with this, an Environment[01234N] object is still allocated. Obviously

another approach is needed.

5.1 let Optimization

One partial solution to this dilemma is to use let optimization. To understand how this

works, recognize that:

(let ((a x) (b y) (c z)) ...)

is compiled as

((lambda (a b c) ...) x y z)

67

In the let case, there is no need to extend the Environment with a new frame. This is

true of any case of a Lambda Expression compiled in a Application Expression operator

position.

To understand why this is true, remember that when a lambda is evaluated, it creates

a Compound Procedure that remembers the Environment that it was evaluated in so that

when the Compound Procedure is later evaluated, perhaps in a different context, its original

Environment will be used.

However, in this case it is not possible that the Compound Procedure would ever be used

in another context, because it is in the operator position of an Application Expression.

To perform the let optimization, the expression:

((lambda (a b c) ...) x y z)

is converted to:

(begin (set! a x) (set! b y) (set! c z) ...)

Obviously the values of a, b, and c need to be stored somewhere, so the encapsulating

CompileTimeEnvironment is expanded to contain space for these new variables. To support

this, the CompileTimeEnvironment is changed from containing a Symbol[] to containing a

Variable[]. Variable is a new class that tracks a Symbol name and in addition whether

the Variable should be considered live or dead in the current lexical environment.

When compiling the body of the let optimized expression, the Variables that are

newly extended in the current CompileTimeEnvironment are live, but are marked as dead

after the body is compiled. The CompileTimeEnvironment also needs to be changed to

search its list of variables from right to left, instead of the previous left to right. These

changes cover the cases of the new bindings obscuring older ones with the same name,

ensuring that the inner most one is found if it is still alive, or the outer ones being found if

it is now dead.

Here is an example of how a dead variable can happen with let optimization. In the

expression:

(let ((a 1))

(+ (let ((a 2)

a)

a)))

68

the two Environment frames can be merged, based on the above discussion, into one that

looks like this:

(let ((a1 1))

((a2 (unspecified)))

(+ (begin

(set! a2 2)

a2)

a1

In practice, the two Variable a’s are not renamed a1 and a2. The expression a2 would

be compiled in an CompileTimeEnvironment where the variable a2 would not be present.

Then a2 would be added to the CompileTimeEnvironment as a live Variable. The body

of the inner let, transformed into the a2 at the end of the begin, would then be compiled

in an Environment where the a2 would be visible as a live Variable. After compiling the

body of the inner let, the Variable a2 is marked as dead. Then when compiling the final

reference to the Variable a, rewritten as a1, the original outer a is used, skipping the now

dead inner Variable a.

In addition, the top level of the Compiler wraps the top level expression, e, with an

empty environment, like this ((lambda () e)). This ensures that the Compiler will have

an Environment to move let optimized bindings out into.

Before this optimization, mulitple Object[] and multiple Environments would be allo-

cated, especially for a let* expression. Afterward, for the let* case for example, only one

larger Object[] and single Environment would be created.

5.2 Closure Analysis

While the let optimization reduced the number of run-time allocations by removing many

uses of Compound in rewritten syntax, it did not eliminate the allocations for ordinary

function calls.

In the let optimization case, it was easy to see that the lambda did not require a

Compound Procedure, also known as a closure, to be created. However, to do this in the

general case, the Compiler needs to perform what is known as closure analysis.

69

This Compiler’s closure analysis involves deciding which variables can be stored on a

simple stack as opposed to heap-allocated frames. Most languages use a simple stack for

all allocations. However, Scheme functions may access variables outside the scope of their

lambda definition in an encosing lexical environment. In the following example, the function

bound to counter references the variable n in its local scope and the variable count in its

enclosing lexical environment:

> (define counter

(let ((count 0))

(lambda (n) (set! count (+ count n)) count)))

> (counter 1)

1

> (counter 1)

2

> (counter 2)

4

> (counter 4)

8

>

Without closure analysis, the lambda would create a Compound Procedure in an Environment

containing the LexicalAddress count, and when the Compound Procedure is applied, an-

other new Environment is created containing the LexicalAddress n.

With closure analysis, the goal is to avoid allocating an Environment for the variable

n, by passing the value on a more traditional stack, making Compound Procedures perform

as well as primitive Procedures in the common case, which is when none of their variables

reference external lexical environments.

5.2.1 Stack

In order to take advantage of the benefits of closure analysis, the implementation needs

to avoid allocating storage when passing an arbitrary number of arguments on the stack.

Unlike the C programming language, Java does not support n-ary arguments. Instead,

apply will change to use a new Stack data-structure to cheaply pass arguments.

70

The Stack class is sort of a hybrid between a Vector and an Object[]. Like a Vector,

it automatically handles resizing issues. However, like an Object[] it allows cheap access

directly to its elements and its currently inUse length. It also provides storage for the

current frame index.

Procedure application is changed once again, resulting in this new API:

abstract public Object apply0 (Stack s) throws ScriptException;

abstract public Object apply1 (Stack s) throws ScriptException;

abstract public Object apply2 (Stack s) throws ScriptException;

abstract public Object apply3 (Stack s) throws ScriptException;

abstract public Object apply4 (Stack s) throws ScriptException;

abstract public Object applyN (int n, Stack s) throws ScriptException;

For the apply special cases the number of arguments is encoded in which method is

called. For the n-ary case, a separate count n is passed in to replace the length of the

Object[].

To show how this change affects the example used above, here again is an example of

the Cons primitive Procedure:

public Object apply2 (Stack s) {

Object o1 = stack.array[stack.inUse-1];

Object o2 = stack.array[stack.inUse-2];

return new Pair(o1, o2);}

For debugging, Stack implements toString to dump the stack and its contents using

the Writer, which was invaluable in debugging the transition to argument passing on the

Stack, as well as the subsequent closure-analysis work.

5.2.2 Until

Closure analysis involves analyzing any forms that can introduce new bindings. One other

form of kernel syntax in the implementation that can introduce new bindings is the Do

Expression.

To simplify the analysis, the Do Expression can be broken down into a traditional let

and a new kernel Until Expression. For example this:

71

(do ((x y (+ x 1))

(a b))

((foo? x) ...a)

...)

can be converted to:

(let ((x y)

(a b))

(until (foo? x)

...

(set! -x (+ x 1))

(set! x -x))

...a)

making it amenable to closure analysis.

The Until Expression simply evalutes its first sublist as a termination condition. If

the value is true, the loop exits. If it is false, the rest of the sublist is evaluated. Then the

termination condition is tested again as the loop repeats.

5.2.3 Closure Analysis at Compile Time

Finally, with argument passing switched over to the Stack and the removal of the Do

Expression, the Compiler can be extended with closure analysis.

First, the Variable class used in the CompileTimeEnvironment is extended to indicate

whether the Variable is to be heap or stack allocated.

Second, two new Expressions, LocalAddress and LocalAssignment, are added to rep-

resent getting and setting values on the local Stack, as opposed to the lexical Environment.

In addition, LocalAddress and the existing LexicalAddress now remember a pointer to

the Variable object, not just the Symbol.

Third, the algorithm for searching the CompileTimeEnvironment for a variable is changed.

Previously, if a variable was found in the CompileTimeEnvironment, it meant it was a

LexicalAddress, otherwise it was a GlobalVariable. Now a CompileTimeEnvironment

might contain live or dead Variables, Variables that are known to Environment allocated,

or those that are potentially to be Stack allocated.

72

As before, the search starts at the innermost Environment and moves out. Within an

Environment, Variables marked as dead are skipped in the search. As before, Variables

without a matching Symbol name are also skipped.

When a matching name is found, there is still more analysis to be done. If the search

is no longer in the innermost Environment frame, this variable is now known to require

Environment allocation. The Variable is changed to mark it as heap allocated. This

would correspond to compiling the Variable count in the set! expression in the above

example.

If the Variable is known to be heap allocated, a LexicalAddress is now created as

before. Otherwise, a LocalAddress is assumed to be okay and is returned.

Fourth, a second pass is now added to the compiler which fixes up any incorrect assump-

tions of Variables as LocalAddresses that are later found to be LexicalAddresses. Note

that in the above example, the first time that the Variable count is compiled in the let,

the compiler would not yet realize that it needs to be a LexicalAddress, so it would make

a LocalAddress on the first pass. Since the LocalAddress remembers its Variable ob-

ject, it is simple to fix up the tree whereever a LocalAddress references a heap allocated

Variable.

To implement this second pass, the Expression class is extended with a fixupVariables

method:

abstract public Expression fixupVariables (

CompileTimeEnvironment environment);

At the top level of the Compiler, fixupVariables is called and the new return Expression

is returned. Most Expressions simply call fixupVariables on their sub-Expressions,

replacing the old sub-Expressions with potentially new ones, and then simply return

themselves. The main departure from this general rule is that LocalAddresses refer-

ing to dead Variables create and return new LexicalAddresses to replace themselves.

fixupVariables also fixes up variable assignments, since if within LocalAssignment fixing

up the LocalAddresses changes it to a LexicalAddresses, the LocalAssignment replaces

itself with a LexicalAssignment.

Another function of fixupVariables is to calculate the frame and stack offsets for

LexicalAddresses and LocalAddress respectively, which are not fully known in the first

73

pass. Any attempt to calculate them in the first pass could fail because any change of a

Variable from stack to heap allocation could invalidate offsets calculated earlier in the pass.

To make this work in the second pass, Lambda now remembers its CompileTimeEnvironment

so that when it calls fixupVariables, it can reinstate the proper CompileTimeEnvironment

for fixing up its sub-Expressions. Lambda also calculates the number of stack allocated

and heap-allocated variables, for run-time use by Compound Procedure in pushing space on

the Stack and allocating Environment frames.

5.2.4 Closure Analysis at Run Time

At run time, closure analysis means updating the signature of Expression.eval once again.

In addition, Compound.applyN needs to be updated to take advantage of the new information

from closure analysis.

Expression

It seems that if apply changes eval has to change with it. Expression.eval is changed

once again to now pass the run-time Stack.

public abstract Object eval (Environment e, Stack s);

Most Expressions simply pass this Stack unchanged when evaluating sub-Expressions.

The obvious users are LocalAddress and LocalAssignment, that get and set values from

the Stack, relative to the current Stack frame index. In addition, all the varieties of

Application.eval now push the values from their evaluated operands onto the Stack. Af-

ter calling their operand Procedures, they pop the pushed values off the stack by resetting

the inUse index.

Compound

Significant changes were made to Compound.applyN. As before it validates the number of

arguments passed matches what its Lambda Expression expects. It also remembers the

previous Stack frame index and then moves the frame index to the current inUse end of

the Stack. After that, the code becomes more complicated.

74

The next part of Compound.applyN deals with setting up the Environment. Remember

that in the second pass the number of heap-allocated variables required was calculated and

stored in the Lambda Expression. If no heap-allocated variables are required, Compound

simply sets the current Environment to the one where the Lambda was defined without

extending it. This is the best case that results from closure analysis. However, if heap

allocation is required, a Environment is created to hold only the heap-allocated variables,

which are copied from the stack into this new Environment, which is then used for evaluating

sub-Expressions.

After the environment is setup, additional empty slots are pushed onto the stack for any

local variables needed during the evaluation of the body of the Lambda, as a result of let

optimization. With that, the body is evaluated with the calculated current Environment

and Stack, after which the locals are popped off.

Finally, the Stack frame index is restored to the saved value and the result returned

on the Java stack.

5.3 Quoted

When the SelfEvaluating and Quoted Expressions were removed from use as a wrapper

for run-time values, Expression.eval needed to be changed to perform an instanceof

check to distinguish between Expressions and simple quoted values. Overall this change

was good, removing unnecessary run-time allocations. However, where quoted values really

are needed, it traded off a single compile-time allocation for an Expression for a run-time

instanceof check every time any Expression of any type is evaluated.

The Java profiling tools pointed out the cost of this. The Quoted was resurrected to

be used whenever whenever quoted s-expressions are compiled, as well as any non-Pairs

returned from the Reader, such as Constants, Booleans, Integers, Doubles, Characters,

Strings, and Vectors.

5.4 Removing Implicit Begin

Another waste of processing time found by the profiler was the use of implicit Begin

Expressions in the Compiler. For example, when compiling a Lambda or Until, the

75

body was compiled by wrapping the body in a (begin ...) and invoking the Begin

SpecialFormCompiler.

However, at run-time, this meant when Compound or Until was evaluated, there was

an extra level of method call over head for Compound.eval and Until.eval to each invoke

Begin.eval. Instead the simple loop from Begin.eval was inlined into these classes’ eval

methods.

In addition, this affected the Expression.toString implementation for these classes,

because they would print out the implicit Begin when they called Expression.toString

recursively on it. When the Begin Expressions were removed, a static method was added

to Begin to convert Expression[]s into Strings.

5.5 Analysis of Third-Pass Implementation

The third pass has really started to provide a more mature environment. Several unmen-

tioned small bugs were reported and fixed. Both space and time performance was analyzed

and optimized. However, as always, there are still issues to explore.

5.5.1 Analysis of let Optimization

let optimization removes unnecessary extra frames. However, imagine the case:

(define foo

(let ((a (cons-really-large-list-structure)))

(let ((b (car a)))

(set! a (cdr a))

(cons (lambda ()

(set! a (cdr a)))

(lambda ()

(set! b (cdr b)))))))

foo is a pair where the car and cdr are both functions. The function in the car of foo

is closed over the variable a, while the function in the cdr of foo is closed over the variables

b. At this point neither a nor b can be garbage collected, because they are captured by the

car and cdr of foo respectively.

76

Evaluating the expression (set-cdr! foo ’()) would remove all references to the

variable b, allowing it to be garbage collected. However, if instead, the expression (set-car!

foo ’()) is evaluated, it would not remove all references to the variable a. This is because

the cdr still references b in a frame that referencs the frame containing a.

let optimization would rewrite the above as:

(define foo

(let* ((a (cons-really-large-list-structure))

(b (car a)))

(set! a (cdr a))

(cons (lambda ()

(set! a (cdr a)))

(lambda ()

(set! b (cdr b))))))

After let optimization, the car is now preventing the variable b from being garbage

collected even if the cdr of foo is cleared. This is because one frame contains both the

variables a and b, whereas before the car only held the variable a.

One solution might be to have the closure create a copy of only what it needs from

the environment, not the entire environment, at run time. Or perhaps the compiler could

arrange at compile time to have separate environments at run-time by using a new envi-

ronment representation.

5.5.2 Analysis of Closure Analysis

Once again the lack of tail recursion became an issue. If tail recursive function calls worked,

there would have been no need to support first Do, and now Until as kernel special forms.

The benefits of having special-cased Application Expressions are now less clear. The

implementation now avoids allocating Object[]s for all primitives by using the new Stack

class for passing arguments. However, it does prevent having to pass an argument count in

most cases, so for now it remains.

A new break-point primitive was added when debugging closure analysis. By placing

it in various complicated expressions, it allowed the jdb debugger to be stopped in precise

77

places so that Expressions and the new Stack structure could be more easily studied at

run time.

78

Chapter 6

Fourth-Pass Implementation

The third-pass implementation was deployed unchanged through several major revisions of

its embedding application. In the fourth pass, some performance work was done, although

that was not nearly the focus it was in the third pass. Instead, attention shifted to the

new needs of the embedding application. One new requirement for the implementation was

running in a Java Applet environment in a web browser. Another new requirement was

allowing Scheme code to dynamically invoke Java via the new reflection API.

6.1 Applet

The biggest new requirement was for the implementation to work in the Java Applet envi-

ronment, as opposed to simply in Java applications. The primary goal was allow for a GUI

tool to be constructed that allowed a programmer to experiment with Scheme hooks and

see their impact without running them on a production server.

6.1.1 java.net.URL

One of the main restrictions on java.applet.Applets is the inability to do file I/O. How-

ever, the implementation relies on loading scm files to initialize itself. Fortunately, an

Applet is allowed to read from java.net.URL objects, with the restriction that the URLs

are references back to the server from which the applet was downloaded.

The Script class is changed to contain a base URL, from which other relative URLs

can be loaded. Script.load API was changed to take either a fully qualified URL or a

79

relative URL String to be resolved with Scripts’s base URL. The Scheme load function

was similarly changed to expect URLs.

The Java application environment can then initialize Script’s base URL with a file URL,

while in the Applet environment, it can be initialized using Applet.getCodeBase.

In addition new Java extensions for manipulating URLs such as as-url were added

to convert from absolute or relative URL Strings into URL objects. URLs are almost as

important as Date in modern systems, so having these new extensions is generally useful.

6.1.2 Syntax Checking

One new feature to support the GUI tools was syntax checking. Basically this means com-

piling to an Expression tree without then immediately evaluting the Expression. This was

easily added as a new Script.compile API. It also allows an Expression to be compiled

once and remembered in a Java variable, and then repeatedly executed later. Before this,

Procedures were multiply applied, but arbitrary Expressions could not be repeatedly

evaled.

6.1.3 ScriptException

Until now, Script.eval was the only way to evaluate arbitrary Scheme code. However,

this was very console-centric, expecting to report warnings and errors to a PrintStream.

Now the implementation is running in a GUI environment so a cleaner way to report errors

is needed.

First, a new API, Script.evalWithException, was added. This is the core logic from

Script.eval, minus the console-centric code for handling ScriptException. The new API

throws ScriptException, allowing the caller to choose how to display the error.

However, there still remains a problem with Scheme stack traces. As mentioned above,

when there is a ScriptException, Expression.toString is called on each Expression as

the stack is unwound, with the result displayed to the console.

To remedy this problem, ScriptException is extended with a Vector of Expressions.

Instead of calling toString on an Expression as the stack unwinds, the Expression itself is

just added to the Vector. A caller can then choose to examine this Vector, or use the new

ScriptException.stackTrace method to convert the stored stack trace into a String

80

for display. This stackTrace method also includes any Java stack-trace information for

PrimitiveExceptions where something went wrong in the execution of Java code called

from the Scheme code.

6.1.4 Script Widget

To pull all of this together, a special UI widget was designed for editing Scheme. This started

a simple text widget with parenthesis matching. This was combined with a button hooked

up to the new syntax checker. If there was a problem checking syntax, the ScriptException

could now be asked for its stack trace, which could then be shown in a dialog box, instead of

the hidden Java console. In addition, a simple pretty printer was added on another button

to do simple automatic indenting of Scheme code.

6.2 Reflection

Until now new primitives were added as subclasses of Procedure because not many other

alternatives were available. However this meant it was hard for end users to add access to

their own Java code because Procedure was not made part of the public API. In hindsight

this seems to have been a good choice, given how much Procedure.apply has changed

through each implementation pass.

6.2.1 java.lang.reflect

Until now, the implementation worked with the Java 1.0 API. At this time, the embed-

ding application moved to the Java 1.1 API. One of the additions to the 1.1 API was the

java.lang.reflect package, also known as reflection.

Reflection allows a Java program to dynamically access fields and invoke methods of

classes by String name without having a statically compiled knowledge of those fields or

methods. What this means to the Scheme implementation, is that a user can define Scheme

primitives by specifing by name the class and member they want to access.

81

6.2.2 Reflection Extensions

To bootstrap the reflection extensions for Scheme, only three simple primitives are required.

The first, class-for-name, converts from a String class name to a java.lang.Class

object. The second, class-get-method, looks up a method object using a String method

name and a list of method argument Classes, to disambiguate overloaded methods, and

returns a java.lang.reflect.Method object. The third, method-invoke, allows a Method

object to be invoked with an object for instance methods or null for static methods, as

well as a list of arguments to the method, returning an Object which is the Method call’s

result.

Now that class-for-name allows for the creation of java.lang.Class objects, the new

and instanceof? extensions are changed to use these Class objects instead of simple class

names. Here is an example of how pair? shown above, was redone:

(define Pair.class (class-for-name "Pair"))

(define (pair? x) (instanceof? x Pair.class))

One problem with reflection is that looking up the Method with class-get-method each

time method-invoke is called is expensive. To resolve this, the Method object is cached in

a closure. The real API for people to callers to use is then defined as follows:

(define (make-method class name . parameterTypes)

(let ((method (apply class-get-method class name parameterTypes)))

(lambda x (apply method-invoke method x))))

(define (make-static-method class name . parameterTypes)

(let ((method (apply class-get-method class name parameterTypes)))

(lambda x (apply method-invoke method ’() x))))

Although this shows the API for methods, it does not demonstrate access to fields,

which is part of the reflection API. However, given these primitives, it is possible to reflect

the reflection API itself to access the methods for looking up java.lang.reflect.Field

objects from a Class:

(define class-get-field

(make-method Class.class "getDeclaredField" String.class))

82

as well as to reflect the APIs for manipulating the result Fields objects:

(define field-get

(make-method Field.class "get" Object.class))

(define field-set

(make-method Field.class "set" Object.class Object.class))

Of course, looking up Field objects every time field-get or field-set is called is

expensive, just as with class-get-method and method-invoke. So once again, the resulting

Field object can be cached is a closure as well:

(define (make-field-getter class name)

(let ((field (class-get-field class name)))

(lambda (obj)

(field-get field obj))))

(define (make-field-setter class name)

(let ((field (class-get-field class name)))

(lambda (obj value)

(field-set field obj value))))

Defining the full reflection API using a subset of the reflection API hopefully demon-

strates the power of reflection. In addition to what was shown, there are parallel APIs to

methods for constructors: class-get-constructor, make-constructor, constructor-new.

As a final example, when an API for array manipulation was needed, it was easy to add

entirely in Scheme:

(define array-new

(make-static-method Array.class

"newInstance"

Class.class

Integer.TYPE))

(define array-get-length

(make-static-method Array.class

"getLength"

83

Object.class))

(define array-get

(make-static-method Array.class

"get"

Object.class

Integer.TYPE))

(define array-set

(make-static-method Array.class

"set"

Object.class

Integer.TYPE

Object.class))

(define (list->array lst class)

(let ((c (length lst)))

(let ((a (array-new class c)))

(do ((i 0 (+ i 1))

(l lst (cdr l)))

((= i c) a)

(array-set a i (car l))))))

6.2.3 Reflection Performance

Given the availability and power of reflection, it seems like the implementation might be able

to reduce the number of primitive Procedures written in Java to new, class-for-name,

class-get-method, and method-invoke. However, this was not done because of the over-

head of using reflection versus using Java code directly.

The example below defines reflective-car as a version of car that uses reflection.

Timings are performed using a ten million iteration do loop with an inherent overhead of

12 seconds. If the body of the loop simply accesses a quoted constant, the time goes up to

13 seconds. If the body uses the traditional car the time increases to 15 seconds. However

if the reflective-car function is used, the time increases ten-fold to 155 seconds.

> (define reflective-car (make-field-getter Pair.class ‘‘car’’))

84

> (define pair (cons 1 2))

> (time (do ((i 0 (+ i 1))) ((= i 10000000))))

12

> (time (do ((i 0 (+ i 1))) ((= i 10000000)) ’()))

13

> (time (do ((i 0 (+ i 1))) ((= i 10000000)) (car pair)))

15

> (time (do ((i 0 (+ i 1))) ((= i 10000000)) (reflective-car pair)))

155

>

Even if performance was not a concern, additional Java primitives would be necessary

besides those listed above. The reason for this is that almost all Java operators such as

+ are not available through method calls. The main exception is instanceof operator for

which the functionality was exposed as Class.isAssignableFrom in JDK 1.1.

6.3 Multi-engine

Until now, there was a limitation of one scripting environment per Java virtual machine.

This was largely because of the accumulation of global state such as the first GlobalEnvironment,

the more recent list of RuntimeExceptions to rethrow, and the new base URL.

However, there was a new application requirement to have multiple isolated Script

engines simultaneously. In order to accomplish that goal, all global state needed to be

removed.

The strategy was to make the Script class the new repository for previously global state.

Each Script engine would be represented with an instance of the Script class. Constants

such as Null, EOFObject, Unspecified, etc., could still be shared across the engines. The

static fields for the GlobalEnvironment and base URL were changed to instance URLs.

Then these changes needed to be propagated further.

Compiler had previously referenced the GlobalEnvironment to register its SpecialFormCompilers

and for defining new GlobalVariables for Variables not found in its CompileTimeEnvironments.

Compiler itself moved from being static to being an instance. An instance was created and

referenced from the Script instance. The Compiler instance maintains a back pointer to

85

its Script instance. Most of the static methods of Compiler were changed to instance

methods so that they could access the Script instance.

The Loader class already was used through instances, because each Loader already had

its own Reader instance. The Loader did however statically access the Compiler, so now

the Loader was modified to remember a Compiler instance to use.

Like Compiler, many of the Script methods making up the Java-to-Scheme API

changed from static to instance methods so the caller would be forced to specify which

Script engine to use. This was required because API methods such as Script.eval,

Script.evalWithException, Script.compile, Script.load, Script.lookup, and Script.call

were simple wrappers around the GlobalEnvironment, Compiler, and Loader. The notable

exceptions to this conversion from static to instance were the numerous type marshalling

methods such as Script.object, Script.string, Script.pair, etc., which remained un-

changed.

6.3.1 Procedures

There were some issues in pushing the change through some of the primitive Procedures.

For example, as-url needs access to the Script base URL to produce URLs relative to

the current Script engine. define-rewriter needs access to the GlobalEnvironment

to define new macros. eval needs access to the Compiler to translate s-expressions into

Expressions. load needs access to the Script itself to call Script.load. The primitive

Procedures need a way to access this Script state from their apply arguments.

The solution to this issue is to add a Script instance field to the Stack class. This

allows all primitives to access the global Script state though their existing Stack argument,

which means not having to change the signature of Procedure.apply yet again. Also it is

conceptually clean, since the Stack represents the current state of execution, which naturally

includes which Script engine created this Stack. Environment, the second choice, was not

as good because Environment really is a nested set of Environment frames, so an extra

reference of memory would be added to each frame, instead of just the single Stack instance.

With this change, all references to global state were removed from the implementation,

allowing multiple scripting engines to peacefully coexist in one Java virtual machine.

86

6.3.2 Thread-Local Storage versus Stack

Now that each thread has its own instance of a Stack, the thread-local storage implemen-

tation was replaced with new Stack instance fields. Although not as extensible, this means

the cost to access the I/O state is reduced to a field reference from a Thread.currentThread

lookup as well as two Hashtable lookups. The old thread-local storage implementation was

kept for application use. If desired, the new JDK 1.2 java.lang.ThreadLocal implemen-

tation could be accessed via reflection, but since browsers only support JDK 1.1, and only

partially at that, depending on this new API was avoided.

6.4 Internationalization

Another new requirement of the embedding application in this pass was to support in-

ternationalization. Partially this means adding primitives for new Java 1.1 classes such

as java.text.MessageFormat, but existing primitives need to be updated to be aware of

internationalization issues as well.

One of the major updates was to use the new character-oriented Reader and Writer

classes in place of the older byte-oriented InputStream and OutputStream. This meant

changing from PushbackInputStream to PushbackReader and from PrintStream to PrintWriter.

It also meant changing the transcript support from MultiPrintStream to a new MultiPrintWriter.

As mentioned, the difference between the APIs are method signatures using characters

instead of the more traditional bytes. In fact the Scheme standard already uses the general

term character, avoiding the term byte altogether. Moving to the new internationalized

APIs that can deal with any Unicode characters is definitely in the spirit of the Scheme

standard.

However, because the Scheme standard does not mention bytes, it does not specify

how to map characters into bytes, leaving that decision up to the implementation. The

Java API includes String encoding arguments to define various standard algorithms for

converting characters to and from bytes. A Java virtual machine has a default encoding

to use when none is provided, and open-input-file and open-output-file are changed

to use this default. In addition, open-input-file and open-output-file are extended to

take an optional argument to allow Scheme programmers to specify the Java encoding of

their choice. If a Scheme programmer needs to manipulate files of bytes, they can use a

87

8-bit single byte encoding such as ISO-8859-1.

6.5 Performance

As always, there is more performance work to be done. Fortunately the issues become

smaller and smaller, more tweaking than structural changes.

6.5.1 GrowOnlyHashtable

As mentioned before, synchronization can be a bottleneck. The standard java.util.Hashtable

includes synchronization by default. Even a copy of this class stripped of synchroniza-

tion need to be synchronized if instances may be shared across threads such as for the

GlobalEnvironment or the Symbol table.

A new data-structure called GrowOnlyHashtable is used to avoid unnecessary synchro-

nization. The GrowOnlyHashtable is specially constructed to not require synchronization

on the get method. No synchronization is required on the put method if it does not matter

which object ends up in the GrowOnlyHashtable. However, since the GlobalEnvironment

and Symbol table need to have unique values in the GrowOnlyHashtable, special synchro-

nization is required around the put method in these cases. However, overall since most

access is through put and not get, this cuts down significantly on the number of synchro-

nizations.

6.5.2 new Integer

As mentioned before, the implementation uses java.lang.Integer to represent Scheme

integer values. However, Java mathematical operators work on ints, not Integers. The

Scheme math primitives use Integer.intValue to convert to ints to perform the operation.

Until now, the implementation would convert from the int back to Integer by using the

Integer constructor.

However, many of the Integers created are conceptually the same value. For example,

many standard functions performing iteration keep small integer counts. Also, the Reader

creates Integers, including many small constants such as 0 and 1 commonly used for

iteration and incrementing.

88

It is safe to reuse Integer objects since they are immutable. For example, the same

Integer can be used to represent zero in all cases because once an Integer is created, its

intValue cannot be changed.

Script.getInteger is added to implement this reuse. Underneath, a range of small

positive and negative integers is lazily allocated and cached in an Integer[]. No synchro-

nization is required, because if two threads store two different Integers in the array element

simultaneously, they will have the same intValue, and look equivalent externally. They

look the same externally since pointer equality can still not be used to compare Integers,

since Integers outside the cached range will be created each time they are needed.

This change not only increases integer math performance by removing allocation but

has the side effect of speeding up numerous library functions that perform iteration.

This pooling of small Integers is an example of the Flyweight design pattern. [15]

6.5.3 char[] to String

As mentioned above, the type marshalling methods in Script convert char[] to Strings

when passing objects into Java. Analysis discovered that 95% of these objects were repeated

frequently, so a cache was added to avoid the unnecessary allocation. It is safe to reuse the

String values because, like Integers, the values are immutable. A GrowOnlyHashtable

was used, this time without synchronization on the put method, because if two of the same

String are allocated the lack of pointer equality is not an issue, like Integers and unlike

Symbols.

6.6 Analysis of Fourth-Pass Implementation

The fourth pass contained several incremental changes leading up to the present time.

Besides discussing the impact of changes made in this pass, this section will summarize the

remaining issues after the final pass.

6.6.1 Applet versus Reflection

In this pass both Applet and reflection support were added. However, another Applet

restriction is on the Java reflection API. In a Java application, as opposed to an Applet, re-

89

flection can be used to access even private members of classes. This allows implementation

of serialization and persistence APIs, but presents security problems in Applet.

In order to deal with this, as part of bootstrapping, the system tries to use the full

reflection API using a simple catch extension. If it catches a SecurityException, it

knows that it is running in the Applet, sets a global variable to indicate this, then switches

to using the reduced public reflection API.

The catch extension looks like this:

(catch thunk class-name-string proc)

First, the thunk is run. If an exception is thrown that is a subclass of the class named in

class-name-string, then proc is called with one argument, which is the exception that was

caught. A throw function was added to match catch, which takes one argument, a subclass

of java.lang.Throwable, to throw. There was no need to add a finally extension, since

that is already provided by dynamic-wind.

There was one problem with this scheme for detecting SecurityExceptions. Microsoft

Internet Explorer decides to throw a proprietary com.ms.security.SecurityExceptionEx

instead of a plain java.lang.SecurityException. This is simple enough to work around,

and was one of the few minor issues encounted with the Microsoft Virtual Machine for Java.

6.6.2 Primitives in Applet Environment

Even with a basic interpreter working in the Applet Environment, many primitives had

problems calling restricted APIs. As mentioned, several of the I/O primitives that used

Files had issues. Some other examples were the process and mail primitives which were

forbidden from use in the Applet’s sandbox.

The embedding application had to rework many of its primitives to use remote procedure

call so they could run in the Applet environment. Fortunately, the application can use the

Applet flag set during the bootstrapping of reflection to detect when this is required. For

some primitives, such as for access to type 2 JDBC drivers, the functions would not even

be defined when the implementation was in the Applet environment, because there was no

hope those functions would work there.

In general moving to java.net.URLs from java.io.Files cleaned up a lot of issues that

had plagued the old implementation. For example the differences between File.separator

90

characters between Unix and Win32 required all File routines to canonicalize their File.separators

so that scripts would work portably. With URLs, the details of file separators and other

issues are hidden below the Java APIs.

URLs is a better API for describing files than simple Strings. It is much more reminiscent

of the Common Lisp file-system neutral API. It allows programs to work across several

different file sources without having to customize the application to understand each. [57]

Using URLs, which are absolute, removes the concept of current working directory

which is problematic for two reasons. First, the current working directory is usually a

process-wide concept, which complicates life for multi-threaded applications which might

change the current working directory without anticipating the impact on other threads.

Second, having code manipulate a global current working directory does not lead to nicely

compartmentalized modules, since a program passing around relative paths cannot safely

do so if the module might change the current working directory.

6.6.3 Multi-Engine versus REPLServer versus HTML

When the REPLServer was first created only one Script engine was allowed per process.

Now that there could be multiple Script engines per process, it is not clear what the new

semantics should be. One option would be to have each Script engine listen on a different

port, meaning more configuration for the application. A second option would be to have

the REPLServer be aware of all the Script engine and provide the user a choice when they

connect, or a default Script engine and functions for switching between them.

In the case of the embedding application, an entirely new approach was taken. In-

stead of using a telnet-based UI, access to the Script engines was added to an exist-

ing HTML administration form. A text input of Scheme is posted for evaluation in an

javax.servlet.http.HttpServlet, and the results presented back via HTML. Option-

ally, a file-upload input form can also be used to send a file to the server for evaluating.

The new Script.evalWithException and ScriptException.stackTrace added for

the GUI were also valuable in constructing the new HttpServlet interface. Before, the

REPLServer took advantage of its redirected I/O to send warnings and errors to the telnet

client, which for the HttpServlet would have left the output on a potentially different

machine. The HttpServlet uses the Script.evalWithException to evaluate the Scheme,

91

and can render any warnings or errors including stack traces in the HTML result page.

6.6.4 Remaining Limitations to Scheme for Java

There still are several limitations of the implementation in its current state.

Symbol

Symbols are currently case-sensitive. This means that valid Scheme programs may not

work if they reference standard functions using any uppercase letters or are not internally

consistent in their symbol naming.

This implementation is not the only one with such a restriction. The Scheme Shell also

uses case-sensitive symbols because it wants to map s-expression symbols into case-sensitive

program-command arguments. [53] [54] This implementation chose to be case-sensitive for

similar reasons, allowing for special reflection syntax to map from s-expression symbols to

case-sensitive Java identifiers. Although this was not implemented, it is possible as a user

define-rewriter macro.

As mentioned before, uninterned symbols are not supported. Often implementations

have the non-standard gensym return uninterned symbols, but this implementation’s gensym

returns interned symbols. This could lead to namespace collisions for generated symbol

names but has not been a problem so far.

Reader vector Syntax

The Reader does not support the little-known vector syntax of #(1 2 3 4 5). This was

a simple oversight that should be easy to correct.

Internal define

In Scheme, define expressions may appear at the beginning of the body of lambda and

let expressions. These internal defines are syntactic sugar for letrec. The implementa-

tion has never supported these. Where it might have been used letrec was always used

explicitly.

92

Tail Recursion

Perhaps the biggest limitation to traditional Scheme programmers is the lack of tail recursion

as well as the related let loop. However, Java programmers writing extensions do not find

this to be lacking. They detest the do loop, preferring instead to use a simpler while

macro built with until, which is similar to the Java style of programming. This is clearly

an important area for future work. A simple replacement for the let syntax rewritter

could perform some Pseudoscheme style analysis to support the common case of named let

loops.[47]

Limited Numerics

Scheme specifies a full tower of numerical types from number to complex to real to

rational to integer. A conforming Scheme implementation is not required to imple-

ment the full tower, so strictly the fact that this implementation only provides integer

and real support is not a violation of the standard.

Separate from the tower of numerical types, Scheme defines the concept of exact and

inexactness. This implementation properly follows the rules for exactness so far as primitives

that operate on exact values, in this implementation only integers, produce exact results.

Specifically, the mathematical operations on only Integers produce Integer results while

operations that mix Integers and Doubles produce Double results.

Scheme also encourages but does not require exact numbers of unlimited size. Since

the implementation does uses the 32-bit signed int value inside a java.lang.Integer

to represent its exact values, the size is currently limited. In JDK 1.1 Java introduced

java.math.BigInteger as a new type of java.lang.Number so a Scheme program could

replace the standard mathematical operators with ones that could handle exact integers

of unlimited size as well. This was not provided because the application had no need for this

feature. A similar approach could be used to incorporate complex and rational numbers

as well.

call-with-current-continuation

A simple call-with-current-continuation implementation was added in this pass to pro-

vide for escape procedures. Internal to the CallCC Procedure which implements call-with-current-continuation,

93

an ExitProcedure is created and passed to the caller’s function. If the ExitProcedure is ap-

plied, the ExitProcedure stores itself and its argument in a special subclass of ScriptException

called CallCCException which it then throws.

This thrown CallCCException is caught by the CallCC Procedure which then needs

to consider two cases. If this CallCCException’s ExitProcedure was the one created

this CallCC Procedure, then the CallCCException’s value is returned. Otherwise the

CallCCException is rethrown to another CallCC Procedure waiting higher up on the stack.

Whenever an ExitProcedure is called or the program flow returns past the CallCC

Procedure that created it, the ExitProcedure is marked as used to prevent its use for

anything other than an escape procedure. If it is called after it is marked as used it returns

Script.Unspecified.

Similar to tail recursion, this restricted implementation seems to disappoint traditional

Scheme progammers more than Java progammers. Java programmers prefer to use the Java

throw and catch extensions rather than the limited call-with-current-continuation im-

plementation. Even with its limitations, the current call-with-current-continuation

does satisfy most daily uses for Scheme programmers. In this implementation, the restric-

tions on call-with-current-continuation seem similar to those in Pseudoscheme which

builds its implementation using Common Lisp block.[47]

94

Chapter 7

Java and Scheme

This section will take a high level view of Java and Scheme, based on the experience of

implementing this system.

7.1 Java Advantages

Since the implementation language here was Java, the first section talks about its strengths.

7.1.1 Portability

One of the biggest claims made by Java is “Write Once, Run Anywhere”. How does this

claim hold up in real world use?

Development Environments

In the early days of this implementation at the end of 1996 and begining of 1997 there

certainly were problems. First, there were compiler ambiguities. Code that compiled with

Sun’s JDK and Symantec’s Visual Cafe did not compile with Microsoft’s Visual J++.

Surprisingly, this was often because J++ was a more strictly correct compiler than even

Sun’s javac.

The biggest problem in these early days was on the Macintosh, where Metrowerks Code-

Warrior originally limited the length of package and classnames due to the Macintosh file-

name limit of 32 characters.

95

Although most of these issues were hammered out in the various Java 1.0 systems,

Java 1.1 brought new issues. Grafting inner classes and other additions to the original

javac compiler led to numerous bugs, which were visible not only in javac compiler, but

the derivative compilers such as Symantec’s sj compiler used by VisualCafe. In a recent

version of Java 2 known as JDK 1.3, the orignal javac was thrown out and replaced with a

research compiler from Australia fixing most of the compiler issues, including fixing several

more ambiguities that were tightened up in the Java Language Specification.

Applet Environments

Numerous small JIT bugs hounded Netscape and Internet Explorer alike. Netscape’s Java

virtual machine did not provide a working Thread.join method or support casting from an

Object[] to subclasses such as String[]. Once again, surprisingly, Microsoft seemed to

provide a more faithful Java system.

The Macintosh was the worst of all possible worlds. Even when class names were

shortened, the Metrowerks Java virtual machine could not support large Applets. Even

if development was done on Win32 or Unix, serious Applets would hang Java virtual ma-

chines from Netscape Navigator, Microsoft Internet Explorer, as well as the offical reference

implementation from Sun.

Server Environments

For early server side work, only Win32 and Solaris were even considered. Solaris required

kernel patches to support the use of green threads over native threads. Eventually HP’s

Java virtual machine was stable enough to support server multi-threaded server applications

as well.

Today, IBM’s virtual machines are considered some of the best on any platform. Their

recent virtual machines for Win32 offer the best server performance. They also support

Linux on platforms from the x86 to the S/390. They also support their own operating

systems such as AIX, AS/400, MVS, and VM. The biggest problems holding back IBM’s

virtual machine are small JIT problems that should be overcome with time.

96

Reality

So really, a more realistic claim would be “Write Once, Debug Everywhere”.

7.1.2 Language

Beyond the hype surrounding portability, Java also claims to be superior because of its

language design. Many people debate about the more traditional object-oriented issues

regarding multiple inheritance or interfaces versus inheritance. This section will talk about

the other issues that often get left on the way side.

Exceptions

Java’s Exception mechanism is one of its biggest contributions to developing modular ap-

plications. This is saying a lot, since exception systems have in fact been around for years,

including in Java’s closest relative, C++.

Exceptions are important because they separate error detection from error handling. In

anything but the smallest programs, these two concepts are likely to be distinct.

Take for example the evaluation API for Scheme in Java above. At first, the API tried

to handle all problems internally, logging the problem itself to the Java console, returning

Java null, as opposed to Script.Null, to report that an error had occured.

However, as the needs of the application grew, placing the error handling into the code

doing the error detection was clearly wrong. It prevented the application from choosing

the approriate handling for the error depending on the context, which grew to include a

traditional graphical user interface and an HTML user interface, as well as a more command

line oriented user interface.

So what makes Java’s exceptions any different than C++’s exceptions? They both use

try and catch, although Java adds the additional finally blocks, which are arguably

sugar but nonetheless useful. They both allow the catcher to use inheritance to select

related exceptions, instead of having to enumerate each specific exception. C++ manages,

of course, to complicate things by differentiating between catching and throwing by pointer,

by value, and by reference. C++ also extends things a bit, allowing not just classes but

arbitrary types to be thrown, including things like int and void*, although this seems more

confusing that useful.

97

One problem with C++ exceptions is that they were an add-on. Many compilers from

gcc to Microsoft’s cl have had trouble with them. Since the standard libraries predate

exceptions, they do not use exceptions. These two problems combine to mean that C++

programmers do not tend to use exceptions. Without widespread use, exceptions do not

achieve the potential of improving clarity and robustness of C++ programs.

One subtle advantage to Java exceptions is compiler checking. Although C++ allows

a method to declare the exceptions that are thrown, it is nothing more than informa-

tional. For Java java.lang.Exceptions, which excludes java.lang.Errors and excluding

java.lang.RuntimeExceptions, a method throwing an exception without internally catch-

ing it must declare it in its throws clause. This makes clear to the caller that a method that

they called can throw an exception, since the caller must also choose to catch the exception

or list it in its signature’s throws clause.

Because the method writer must consciously choose to either handle or pass on an

error, it is more likely that at some level exceptional conditions will be handled in at least

a somewhat reasonable way, instead of the traditional way of C where a program that fails

to check for an error code blindly continues on, usually resulting in an error downstream

from where things really went wrong.

A Java class can certainly avoid this throws declaration by using an Error or a RuntimeException,

and sometimes that is appropriate. Errors are used when application should not be ex-

pected to recover. RuntimeExceptions can be used if a widely used method needs to

report a possible exception, but making virtually all methods declare that exception is seen

as overkill, especially when it is known that a higher level framework handles the exception.

But these cases are rare compared to the commonplace use of declared Exceptions as part

of defining an API.

Garbage Collection

Garbage collection is part of the hype surrounding Java. Garbage collection is not a new

concept, certainly not to Scheme programmers. However, it is worth mentioning the rela-

tionship between garbage collection and using a functional programming style.

Imagine a class like Java’s Number with an add method, perhaps as an extension to

support complex numbers. Supposed some code wanted to simply add a few numbers in a

simple functional style like this:

98

Number e = new Number(x).add(new Number(y)).add(new Number(z);

This could be thought of short hand for:

Number a = new Number(x);

Number b = new Number(y);

Number c = a.add(b);

Number d = new Number(z);

Number e = c.add(d);

In C++, to cope with the manual deallocation, it is the even more verbose:

Number* a = new Number(x);

Number* b = new Number(y);

Number* c = a.add(b);

delete a;

delete b;

Number* d = new Number(z);

Number* e = c.add(d);

delete c;

delete d;

Note that in Java the simple version is correct, although in C++ the more verbose inter-

mediate version is required so that pointers to intermediate values can be saved for later

cleanup.

If things are this bad for functional composition of a simple Number class, they only get

worse when combining several third party APIs, especially when error checking is added in

for C++ libraries that are not using exceptions.

Packages

Java’s package system is not sophisticated, but is better than nothing. It is based on

declaring classes in nested packages, which most development environments map into nested

directories containing Java source and class files. Organizations are encouraged to use their

unique internet domain name as the outermost package to prevent namespace collisions. A

little arbitrary perhaps, but it gets the job done, reducing naming conflicts to be within

99

an organization, letting third parties work together without coordination. It encourages

grouping of related classes into packages together, perhaps encouraging more structured

system design, where systems with no namespace might dump all the classes into one

directory, or at least a few shallow directories based on how the linker will assemble them

into libraries.

One part of Java packages that leave something to be desired are the protection bound-

aries between packages. Here Java depends too much on its C++ heritage for guidance, with

its public, protected, and private keywords, as well as its own the mysterious default

protection provided when no keyword is used. While the protected and default permission

allow any access from other classes in the same package, there is no way to grant permission

to other packages without opening things up completely with public.

A single class can grant permission to its subclasses in another package to allow access,

but other classes in the subclass’s package have not ability to see the internals of this new

class.

Arguably this is probably a good default to promote encapsulation. However, two

packages cannot choose to cooperate privately together even if they want to. Supposed a

package com.foo.bar provides a public API from company Foo to manipulate their bar

interface. Suppose another package com.foo.baz wants to have full access to private

member data in order to persist bar objects to a database. There is no way for com.foo.baz

to grant a C++ like friend status to the package com.foo.baz or specific classes within.

Some approaches might be to have com.foo.baz subclass each of the classes from

com.foo.bar, but then that would open up other outsiders to be able to do so. An applica-

tion could replace the SecurityManager and use reflection to access the private members of

com.foo.bar, but this is expensive, and removes any possibility of compile-time checking.

Immutable Strings

For all its oddities, Java’s immutable Strings work out well for a couple of reasons. The

first is that it is safe to pass them to library foreign code without worrying about the

contents being modified. This also makes it clear that an API must make its own copy if

it needs to side-effect the value which is often ambiguous without immutability. ANSI C

and C++ provide the const keyword to specify that arguments are not to be modified,

which Java does not provide, but that is sort of backwards, because it means the definer of

100

the interface makes the promise, not the owner of the data, which seems to go against the

object-oriented principles of data encapsulation.

One might wonder why Strings are special, since Java is not providing this form of

protection to other common data-structures such as Vectors and Hashtables. One reason

is that Strings are commonly used as keys in Hashtables, so guaranteeing that they are

not corrupted is important for safety. A java.lang.ClassLoader might have a Hashtable

mapping String class names to java.lang.Class objects. Imagine the havoc a program

could cause that modified the String returned from Class.getName.

Another good effect of immutable Strings is that code is more likely to share String

instances instead of making copies to prevent third parties from possible side-effecting val-

ues. This makes equality testing cheaper, since in many cases, the same String value will

be represented by the same string reference, making the comparison as cheap as comparing

numeric types.

One optimization that the sharing of String instances allows is when copies of objects

are made. This type of shallow copying of objects while sharing immutable members might

be common in an automatic persistance system such as an Enterprise Java Beans (EJB)

container managing persistance of entity beans. The persistance system might keep one copy

in a cache and make shallow copies for each transactional context. When a transaction is

committed, the container will want to generate the minimal SQL to update only the fields

that changed of the object. Not only is the initial shallow copy cheap, but the container can

simply compare Strings using pointer equality instead of a more expensive String.equals

operation.

Finally, one other optimization this allows is that String.substring can return new

String instances that share an underlying char[]. The new String instance just has a

different offset and length to indicate the part of the char[] it represents. While new

wrapper String objects are created, the potentially larger char[] is shared.

7.1.3 Platform

Finally one more positive claim is the benefits of Java as a platform, not just a language.

Sun has perhaps taken criticism for taking things too far at times, but having things like

standard profiling and debugging APIs makes C++ compilers with incompatible name

101

mangling algorithms look prehistoric.

7.2 Java Disadvantages

While Java seems to be a major step forward over C++, no language is perfect. Java has

its shortcomings and pitfalls to beware of.

7.2.1 Threads

Threads are actually a good thing about Java. It is the first major language that has had

threads as part of the language since its inception. What is bad about threads is their

interaction with the standard I/O classes.

The major problem is supporting many simultaneous streams, such as in a server. The

example in this implementation system is the REPLServer. The REPLServer has one Thread

calling ServerSocket.accept looking for new connections. Whenever it has one, it quickly

creates a new Thread to read requests from that new client.

The problem is this architecture of spawning a new Thread for each connection. It is

fine for the REPLServer which is at most used by a couple of users at a time for debugging.

However, imagine a chat system with thousands of clients concurrent connections. Because

of possible firewalls between clients and the server, the clients need to remain connected to

the server so they can receive their incoming messages. [45]

Many Java virtual machines have only simulated threads, so perhaps this architecture

would be no worse for them than something more sophisticated. However, for Java virtual

machines that map their Threads into native operating system threads, this turns out to

be very expensive. Unfortunately most common server operating systems from commerical

Unixes to Microsoft Windows NT cannot scale a single process to such large numbers of

threads.

One solution is to provide an interface like BSD select or System V poll. [20] This

allows a single thread to monitor several InputStreams simultaneously. Concurrency is still

possible because it can feed a queue of ready InputStreams to a pool of Threads waiting

to handle incoming requests. This pool of Threads can be used to throttle the concurrency

in the server to make sure that the operating system is not swamped with excessive thread

context switching.

102

There are more advanced APIs available today than select and poll. Microsoft Win-

dows NT’s I/O completion ports or Sun’s /dev/poll can perhaps improve scalability even

more, but they are even less portable. [64] There currently is a Java Specification Request

for a new I/O API that could encapsulate all of these different platform specific interfaces.

[27]

Some newer virtual machines try to use a virtual threads concept, where a number of

process threads are mapped onto a potentially smaller number of operating system threads

which are mapped onto a potentially smaller number of physical processors. This approach

is taken by Solaris’s Light Weight Processes.[59] While this seems to improve scalability

somewhat, it is still not comparable to a less Thread intensive approach. [37]

Although it is desirable to expose this functionality in the most general manner possible,

it can be hidden inside of an application server. Load balancing of I/O and queuing of work

requests is not a new concept but a traditional part of transactional processing systems.

[18] Weblogic uses native I/O code to improve performance by a factor of three in some

cases. [5] If a more general solution is made available, application servers can avoid using

their own native code to achieve scalability, leading to easier portability.

7.2.2 Synchronization

With threads comes the need for synchronization. Several of Java’s classes such as java.lang.StringBuffer,

java.util.Vector, and java.util.Hashtable include built-in synchronization that guar-

antees these data-structures cannot be corrupted by side-effects from multi-threads. Since

important classes such as ClassLoaders might use these data-structure classes, a secure

library is part of the requirement for the Applet sandbox.

So what could be wrong with that? The problem is that synchronization is not for free.

What is good for security in an Applet starts to be a burdensome cost in a multi-threaded

server application.

Implementation Problems

In the Java programming model, any java.lang.Object can be used for synchronization.

A simple implementation might store a lock in each Object, however, this means an extra

word of storage in each object which seems like an unacceptable tradeoff. So instead the

103

Sun reference virtual machines contain an internal hashtable from object handles to locks

for those objects. While this cut down on the per object memory cost, it means that any

synchronization, even from Threads synchronizing on unrelated objects, were bottlenecked

by unknowingly synchronizing on this internal hashtable.

Some newer virtual machines such as IBM’s get rid of this by simply adding the dreaded

word of memory to each object. This is not as bad as it seems, because in IBM’s new object

layout, they also removed the use of handles to objects when they moved to a new garbage

collector, so the amount of memory used ends up the same. [58]

Another more middle-of-the-road approch for virtual machines that use handles is to use

some bits in the handle to index first into several tables instead of one. Although this does

not eliminate contention, it does statistically lower the chances that two Threads might

clash for unrelated objects.

StringBuffer

In the original Java Language Specification, the use of the + operator on Strings was

defined as sugar over use of StringBuffer. This means that methods full of the String

+ sugar are synchronizing even though none of the values involved in the expression could

possible be available to other threads. This is ridiculous since this is probably the most

common use of StringBuffer. [16]

Of course there are cases when applications use StringBuffer outside of String +.

Several third-party libraries provide their own implementation without the synchronization,

such as Netscape IFC’s netscape.util.FastStringBuffer.

Apparently Sun has partially seen the error of their ways. Newer versions of the Java

Language Specification are have changed their wording regarding the String + operator,

implying that the behavior should be like using StringBuffer, but not necessarily requiring

its specific use. The new section on String + optimization is clear to point out that the

compiler is free to use its own implementation in place of StringBuffer, and even to use its

own implementation of routines for converting primitive types to characters without using

String.valueOf methods that require an extra intermediate String operation. [17]

Unfortunately, it would have been more useful for Java to have included its own new non-

synchronized StringBuffer variant that supported these char[] based formatters. Instead

applications that want to be efficient in their String formatting are required to provide their

104

own implementations derived from the String.valueOf implementations. Even worse, is

that since no new standard class is involved, that means that compilers wishing to avoid

StringBuffer have to inline code to do the optimization, potentially leading to code bloat.

In the final analysis, StringBuffer synchronization does not make much sense at all.

Unlike Vectors and Hashtables which are often used as data-structures shared between

Threads, no common application of a shared StringBuffer comes to mind. Perhaps this

is once again simply taking the Applet sandbox safety too far.

Hashtable and Vector

Built-in synchronization is more valuable in Hashtable and Vector than in StringBuffer.

However, this prevention of data-corruption problems leads to harder to find logic errors. For

example, here is a bug in Sun’s own JDK 1.0.2 implemenation of java.lang.String.intern:

String s = (String) InternSet.get(this);

if (s != null) {

return s;

}

InternSet.put(this, this);

return this;

InternSet is a java.util.Hashtable. The problem occurs if two threads try to intern

the same java.lang.String at the same time. Both can probe and get the value and

finding none, both will try to put their instances in as the interned value. This means that

one of the callers ends up with a non-interned String. A higher level of synchronization is

needed around the pair of get and put operations to prevent this. The prevention of the

data-corruption problem masks the logic error of not producing interned Strings.

As in the StringBuffer case, third-party libraries provide non-synchronized versions of

these classes, allowing the application to choose where it needed synchronization, instead

of just paying it as a tax on general system performance. Netscape IFC provides the

netscape.util.Hashtable and netscape.util.Vector.

Finally Sun’s Java 2 version known as JDK 1.2 provided a new collection API allowing an

application to choose between the older synchronized and the newer unsynchronized classes.

These old and new worlds are unified through new List and Map interfaces implemented

105

by both the old and new classes. Wrapper classes are also provided to turn unsynchronized

classes into synchronized ones as needed.

However, there still is no unsynchronized alternative to StringBuffer, leaving that up

to the application. This is unfortunate, since many APIs such as JDBC could benefit from

taking StringBuffers instead of the usual String arguments, so the could reuse large

mutable buffers, instead of allocating potentially large immutable Strings for every call.

Testing

One final word on synchronization is regarding testing. Based on the experience using

Netscape IFC’s unsynchronized classes, simple load testing finds synchronization problems

quite readily. In a well structured application, there hopefully is not much global state to

synchronize on, and where it does exist, hopefully the programmer got right the first time.

The reason it is easy to find the synchronization problems with the unsynchronized

classes is precisely because it does lead to data corruption problems. Data-corruption prob-

lems end up looking very similar, usually a NullPointerException in a Hashtable or

Vector read accessors or IndexOutOfBoundsException in a Hashtable or Vector write

accessors. Given the Java stack trace it is easy to pinpoint the code that is lacking synchro-

nization and which particular data-structured to which access needs to be synchronized.

In addition, since Java classes encourage encapsulation of such data structures, usually

a small number of methods in one class are accessing the data-structure. At the very least,

the code can be analyzed to find the users of the state to add protection that is needed,

and any further stack traces found in testing can provide further leaks to plug.

7.2.3 Classes

Java would not be an modern object-oriented language without classes. As mentioned

before, there is criticism of the lack of multiple-inheritance. This section will focus on other

issues.

One problem with Java’s class system is that it is not as dynamic as others such as

the CLOS, the Common Lisp Object System, resulting in some non-objected-oriented ap-

proaches to some problems. One example is the static Write.write method. It has to do

an if/then/else tree of instanceof operations to handle java.* and third-party classes.

106

It would be an interesting extension to allow dynamic extension of third-party classes to

implement new interfaces with new methods.

One small nit with Java classes is that there is no clear way to have a class as a simple

collection of static state. This is commonly done for sets of utility routines. A first thought

would be to mark the class as abstract so that it cannot be instantiated. However, then

a subclass can be created that can be instantiated. To prevent subclassing, the keyword

final can be added to the class. However, Java does not allow the abstract and final

keyword to be used together. In the end, the cleanest approach is to make the class final,

but mark the constructor as private to prevent unwanted instantiation.

People seem to associate object-oriented programs with inheritance. However, encap-

sulation and interfaces are more important architecturally than inheritance. Encapsulation

and interfaces allow for the reuse of whole packages where inheritance which is focused on

the reuse of only a single class’s implementation.

As packages are broken down over time to finer granularity, inheritance is often used to

split the implementation into simple classes and their more complex superclasses. However,

Java’s single inheritance limits a class to a one-to-one relationship with its superclass.

Imagine that there is a class A that is now to be split into a superclass B and a subclass

C. In the application as it stands today, there was one A so now there is one C, including its

one B. However, as time goes on, suppose the application needs to have two Cs, but that

automatically means there are two Bs, when perhaps one could be shared between the two

Cs.

In the end, perhaps the more complicated component and interface model would have

been better. Imagine that A had been split into a class D with a constructor taking an

interface E and an additional class F that implements interface E with a constructor taking

an D. D would be similar to B and F would be similar to C, with E defining precisely what

behavior could be customized by users of D. Then if the application wants two Fs, they can

share the single instance of D.

There are many such examples of “design patterns”. Some of them involve inheritance,

but mainly they involve interfaces between classes that are not based on inheritance. There

is much more reuse to be had by pluggable components that simple subclassing. [15]

107

7.2.4 RuntimeExceptions

When programming in C/C++, the most common type of run-time errors were from prob-

lems in pointer arithetic and memory allocation, leading to segmentation faults, bus er-

rors, etc. In Java, these problems have been replaced with NullPointerExceptions and

ClassCastExceptions.

NullPointerException

NullPointerExceptions usually occur when a method has an argument or calls another

method, but expects an honest-to-goodness Object reference back, not a null reference.

The problem is that the null reference is considered assignable to any class. Other languages

such as ML include whether or not null is allowed as part of the type, adding additional

compile-time checking of values.

Often programmers return null when something unexpected occurs. Instead they

should use exceptions, especially RuntimeExceptions like IllegalArgumentException, to

signal the exceptional condition. When a large body of code simply returns null when

an unexpected situation arises, several different methods may play the same game. By

the time a NullPointerException actually occurs, the location reported maybe far away

from where there issue was first detected. By eliminating such silent failures by throwing a

RuntimeException where the problem first occured, subsequent debugging is much easier.

ClassCastException

Some object-oriented languages such as Eiffel have no casting whatsoever. However, since

common data-structures such as Vector and Hashtable hold only java.lang.Objects,

accessors of these structures must cast retrieved values to a more useful type. Eiffel and

C++ solve this by having parameterized types or templates. However simple templating

solutions can lead to code bloat.

One simple workaround is to have a Vector-like class that has abstract array allo-

cation and array access routines. This allows the superclass to manage all the resizing

and other bookkeeping. The subclass then provides strongly typed access to array ele-

ments. Although not as good as a builtin language solution, it does remove many chances

of receiving ClassCastException, with a minimal amount of code bloat through shared

108

implementation. In addition, access is faster than with a Vector, since once the array is

retrieved, the only cost is for array access, without the additional method-call overhead of

Vector.elementAt.

7.2.5 Assert and Macros

A common way to check for bad arguments such as null in order to avoid NullPointerExceptions

is to use an assert mechanism. An example of defensive programming, a program may as-

sert preconditions, postconditions, or invariants. The assert mechanism itself throws an

exception when a condition is not met.

In C and C++, such asserts are usually enabled for internal builds but disabled in pro-

duction products. This allows maximum validation internally, but maximum performance

externally. However, this is implemented using the C preprocessor, for which there is no

equivalent in Java. Eiffel does not rely on a preprocessor for its conditions but includes

them as part of of the syntax of the language, allowing the run-time to disable them in a

production environment.

Well designed macros would be a powerful addition to Java, especially if done as part

of parameterized types. However, there are proposals for a simple assert mechanism, even

declarative conditions, to help efficiently implement optional run-time condition validation.

7.2.6 Numbers

Java’s java.lang.Number class is pretty thin. Although the arbitrary-precision subclasses

java.math.BigInteger and java.math.BigDecimal come complete with methods add,

substract, multiply, and divide, Number itself does not. They are not supplied statically

by the java.lang.Math class either, leaving programmers to implement their own primitives

to manipulate the Number classes. In addition, no builtin library for complex number

support is provided.

7.2.7 else if

When a method throws an exception, the caller must choose to either throw or catch the

exception. The caller can choose to catch the exception and do nothing to handle it, which

some compilers warn about, but it is certainly an option.

109

However, a similar problem is not handling a branch in an series of if/then/else tests.

Yale’s T system provided versions of Scheme cond and case called xcond and xcase that

would signal a run-time error if none of the branches was taken. A similar contruct in Java

would be useful, and perhaps possible with a macro.

7.2.8 Exit

To exit the virtual machine, the java.lang.System.exit call is similar to the C exit

function. It immediately exits the process without any cleanup. However, most C programs

call exit, not exit, which allows exit handlers registered by atexit and on exit to run.

Java lacks any standard way to allow code to cleanup on virtual machine exit. An

application can have its own library exit method that does its own cleanup, however this

does not allow third-party libraries to share one mechanism for cleanly shutting down. This

means the application has to tie together all the third-party mechanisms in sometimes ad

hoc ways.

7.2.9 Tail Recursion

Finally, Java as a language is lacking tail recursion. Even at the Java Virtual Machine level

tail recursion is not possible, showing that the Java Virtual Machine is really not general

purpose at all. Even the Gnu C Compiler, gcc, supports tail-recursive optimizations.

However, the IBM Java Virtual Machine’s JIT compiler does in fact perform tail recur-

sion elimination to cut down on method-call overhead. This is just another way that IBM

has begun to edge out Sun. [58]

Outside the world of Java, Microsoft’s Common Language Infrastructure’s Intermediate

Language does support tail calls. [12] There already is a Scheme system from Northwestern

that is built on top of this platform. [62] It will be interesting to see if Sun decides to evolve

the Java virtual machine in this direction or continues to focus one language for its virtual

machine.

110

7.3 Scheme Advantages

This section discusses some of the advantages of using Scheme as an extension language to

Java.

7.3.1 Size

The main reason Scheme was choosen was for the small size of its language. This few types

of kernel synax and the uniform s-expression syntax allowed a small implementation to be

up and running quickly. Although later the Scheme libraries were also implemented, they

were not as important and added primarily for completeness. Most developers prefer to use

the Java APIs over the Scheme versions.

7.3.2 Garbage Collection

Perhaps it goes without saying that garbage collection is an advantage of Scheme given

that the implementation language Java is garbage collected as well. However, independant

of the implementation details it is important for any scripting language to be garbage

collected. Scripts are often written by inexperienced programmers and memory leaks are

a very common type of mistake. If the application is a long running process, such as the

server that was the embedding application for this implementation, leaks caused by user

scripts could be very dangerous.

7.3.3 Functional Programming

Scheme functional programming style, which discourages side-effects, works well for embed-

ding it in Java. The Scheme style meshes well with both multi-threading and transactional

based systems.

Code with extensive use of side-effects does not work well in a multi-threaded system

because of the overhead of the required synchronization. In addition, some simplistic li-

braries may assume they can side-effect a data-structure they are passed. Another problem

is when a piece of single-threaded code reuses a data-structure within a loop, such as by

clearing a Hashtable, to reduce allocation. Later on if the code is made multi-threaded,

suddenly reusing the Hashtable does not seem like such a good idea.

111

Transactions and side-effects seem to be a better match. After all, transactional update

is all about managing side-effects in a well-structured way. However, although the end

results of a transactional computation are side-effects, it is good to avoid costly intermediate

side-effects if they are not necessary.

Scheme avoids this by discouraging side-effects. For example, although Scheme includes

a reverse function, no side-effecting reverse! function is included in the standard.

7.4 Scheme Disadvantages

Unfortunately, today Scheme seems to have less pros and more cons. A lot needs to be done

to either modernize the language, or perhaps a new off-shoot of the language needs to be

created to bring it up to par.

7.4.1 Language

This first section will focus on language, rather than library, issues.

Symbol

As mentioned above, the standard does not nail down performance behavior for symbol

equality. It could be as cheap as a constant time comparison or the cost could be depen-

dent on the length of the name of the symbol. Although this is a small matter and most

implementations do perform as expected, in general the specification focuses on correctness

more than performance, which is noble, but not practical.

Records

Since Scheme does not have a record system, programmers have tended to add their own,

which leads to a proliferation of options. For example, scsh, the Scheme Shell, includes

four different record systems. [53] [54]

The lack of a standard record system is unfortunate for many reasons. First, applications

developers are forced to deal with what should be a language issue. Second, standard

libraries are dumbed down to avoid using records. Third, each different extension library

may have its own record system, incresing the learning curve for users of those libraries.

112

Finally, meta-level systems trying to provide record serialization or persistence have no

general mechanism to rely on. This includes how the standard read and write procedures

deal with records, which are often designed by a specific implementation to handle the

system’s preferred record system, but treat others as second-class citizens.

Related to the need for a standard record system is the need for concise syntax for ma-

nipulating records. Although Scheme programmers often criticize C-like languages for their

variable and argument type declarations, most Scheme record packages end up including

their type information in the name of the functions used to manipulate the variable. Special

syntax for manipulating records could be used for clean integration with C structs as well

as C++ and Java classes.

Types

As mentioned above, the Java based implementation was able to replace about a dozen

type discrimination predicates with a single instanceof? function. If record types are added

to the language, this will increase the importance of having a single function for type

discrimination as a standard part of the Scheme language itself. Something as simple as a

type function that returned a symbol such as pair, char, or vector would be sufficient.

This would allow code currently explicitly testing for each type, perhaps for serialization,

to use a table-driven approach instead. 1

Threads

In today’s world of multi-processor machines, languages must support threads. For lan-

guages like Java, they are perhaps to be considered almost a library feature. Scheme’s

concepts like call-with-current-continuation are not fully specified in a threaded en-

vironment. It would be better to include threads and thread-local storage, perhaps as

dynamic variables, as part of the language.

1 There seems to be an inconsistency in R5RS. “Section 3.2 Disjointness of types” mentions port?
However, “Section 6.6.1 Ports” defines input-port? and output-port?, but not port?.

113

Exceptions

The Scheme standard uses the phrase “an error is signalled”. For example, open-input-file

can signal an error if a file does not exist. However, there is no function to determine if a

file exists or to handle the error without terminating the program.

As mentioned above, exceptions are an important building block to enable modular

libraries to come together seamlessly into applications. Without an exception system, li-

braries are tempted to try to handle exceptional cases, such as missing files, which are much

better handled by the application which has a better understanding of the context in which

the error occured.

Unforunately, Scheme, with its minimal static analysis, will probably never provide

rigorous handling of exceptional cases, like that of the Java compiler. The lack of an object

system also makes it more difficult to provide structured exception handling, requiring

the application to exhaustively handle related problems, and be modified whenever new

exceptional cases are added.

call-with-current-continuation

The Scheme standard notes the two common uses for call-with-current-continuation.

The first is for non-local exits from loops or procedures, which is similar to Java’s break

and return respectively. The second is for escaping across several levels of a call stack,

similar to Java’s exception mechanism.

call-with-current-continuation is not limited to these escape-procedure contexts.

Continuations are first-class procedures that can be used at any time and even multiple

times to restart a computation. This has been shown useful for implementing cooperative

threading where certain library procedures store the state of the current computation and

switch to another pending computation. Certain programming techniques such as back-

tracking also are easily expressible using the call-with-current-continuation.

Many implementations do not properly implement the full power of call-with-current-continuation.

This implementation only handles the common case of escape procedures. In general, im-

plementing fully general continuations can be very expensive since the program stack may

have to be copied to the heap if analysis could not show that the continuation would not

escape the enclosing call to call-with-current-continuation.

114

One could argue that Scheme could be better off with specific constructs for specific

features instead of one fully general call-with-current-continuation. With specific

constructs for the useful concepts of non-local exit, exceptions, and threads, the more

esoteric uses like backtracking algorithms would simply have to perform their own state

management.

Modules

Scheme, as any language, requires a module system for two reasons. A module system

prevents unrelated libraries from having namespace collisions. In addition, a module system

allows a library to encapsulate its implementation and only export a defined interface.

Although some implementations do provide module systems, many do not. However, a

standard module system is even more important than a standard record system. Although

it is a nuisance for a programmer to have to learn several record systems when dealing with

several libraries, without a standard module system, the libraries may not even be able to

coexist.

do

do seems out-of-place with the rest of Scheme. While Scheme has a Lisp heritage, it seems

like Scheme’s focus on looping through tail recursive function call makes the do syntax

redundant. Although this non-tail-recursive implementation used do extensively in imple-

menting standard functions, it seems out-of-place in an otherwise clean language.

N-ary Arguments

N-ary arguments seem like another piece of baggage from Scheme’s lisp heritage. N-ary

arguments require list allocation in order to pass their values, which is not a great thing to

encourage for performance. It also leads to complicated APIs with perhaps mutliple levels

of implicit defaults instead of an efficient and clear API.

Static Analysis

Scheme as a language promoted lexical scoping over dynamic scoping. One benefit of lexical

scoping is that it allows for compile-time optimizations, such as the closure analysis shown

115

above. Scheme also distiguishes the compile-time ’(1 2 3 4) from the run-time (list 1

2 3 4), going so far as to note that side-effecting the former is an error.

However, Scheme as a language otherwise does very little to allow other forms of static

analysis. Since it has very general arithmetic and allows users to replace the definitions of

standard functions, many forms of optimization are off limits. Many implementations in-

clude declarations to allow compilers to perform more performance optimizations. However,

few include include declarations for assisting in program correctness.

Scheme 48’s module system allows for function signatures which include type informa-

tion. Although the type information seems to be informational, the compiler does at least

warn if a function is called with an incorrect number of arguments. One could imagine that

some simple analysis could be done to at least detect some type incompatibilities. [29]

7.4.2 Libraries

This section address Scheme’s short-comings in the area of standard libraries. For a language

including transcript-on and transcript-off as optional procedures, there certainly are

a number of more useful things that could be included.

Data-Structures

Scheme is lacking a concept of date and time. In this implementation, extensions for

java.util.Date were available and used to write benchmarking code. A good date data-

structure would probably rely on a standard record system. Dates will also appear as part

of I/O and internationalization libraries below. Time zone support would be considered

part of a core date library, not part of internationalization.

Hashtables are another incrediblely useful data-structure. Most Scheme implementa-

tions provide hashtables, but having a standard one would improve portability of libraries

and applications.

Scheme vectors are similar to Java Object arrays. However, Scheme provides no equiv-

alent to Java’s System.arraycopy. Certainly a program can iterate over a vector copying

elements, but there is a performance improvement from providing it as an atomic operation

with a custom implementaion.

Since Scheme vectors are similar to Java arrays, an equivalent to Java Vectors would

116

be nice. Scheme programmers would tend to use list structure where Java programmers

would use Vectors. However, accessing elements in Scheme is a linear operation. If

list->vector is used to convert to a constant-time access data-structure, it means the

pairs were allocated only to become garbage.

Batch

Scheme is lacking the basics needed to operate as a batch program. Although some of the

first things any C programmer learns is how to use command-line arguments and how to

return an exit code, Scheme provides no standard functionality for either of these. Almost

all implementations do, since it is useful on almost all common systems. One could argue

that it presumes some specific type of operation system, but the presumption of a filesystem

already means that not all library procedures may be available in all environments, as seen

in the Java Applet environment.

As mentioned with Java, any exit facility should provide exit hooks to applications and

libraries. One useful facility that is useful for batch programming that needs such an exit

hook is for temporary files, to ensure they are cleaned up on program exit.

Properties

Most language systems allow access to named string properties. C provides getenv and

setenv to access environment variables. 2 Java’s System Properties are incredibly useful

for the unfortunate but necessary times when a program needs to vary its execution based

on its architecture, operating system, virtual machine, language version, etc.

Scheme programs should have a standard way to differentiate between Scheme imple-

mentations. This would go a long way to allowing programs to create their own portability

libraries for non-standard features until such a time that they are standardized. For ex-

ample, an application could provide their own implementation for accessing command-line

arguments to hide the details of the implementation. Just as easily, they could even build

a portable record system or hashtable implementation.

2 Java JDK 1.0 had getenv and setenv, but they were removed in JDK 1.1 because the concepts
did not port to some environments like the Macintosh. Ironically the Runtime.exec method still
provides an envp argument for passing environment variables to subprocesses.

117

Miscellaneous

Other common functions such as any?, every?, fold, reduce, reverse!, etc. would be

useful to have provided in some standard library.

7.4.3 I/O

Scheme’s standard I/O functions are so bad that this section is dedicated to just that part of

the library. With redundant functions such as with-input-from-file and with-output-to-file

included in the standard, it seems like more attention should be paid to what is omitted.

Streams

The inclusion of peek-char? on input-ports makes it clear that the Scheme standard

authors are more worried about writing lexers than more general programs. Java’s basic

InputStream API focuses more on the essentials and layers on more complex behavior such

as peek ahead.

One of the biggest omissions from the Scheme I/O library is the buffering seman-

tics of ports. As far as the specification is concerned, there is a one-character buffer for

peek-char?. However, if Scheme systems were really doing character-at-a-time I/O perfor-

mance would be abysmal.

Scheme could benefit from a more extensible streams-like API. It would need to have a

more object-oriented approach allowing each type of stream to supply its own implementa-

tion of operations such as read and write. This could easily be done with standard record

for streams if a standard record system existed.

transcript-on and transcript-off

It is hard to imagine how something as pedantic as transcript-on and transcript-off

ever made it into the standard. It would be more useful to provide direct access to

set the current-output-port. Then if I/O streams were available, something similar to

MultiPrintStream could be built. These two combined, with a little help with from the

REPL could provide more useful functionality to professional programers, rather than prim-

itives for students to generate files to turn into their professors.

118

Internationalization

As mentioned above, much of the work of internationalization is properly differentiating

characters from bytes and providing the means to convert back and forth between the

two. Scheme currently does not have a concept of byte, but that is not necessarily a

major hinderance. A stream API could layer a multibyte Unicode character stream on

top of a 8-bit character stream to simulate byte operations. However the standard could

encourage implementations of char->integer to return a value matching the underlying

representation whether that be ASCII or Unicode, since some implementations choose to

return somewhat arbitrary values.

Internationalization also affects the character functions such as char-whitespace?,

char-lower-case?, char-upper-case?, char-numeric?, char-alphabetic?, char-upcase

and char-downcase as well as the string functions potentically built on top of them, such as

string-ci>?, string-ci<?=, and string-ci>=?. For the ASCII character set, these op-

erations are relatively straightforward. However, for Unicode, these functions require more

complicated table-driven logic as well as many special cases, as well as ongoing maintenance

to support the Unicode standard as it evolves.

In addition, if dates are provided as a standard data type, internationalization needs to

include methods for parsing and formatting date objects for different international locales.

Portability

Scheme’s open-input-file and open-output-file and related functions take strings to

represent files. Java uses Strings as well, but most code uses the more portable java.io.File

class. Common Lisp provides much more support for portable file operations.

Scheme would benefit from a file type along with a library of routines for the creation

and manipulation of files, dealing with such portability issues as file-separator characters. In

addition, a record type for file information would be useful. This record of file information

could utilize a data type to report the relatively portable concepts such as last modification

time.

Scheme could do without the concept of a current working directory, as Java has. As

mentioned above, current working directory can be tricky to implement in a multi-threaded

environment.

119

Network

Java is arguably the first language to include the concept of URL from its inception. Nowa-

days, URLs are expected to be integrated into any I/O system. In addition, traditional

socket interfaces are necessary. Such libraries should make functionality like the REPLServer

available as portable Scheme.

7.4.4 Platform

Scheme environments do not provide a very consistent platform for Scheme application

developers. Before the implementation was complete, several different versions of Scheme

were needed for Win32 development. Scheme 48 did not work on Win32. PCScheme was

used for its debugger. mzscheme was used for its performance. mzscheme could not even

provide a stack trace where the problem occured, and yet the authors did not seem to

understand why that was frustrating. Eventually this implementation replaced the third-

party tools but Scheme environments need to be more supportive of their users.

7.4.5 Testing

The Scheme standard is known for its formal language semantics. While many Scheme

implementations correctly implement most of the language, somehow many implementation

specific problems still arise. What is needed is a standard suite of tests to clarify subtleties

from the language specificication as well as provide a sanity check for implementors.

There are two categories of problems to test for. The first category of problems are

language compability issues. The second category of problems are library issues. Given the

small library, writing a comprehensive test should not be difficult.

For language compability, some of the problems are small, for example syntax errors that

are harmlessly tolerated in one implementation that lead to portability problems in other

implementations. Another example is supporting little known syntax like =>. However any

implementation limitations for constructs like call-with-current-continuation can also

lead to subtle portability problems.

However, it is not easy to write a Scheme program to detect syntax errors. One problem

with the implementation of the Let2Application rewriter function was that it tolerate the

following syntax error by simpling ignoring bar:

120

(let ((a "foo" "bar")) a)

If Scheme had a standard exception mechanism, it could try to load this bad syntax and

make sure that the implementation signalled an error as expected. Manual inspection after

this problem was found led to many other problems with syntax rewriters being plugged,

showing their error prone nature.

In the area of library testing, Aubrey Jaffer’s test.scm caught many small issues after

the implementation had been in use for some time. However, since test.scm restricts itself

to using only standard Scheme in its implementation, it is not able to do negative testing.

[25]

7.4.6 Goals

A short-term goal for the evolution of Scheme would be to extend the language and libraries

to the point where most Scheme compilers could be written entirely using the standard

libraries. A longer term goal would take the evolution a step further to enable the con-

struction of a well performing multi-user database system. Perhaps such accomplishments

would inspire new generations of programers, moving Scheme out of its place as a language

for computer-language theorists.

121

122

Chapter 8

Language Discussion

This section is for general discussion of programming language issues raised in the work

on this implementation. Although much of the discussion centers on Scheme and Java,

perspectives from other languages are also incorporated.

8.1 Code-Data Duality

Scheme, and Lisp systems in general, are visually distinct from other programming languges

because of their s-expression syntax. However, looking back at the evolution of this Scheme

system it was interesting to note that it was not until after the REPL was fully up and

running with a working kernel language, that traditional pair primitives such as cons, car,

cdr, list, etc. were added. As in SICP, it was even longer before functions to side effect

pairs were added. It was even later still before user-definable rewriter macros were added,

where the code-data duality is perhaps most visible and important.

Scheme as a language is too closely tied to its list-processing heritage from Lisp. Most

users of this scripting system did not care much about performing list operations, since the

data strutures they manipulated were Java based.

Scheme’s mapping of code into poorly typed list structures could be done in a different

way. Scheme compilers internally do not usually choose to represent code as lists. They

usually represent code with a syntax tree of record types. What would a Scheme macro

system be like if there were a standard Scheme record system and there existed functions

to map standard syntax records to and from s-expression syntax. Certainly it seems like

123

this could make life easier and less error prone for macro writers.

Taking this idea to Java, it might be possible to take this language without preexisting

code-data duality and perhaps gracefully add it. It is easily imagined that Java classes could

be defined to represent the structure of the Java program itself, certainly the javac compiler,

itself written in java, internally has a representation of this sort. javac even indirectly

provides a view into this representation via the Doclet API that allows the javadoc— API

documentation generation tool to allow user code to inspect a subset of this representation

at the package, class, and member level, although not down to the statement and expression

levels.

Java is currently missing the pieces to tie this together into a useful macro system.

Certainly it is good that JavaSoft has kept cpp preprocessor style macros out of Java,

but having nothing has been limiting. It would be an interesting project to try and build

a modified Java compiler that would provide explicit rewriting style macros, as well as

perhaps more advanced R5RS style macros, or even macros that allow static type checking

so errors could be reported in terms of the programmers unexpanded code.

8.2 Packages and Modules

All in all, Java packages do fufill the two basic goals of a module system: namespace

cleanliness and implementation hiding. Other languages have different takes.

Perl packages use nested namespaces mapping to directories and files which is similar

to Java. The Perl language exposes the mechanism of how namespaces work though data-

structures. This means that package imports and exports can be implemented in Perl itself,

which is provided through the Exporter package. This means the package boundaries

are not strictly enforceable, since any program can use the same mechanisms used by the

Exporter package.

However, this can be good, because packages that need to bend the rules can bend the

rules. Because the Exporter package works by accessing subroutines defined by a package, a

package can programatically decide to export different definitions conditionally. This allows

packages to provide more exports to related packages, similar to C++ friend classes. In

fact, packages are so flexible, they are also used as the basis of Perl’s object system. Unlike

Java, where a package and class are distinct concepts, in Perl they are one in the same.

124

Microsoft’s new C# language criticizes Java packages for being too tied to the directory

and file name of the source file. Actually this is not strictly necessary, in fact most compilers

only warn if the filename does not match and none appear to constrain the directory name.

The output class file does always follow the convention. [11]

C# allows the package namespace declaration to be used at any top level context.

Multiple namespaces can therefore be freely manipulated within the same file. Perl actually

allows similar use of the package keyword and it primarily is used to define helper classes

within the same file as the main exported class, not to haphazardly mix namespaces. So

although C#’s package declaration is not unlike Perl, it does not seem an improvement

over Java, where, unlike Perl, there are distinctions between packages and classes. In

fact, indiscriminate use of this extension hurts both humans and tools in their ability to

automatically locate the source code of the class based on solely the class name. A debugger

might be able to pull this from debugging information, but to a human reader the package

name to file name convention is useful.

8.3 Type Safety

The C and C++ programming languages have the concept of a void* pointer which is

a pointer to any data type. Java’s equivalent concept is a java.lang.Object reference.

These untyped pointers or references are useful for generic data-structures as well as to

provide application specific context information in call back APIs. C, C++, and Java rely

on type casts to convert from these untyped references to more specific types.

One of Pascal’s historic limitations was that it’s required strict compile-time type saftey,

without any run-time type casting. This often meant duplicating code for each record type

to support linked lists or other data-structures.

Eiffel also has requirements for strict compile-time type safety with no type casting.

However, since Eiffel does offer parameterized types, it does allow generic data-structures.

Unfortunately many of Eiffel’s generic collection types are not multi-thread safe. Unlike

Java that separates the iteration state into Enumerations separate from objects like Vector

and Hashtable, Eiffel’s library classes keep iteration state in the Object itself, preventing

multiple threads from iterating through an Object simultaneously.

C and C++ type casting allows potentially unsafe casts between any values. void*

125

pointers can even be cast from pointers into types such as int. This is useful to the language

implementor for performing pointer arithemetic to implement tagged pointer values. Java

does not allow such games, only allow safe run-time checked Object casts or numerical

casts, but casts between the two categories are not allowed. While this type safety is good

for the application programmer, it is inconvenient for the language implementor.

8.4 Dynamic Invocation

Most language systems have a form of dynamic invocation. Most C language systems allow

a program to look up a function pointer from a symbol name although the signature of

the function pointer has to be known at compile time. Scheme’s eval allows a program to

dynamically create and invoke an s-exp. Java’s reflection allows a program to dynamically

enumerate the members of a class and then access fields and invoke methods that were

unknown at compile time.

8.4.1 C

The C method is very efficient. Once a pointer has been looked up from a symbol, the

cost of invoking the function is the same as invoking a function known at compile time.

Although the function signature of a dynamically invoked function needs to be known in

advance, this is still generally useful. For example, the Scheme 48 system’s foreign function

interface uses this signature for external functions:

long f(long nargs, long *args)

This signature is very similar to the applyN signature used in this implementation for its

Java defined foreign functions. Similar to how primitive Procedure subclasses perform type

marshalling and then call a standard Java library, Scheme 48’s external functions usually

use a library of Scheme 48 code to perform marshalling and invoke C libraries. [29] Tcl uses

a similar interface to integrate to C.

However, as with writing primitives in Java, most of the code often is boilerplate. To

avoid the tedious handcoding of wrappers, Cig, a C Interface Generator, provides a declar-

ative way to define interfaces from Scheme 48 to C functions, providing code generation for

126

C stubs that implement the external function signature. [52] In this way Cig provides the

analogous functionality to Scheme 48 that XS provides to Perl.

8.4.2 Scheme

Scheme’s eval is another form of dynamic invocation. Scheme’s apply is closer to what C

offers. What makes eval different is a program is created from a s-expression data-structure

dynamically at run-time. This would be like a C program creating a char* that contained

some C code and then compiling it and invoking it. Similarly in Scheme, this implies the

presence of a compiler to process the source to be evaluated.

Although a simple s-expression interpreter has no compiler to speak of, most Scheme

systems have some sort of compiler. If a program uses eval, then that compiler has to be

around at run-time, not just compile-time, bloating the run-time footprint. Some systems,

such as Kawa, provide a simple interpreter to avoid the cost of always using the compiler.

However the footprint problem does not stop there. A Scheme compiler could aim through

static analysis of a complete program to package a minimal run-time system that include

only the needed libraries. But if a program uses eval, there is no static analysis that can

be done to create a minimal execution environment.

8.4.3 Java

Java’s reflection is a mixture of what is found in C and Scheme. In Java only existing

classes can by dynamically invoked, similar to C, and avoiding providing a Java to byte-

code compiler in the run-time system. However, unlike C, the signature of the methods does

not have to be known at compile-time. If the signature was known at compiler-time, then

Class.newInstance followed by a cast to the compile-time signature would be sufficient.

Unfortunately, as shown above, the cost of using dynamic access is very expensive when

compared to normal non-reflective access.

One ability that Java reflection provides that is not found in standard C or Scheme

is the ability to enumerate through all the packages known to the system, all the classes

in each package, all the members of each class, and finally the signature of each member.

Although some C run-time systems do allow a list of symbols to be returned from a library

and perhaps some Scheme module systems allow their signatures to be analyzed, neither

127

seem to provide full signature information for the exported functions.

Finally, all dynamic invocation tends to involve mapping string or symbol names into

something that can be executed. In Java, as in C, this lookup happens once, and either

suceeds or fails at that time with a ClassNotFoundException in Java or pernaps a null

pointer in C. Unfortunately the Scheme standard does not define what happens if there is

a problem, such as an undefined variable, in code dynamically invoked via eval. It is not

even defined to signal an error. A program needs to be able to use eval with possible error-

ridden user-supplied code but gracefully recover. Without some sort of exception system,

there is no portable way to do this.

8.5 Threads, Dynamic Variables, and Thread-Local

Storage

Scheme’s major break from Lisp was its use of lexical instead of dynamic variables. How-

ever dynamic variables have their place fulfilling the role of “global” state for concepts

like the current session or current transaction. Dynamic variables are useful today be-

cause they provide a form of thread-local storage if implemented correctly. For Java, JDK

1.2 provides java.lang.ThreadLocal as mentioned above. It also provides the twist of

java.lang.InheritableThreadLocal. This provides defaulting thread-local values for new

Threads.

InheritableThreadLocal might seem to provide the necessary support for dynamic

variables for a Scheme in Java implementation with threading support. However the se-

mantics of dynamic variables in a threaded environment are not clear. Assuming that a

new thread inherits its parent’s dynamic variables, what are the semantics when a dynamic

value is assigned in the old thread? One possibility is that the new thread sees the new

value. A second possibility is that once the new thread has been created that the dynamic

variables could be modified independently, with perhaps copy-on-write sharing going on

underneath. InheritableThreadLocal actually shares Objects by reference which means

that immutable classes have the bevahior of the second possibility. However, if a mutable

class such as a Vector or Hashtable is shared, the behavior is more like the first possibility.

Fortunately, a program can subclass InheritableThreadLocal to provide copy semantics

128

if desired.

8.6 Syntax

One of the reasons Scheme was choosen as extension language for Java was because of its

small, simple syntax. Java itself was seen as an improvement over the tangle of syntax that

C++ had become in adding object-oriented programming.

One bad aspect of macros is that by allowing developers to create their own syntax they

can often just make programs less readable. Macros are only syntactic sugar anyway, and

as Alan Perlis said, “Syntactic sugar causes cancer of the semicolon.”

Java has started down the slippery slope of adding new syntactical sugar. While some

conveniences such as array literals and Class constants are useful, more complicated syntax

such as inner classes and anonymous classes do not seem to add much value. Java needs

to consider truly new functionality like asserts or parameterized types, not simple sugar for

existing functionality. Needless new syntax seems to be setting Java down the road of Perl

which prides itself on its syntactical shortcuts and its infinite variety of ways to peform

simple tasks.

129

130

Chapter 9

Comparative Analysis

In addition to analyzing the implementation itself, it is helpful to perform a variety of

different types of comparative analysis with other similar systems.

9.1 Comparative Analysis with other Scheme sys-

tems

This section will compare the implementation with other Scheme systems. A short overview

will be given of each system followed by some performance analysis.

Lisp systems have historically been performance tested using the Gabriel benchmarks

originally written by Richard P. Gabriel. Will Clinger ported these benchmarks to Scheme

which are available from the Scheme repository. [10] Clinger’s version is incompatible with

the current Scheme standard where null and #f are distinct objects. Fortunately Jeffrey

Mark Siskind updated these for more modern Scheme system and distributes them with his

Stalin system. [56]

The raw data for the performance results is included in Appendix A. All tests were

performed on a Dell Dimension T800r system with an 800MHz Intel Pentium III processor

with 512MB of RAM running Windows 2000 Professional Service Pack 1.

See Appendix A on page 159 for the raw results.

131

9.1.1 Java Scheme Systems

This section focuses on comparing with other Java-base implementations. One important

consideration for testing and comparing Java programs is to test against a variety of Java

virtual machines. Most of the Scheme in Java implementations now require the widely

available JDK1.1 from Sun or a compatible implementation such as Netscape’s. However,

Sun’s JDK1.2 and later virtual machines have much improved run-time performance. In

addition to Sun’s reference implementations, Microsoft’s SDK for Java and IBM’s JDK have

different performance characteristics because of alternative foreign-function interfaces, data

representations, and garbage collectors.

For all Java-based implementations, results are shown for several common virtual ma-

chines:

• Sun JDK 1.3.0

• Sun JDK 1.2.2

• Sun JDK 1.1.8

• IBM JDK 1.3.0

• IBM JDK 1.1.8

• Microsoft SDK for Java 3.1

132

Script

The first results to present are for the Script implementation.

As expected the newest Sun and IBM virtual machines improve on the performance

in most cases. One surprise is how poorly the IBM virtual machines perform compared

to those from Sun, given its reputation for out-performing Sun. Another surprise is how

well the Microsoft virtual machine performs. Only Sun’s latest offering beats the somewhat

dated Microsoft implementation.

Skij

Skij by Michael Travers is available from IBM alphaWorks. [63] Skij provides Applet

support as well as a console interface. Skij can be embedded in an application, but only

can have one interpreter per virtual machine.

Skij deviates from Scheme in several ways. Symbols are case-sensitive as with the Script

implementation. string-set! is not provided because only immutable java.lang.String

instances are used to store Scheme string objects. call-with-current-continuation

is limited to escape procedures as with Script. Skij is not tail-recursive. Extensions are

provided for reflection, exception handling, dynamic variables, defmacro, and event call-

133

backs from Java-to-Scheme.

One interesting feature of Skij is its Swing inspector. This allows any Java object to

be browsed in a graphical window. The object currently being inspected is available to the

interpreter through a global variable allowing the application to select the object to inspect.

Skij version 1.7.3 was used for running the benchmarks. A missing two-argument version

of the atan function was added for running the fft benchmark using java.lang.Math.atan2

and Skij’s reflection API.

Skij does not do nearly as well on the Gabriel benchmarks as the Script implementa-

tion. The most obvious cause is that the implementation interprets an s-expression tree

directly. In addition, while the global environment is stored in a simple Hashtable, lexical

environments are stored using association lists.

Unlike the Script implementation, IBM’s Skij shows an improvement on the IBM virtual

machines. This time Microsoft’s virtual machine does not fair as well in general. One big

surprise is that the 1.3.0 virtual machines show a performance degradation over the earlier

release from the same vendor.

134

SILK

SILK started as a small Scheme in Java system by Peter Norvig. [46] It merged with Tim

Hickey’s JScheme, where it picked up its JLIB, its java.awt library. [21] Today SILK is

maintained by Ken Anderson, Tim Hickey, and Peter Norvig. SILK provides an applet

environment as well as console mode. It can be embedded in a Java application but allows

only a single interpreter per virtual machine. The Java API is more fully-featured than Skij,

but throws RuntimeExceptions instead of including a declared Exceptions in its method

signatures because the authors, as they describe themselves, are “lazy”. SILK packs most

primitives in one large class instead of having one primitive per class to cut down on on the

runtime footprint of the application.

SILK originally used char[] to represent Scheme strings but switched to the im-

mutable java.lang.String. call-with-current-continuation is limited to escape pro-

cedures. SILK is not fully tail-recursive, but does some analysis to support self tail-calls.

SILK has extensions for reflection. There is special reader syntax for reflection to make it

less intrusive. SILK’s reader started with StreamTokenizer, as did the Script implementa-

tion, but later it was thrown out.

SILK has a Scheme-to-Java compiler. However, this is not a sophisticated byte-code

compiler, but really serves as a form of serialization. The resulting Java class can be run

directly or loaded into an interactive interpreter. This allows the standard functions that

are defined in Scheme to be compiled into a Java class, allowing the runtime to include only

Java class files, without need for Scheme source files.

SILK also has a console-based describe for browsing Java objects, similar to Skij’s

inspector.

SILK version 4.0 was used for running the benchmarks. It was also missing an two argu-

ment version of atan as well as a two argument version of make-vector and fill-vector!.

SILK documents the issues with make-vector and fill-vector!, noting these are optional

procedures, but they are needed to run the Gabriel benchmarks.

135

SILK does much better than Skij on the Gabriel benchmarks. Script does tend to

do better, although Silk wins on boyer and ties on puzzle for the Sun virtual machine.

Since its early implementation SILK has added many of the optimizations found in the

second-pass implementation of Script, but apparently none from the third pass.

The IBM virtual machine shines for SILK, giving SILK the lead on puzzle. Microsoft’s

virtual machine also makes a decent showing, beating Sun’s 1.2.2, although falling behind

IBM’s 1.1.8. The SILK paper contains some performance benchmarking with Sun and IBM

virtual machines against Guile, which is based on SCM system shown below. [4] [36]

Kawa

Kawa was original written by R. Alexander Milowski but has been rewritten by Per Bothner.

[7] It has a console interface but also supports user interfaces, including JEmacs, a Java

based Emacs implementation. Kawa can be embedded in an application and can compile

Scheme modules into Java classes as well.

Scheme symbols are represented with Java Strings. In a deviation from most Schemes

in Java, all other types are Kawa classes, including vector. By default tail recursion support

is limited, but there is an option to fully enable it, although it encurs a peformance penalty.

136

call-with-current-continuation is limited to escape procedures.

Kawa has a large number of extensions. For Java, it includes reflection, exceptions,

threads, synchronization, vector append, and instanceof. For Common Lisp it includes

lvalues, formatting, and keyword arguments. For Scheme it provides records, dynamic

variables, SRFI-4 for uniform vectors, and SRFI-6 for port operations. It allows optional

type declarations in let and lambda as in RScheme. [31] It includes process extensions

as described above. It provides an enhanced file system interface. It provides a Guile and

scsh compatible read-line.[36] [53] [54] Since Alex’s original implementation, Kawa has

supported extensions to numbers for quantities and units to support DSSSL. Finally logical

bit operations, extended string case operations, and generic functions are supported.

The most impressive feature of Kawa is its Java byte-code generation. It can compile

a module of Scheme code to a Java class that can then be invoked by a Java program, or

even act as a standalone Java application of Applet. For JEmacs, Kawa also is working on

support for elisp and some Common Lisp. It also supports name properties on procedures,

similar to the Script implementation. It comes with a regression test suite.

Kawa version 1.6.70 was tested. One patch was required from Per to fix a byte-code

generation bug. --full-tail-calls was not used in running the tests.

137

Kawa takes the overall crown for the Java-based Scheme systems. This is almost cer-

tainly do to its byte-code generation. One detail to note is that it special-cases the applica-

tion combinations involving zero to four arguments, as mentioned in the Script implemen-

tation above.

The differences in virtual machines is least noticable with Kawa. IBM and Microsoft

beat Sun in puzzle. However Sun beats IBM in most other tests except fft. Some tests

run slower in the 1.3.0 virtual machines, although in general the newer systems are faster.

9.1.2 Non-Java Scheme Systems

This section covers several non-Java Scheme systems focusing on their performance on the

Gabriel benchmarks.

SCM

SCM is very portable interpreter from Aubrey Jaffer that is available for a wide variety of

operation systems. [24] As mentioned above, SCM is the Scheme implementation used in

the Guile system.[36]

SCM 5d3 was used for benchmarking. SCM’s timer granularity seems to be seconds not

milliseconds so the numbers are not an exact match against the other systems.

138

Script stacks up respectfully to SCM. SCM does beat it handily on some tests such as

boyer and puzzle. However, Script does very well on browse, ctak, traverse.

Scheme 48

Scheme 48 is the product of Richard Kelsey and Jonathan Rees. Scheme 48 differentiates

itself from most other Schemes through its byte-code virtual machine. [29]

WinScheme48 based on Scheme 48 0.52 was used for testing. The tests were run both

with and without the ,bench benchmarking option.

139

Even with ,bench, Script does better on browse and fft. However, Scheme 48 does

really clobber Script on boyer, ctak, and puzzle. For traverse things are closer until

,bench is turned on, where Scheme 48 widens the gap, as in many of the other tests.

MIT Scheme

MIT Scheme is the product of the MIT Project on Mathematics and Computation. It

provides a native-code compiler, the only such compiler in this survey.[44] [19]

MIT Scheme 7.5.10 was tested in three ways. First simple loading of Scheme code was

tested. Second sf was used to do some syntax analysis and some optimzations. Third cf

was used to compile the tests to run as native code.

140

The Script implementation’s performance compares well when MIT Scheme simply loads

or uses sf, with mixed results similar to Scheme 48. However cf leaves almost everything

else in the dust. Kawa manages to come close to a tie on browse. One advantage MIT

Scheme has is that the compilation is done as a separate step when Kawa is compiling the

test each time they are run.

RScheme

RScheme is a Scheme system from Donovan Kolbly. [31] Although it provides a full imple-

mentation of the language, unfortunately the system did not support the operating system

of the test machine.

SIOD

SIOD, or Scheme in One Defun, is the product of George J. Carrette. [9] Unfortunately,

SIOD is not really Scheme, lacking display and even write, so it was not able to run the

benchmarks.

141

Overall

This section presents an overall comparison of the best performing runs of each Scheme

implementation.

MIT Scheme clearly does the best overall, which is not much of a surprise given that

it is the only system with a native code back-end. What is surprising is how close Kawa

comes to matching it by generating only Java byte-codes, relying on the virtual machine’s

JIT compiler to produce native code. Slightly behind the leaders is Scheme 48. Scheme

48 has an surprising last place finish on the fft test, although on some tests it fairs well

with the top contenders. Script and SCM fall in the middle of the pack, with no last place

finishes. Silk comes in behind these two with one last place finish. Skij comes in last, not

surprising given its s-expression interpretation.

142

9.2 Comparative Analysis with other Scheme-like

Java systems

This section provides brief overviews of other Scheme-like Java systems. Some intend to

provide a Scheme system but were not complete enough to run the Gabriel benchmarks.

Some only claim to be similar to Scheme or Lisp but provide similar execution strategies

and extensions to Scheme systems.

9.2.1 The scheme package

The scheme package is the product of Stéphane Hillion. [22] Version 1.1 was tested but fft

failed to run. This problem was reported to the author but no response was received. As

usual, call-with-current-continuation is limited to escape and error procedures. There

are extensions for reflection, bit manipulation, asserts, and batch processing.

9.2.2 PS3I

PS3I is a Scheme implementation from Christian Queinnec. It replaces the earlier Jaja

system from which it borrowed only its reader. It provides a command line and servlet

interface. Remarkably PS3I supports full continuations although it is an s-expression inter-

preter reling heavily on Java reflection hurting its performance. Unfortunately in revision

1.18 many standard functions such as atan, expt, and even write were missing prevent-

ing the Gabriel benchmarks from running. PS3I supports the mixed use of Strings and

StringBuffers for Scheme strings and uses Object[]s for Scheme vectors. There are

extensions for exceptions, threads, dynamic variables, and inherited thread locals. worlds

provide first class environments.

9.2.3 LISC

LISC, also known as LIghtweight Scheme on Caffeine, was written by Scott G. Miller. [43]

Version 1.2.3 was tested but atan and expt and other standard procedures were missing.

LISC uses an s-expression based interpreter. It has extensions for first class environments

and data triggers.

143

9.2.4 HotScheme

HotScheme is a project from Gene Callahan, Brian Clark, Rob Dodson, and Prasad Yala-

manchi. [8] HotScheme provides a command line and applet environment. HotScheme

contains no version information. The version tested was missing many standard features

such as call-with-current-continuation, syntactical sugar for define and lambda, n-

ary arguments to lambda, integer arithmetic, atan, and expt. It does have load, which

uses URLs like the Script implementation. Similar to Script and Kawa named procedures,

HotScheme allows a name and usage information to be associated with procedures.

9.2.5 MIT Scheme in Java

Arjuna Wijeyekoon provides something called MIT Scheme in Java. [66] It is not clear how

it is related to MIT Scheme. It is simply available as an Applet from a web page without any

other documentation. A broken atan and other problems prevented the Gabriel benchmarks

from running.

9.2.6 PAT

PAT, the Performance Analysis Tool, by Joshua S. Allen is available from IBM alphaWorks.

[2]. It is Scheme-like but does not pretend to be Scheme. It can run as an interactive

application with a built-in help system. It offers extensions for reflect, dates, set operations,

and statistics. It can serialize Java objects to and from XML.

9.2.7 LispkitLISP Compiler in Java

The LispkitLISP Compiler in Java was written by Chris Walton. [65]. It implements the

SECD virtual machine in Java and uses a compiler to compile a simple Lisp subset to this

virtual machine.

144

9.3 Comparative Analysis with other Java exten-

sion systems

When the Script implementation was started only a commercial Basic interpreter was avail-

able for Java. Now many languages have been ported to the Java environment. This section

reviews many other language systems that are available for the Java platform. For more

information, Robert Tolksdorf maintains a list of languages projects related to the Java

platform. [60]

9.3.1 HotTea

HotTEA is a Basic interpreter from Michael G. Lehman of Cereus7. [38]. It compiles

BASIC into a byte-code form which is then interpreted in Java. There are three different

versions. URLGrey which is compact and can run as an Applet. Green extends URLGrey

with compatibility with Microsoft Visual Basic for Applications and extensions for reflection

and JavaBeans. [41] BRISK extends Green to be embeddable by Java applications authors.

9.3.2 Rhino

Rhino is a JavaScript interpreter from Mozilla. [50] It technically follows the ECMAScript

standard but supports extensions to the language common to both Netscape Navigator and

Microsoft Internet Explorer. [13] [40] The original releases from Mozilla were interpreted

only but a Java byte-code compiler has been donated by Netscape as well.

9.3.3 Jacl

Jacl is a Tcl interpreter in Java originally by Sun Laboratories now maintained by Scriptics.

[51] It uses reflection to interact with Java. SWANK provides a Tk toolkit implemented

using the Java Swing toolkit. [26] It currently has some problems running in browsers and

does not yet support the full Tcl language.

145

9.3.4 JPython

JPython is a Java implementation of the Python language. [49] It compiles Python to

Java byte-codes either dynamically or statically. JPythons performance on the pystone

benchmark can beat that of CPython on the same machine depending on the Java virtual

machine. It allows JPython classes to extend Java classes as well as reflection and JavaBean

support.

9.3.5 BeanShell

BeanShell is a scripting language from Pat Niemeyer. [6] BeanShell’s syntax is very similar

to Java itself. BeanShell’s object model is distinct from Java’s. BeanShell does not allow

creating new subclasses of Java classes. Objects are closures like in Perl or JavaScript. It

supports the JavaBean, from which it derives its name, as well as reflection. It can operate

in a Applet, console, or RMI server environment. Even though it is simular to Java, it does

attempt to compile to Java byte-codes. BeanShell is used as the Java source interpreter for

JDE, the Java Development Environment for Emacs. [30]

9.3.6 DynamicJava

DynamicJava is a scripting language from Stéphane Hillion, also author of the scheme

package. [23]. DynamicJava is similar in concept to BeanShell, but is completely source

code compatible with Java. Because this is truly the case, DynamicJava allows subclassing

of Java classes. Although DynamicJava does some byte-code generation to allow generating

dynamic subclasses that invoke interpreted code, it does not provide a general Java byte-

code compiler. DynamicJava extends the Java language by allowing statements outside of

classes and methods, optional variable declarations, optional casting, package switching,

classless methods, and # comments. It separates out the parser to allow other language

front ends to be plugged in. One minor bug still remaining is that DynamicJava does not

correctly intern string literals.

146

Chapter 10

Future Work

One area of future work is to bring the implementation closer to R5RS compliance. The

Reader should be enhanced to support the syntax for vectors. Internal defines should be

easy to add with Compiler work to scan them out and replace them with a letrec. Similarly

support for named let should be possible by enhancing Let2Application. Pseudoscheme-

style analysis could then be performed to translate self tail calls into loops.

The GlobalEnvironment currently allows for only one environment. To implement

R5RS eval there must actually be several different environments: the null-environment,

scheme-report-environments, and the interaction-environment. Language embedders

would also like to have internal control over the environments. For example although multi-

engine was desired to provide isolation, the scheme-report-environment could be shared

reducing initialization cost. Searching a nested set of GlobalEnvironments should have lit-

tle impact from a performance point of view since determining the right GlobalEnvironment

happens at compile-time and not run-time. Note that this is not the same as first-class en-

vironments but is seen by the language embedder. Rhino provides this functionality and

an implementation might choose to have every script called in a clean new environment.

With Java reflection, most library needs can be satisfied outside the implementation.

Prior to JDK 1.3 reflection was focused on the dynamic invocation of Java code. In JDK

1.3, reflection was enhanced so that a class could be made to dynamically implement an

interface. With this functionality, the Script implementation could use Scheme functions

to implement Java interfaces. Since interfaces are commonly used for call-back APIs such

as in UI toolkits, this would help further eliminate the need for Java coding to interface

147

Scheme to the Java class libraries.

Although reflection can be used to manipulate Object[], as shown above, this is very

expensive. It would probably be cheaper to update the vector-* primitives to handle both

Vectors and Object[] similar to how string-* operations work with both Strings and

char[]. Since the code currently checks the argument type to ensure that a Vector is

passed adding a second case would not slow down the common Vector case although the

second Object[] case would be a slower.

The current implementation relies on both Java class files and Scheme source files to

be present. This packaging issue could be simplified if the system and utility Scheme code

could be converted into constants in well known Java classes. The implementation could

conditially load the system and utility code from Strings stored in Java classes if they are

present, removing the run-time dependency on files, making everything class files.

Longer term the overall interpretation stategy could be rethought. One possability

might be move to a Scheme-specific virtual machine on top of Java similar to Scheme 48

to remove the use of the Java stack, supporting general tail recursion and possible full

continuations. Another might be to take the Kawa approach of generating Java byte-code.

148

Chapter 11

Conclusion

This section summarizes some of the lessons learned from this Scheme in Java implemen-

tation. It focuses on four different areas:

• Scheme-to-Java API

• Java-to-Scheme API

• Java performance

• Final thoughts

Many of the observations, especially regarding APIs, do not just apply to Scheme in Java.

Specifically, the lessons could be applied when embedding other languages in Java or when

embedding Scheme in other languages.

11.1 Scheme-to-Java API

The Scheme-to-Java API focuses on providing the standard Scheme library as well as access

to application and user extensions. There four general ways to do this:

• Java registration of Java primitives

• Scheme registration of Java primitives

• Scheme implementation using Java reflection functions

• Scheme implementation using Scheme functions

149

The first case is unavoidable to some degree but unforunately makes it more difficult to

seperate maintenance of the language system from the addition of primitives. The second

case is a simple improvement on the first, allowing applications to add their own primitives

without having to make changes to the underlying language system. The third case improves

on the second by removing the need for any new Java programming at all but at the cost

of the overhead of reflection. The fourth case is to simply avoid using Java to build things

than can be built in Scheme itself, possibly sacrificing run-time performance for a simpler

implementation.

Another important aspect of the Scheme-to-Java API is providing the right supporting

APIs to the authors of Java primitives. The key here is to make the simple things simple

and the complex things possible. Specifically, it should be easy to write new primitives

with a fixed number of arguments that use standard classes as arguments. Layered on top

of that, it should be possible to pass in application specific classes, handle n-ary argument

functions, functions with defaulted arguments, etc.

11.2 Java-to-Scheme API

A well-designed Java-to-Scheme API has several aspects:

• the general architecture and its limitations

• the Java environments it supports

• the call API and the operations it exposes

• the general programming environment it supports

The general architecture limits how the embedded language can be used. A language

system that is not safe for multi-thread could be useful for a REPL and even for scripting

an event-driven user interface although would not provide scalable server-side scripting.

A system that does not allow multiple interpreters per virtual machine is still generally

useful but does prevent a complex application from partitioning and isolating its various

uses of scripting. Similarly a system that does not run in an Applet environment prevents

sophisticated tools with graphical user interfaces from being deployed through web browsers.

150

The Java environment affects the deployability of a system. Requiring only JDK 1.0

means that the system can work on even Netscape Navigator 3.x and Internet Explorer 3.x.

JDK 1.1 means requiring the 4.x version of those browsers but adds internationalization and

the ability to include a reflection API. JDK 1.2 provides builtin thread-local storage, the

Swing UI toolkit, and new collection classes but limits the ability to run in most browsers.

JDK 1.3 provides even more new APIs but is not yet widely available on all operating system

platforms. For maximum flexibility it seems wise to keep the core part of the language

system on the lowest version possible and then provide optional libraries to provide the newer

APIs. JDK 1.1 seems like a reasonable lower bound because proper internationalization

needs to be part of the core system and 4.x browsers are relatively standard.

The Java call needs to be well composable to meet the broadest application needs

possible. Here again a mantra of making the simple things simple and the complex things

possible applies. The API started out allowing an application to load a file, lookup a

procedure, and call it with some arguments, each with builtin error handling. Later these

operations were broken down into their component parts to make things more flexible.

Loading a file was separated into reading from a stream into an s-expression, compiling an

s-expression to a Expression, and evaluating an Expression to get an result, each exposing

possible exceptional conditions to their callers. Looking up a procedure was broken down

into getting or setting a global variable also throwing exceptions, this time possibly for

undefined variables. Instead of just calling a procedure once, creating a new Application

Expression each time, the Application can be reused and later evaluated like any other

Expression. Even the simpler high-level APIs added options such as rethrowing of certain

RuntimeExceptions and surpression of warnings.

Proper tools need to be provided by the programming environment to make both script

and application authors successful. This may seem obvious but too often Scheme systems

often seen to be written for the personal uses of their authors. Scheme’s minimalist philos-

ophy seems to lead to spartan environments as well. Simple source-level debugging needs

to be provided to script authors so they can find their problems easily. Stack traces needed

to be available to provide context in tracking down these problems. Application authors

are often script authors as well, but in addition need help debugging their Java primitives

as well. Both script and application authors need to have the particular details of the im-

plementation hidden from them as much as possible so they can focus on what is wrong in

151

their part of the system.

These areas are not all independant of course. Support for providing file and line

number information is available only because the system is architected to provide it and

only accessible because of the proper exception API. The potential future feature of nested

global environments will change how the compiler works as well as call API and even possible

the development environment.

11.3 Java Performance Lessons

This implementation started as a project to learn about Java. The most important lessons

learned were about performance. The general lessons learned were:

• Thou shall not synchronize

• Thou shall not allocate

• Thou shall not abuse exceptions

• Thou shall not forsake buffering

• Thou shall not forsake arrays

• Thou shall honor pointer equality

When discussing these lessons, it is important to realize although some of the details are

Java specific, the concepts apply to other systems as well.

11.3.1 Thou shall not synchronize

The most straightforward reason to avoid synchronization is that it does not come for

free. This is compounded by the fact that the expected performance is non-intuitive on

virtual machines that optimize for memory usage instead of scalability. The number of

CPUs accessing a given monitor can increase the cost of synchronization as well, limiting

scalability.

The easist way to avoid the cost of synchronization is to avoid implicitly synchronized

class such as the standard java.lang.StringBuffer, java.util.Vector, and java.util.Hashtable

either by using third-party alternatives or the new JDK 1.2 collection classes. Unfortunately

152

there is still no standard alternative to StringBuffer which is particular problematic given

its implicit use realted to the String + operator.

Even when synchronization is necessary, it is often better to perform explicit locking

with the unsynchronized classes rather than gain a false sense of security using the implic-

itly synchronized classes, as demonstrated with the JDK 1.0 String.intern bug. Even

when threads need to share a data-structure, it need not be synchronized, as shown by

GrowOnlyHashtable.

11.3.2 Thou shall not allocate

Allocating memory is expensive not only at time of allocation but also because of the later

cost of garbage collection. Depending on the virtual machine, memory allocation can imply

synchronization on a single underlying heap. Garbage collection has its inherent costs

but scalability is also an issue. On a multi-processor machine simple collectors may stall

otherwise ready CPUs while collection proceeds.

As in the physical world, the mantra “reduce, reuse, recycle” can serve as a guide to

reduce unnecessary memory and other resource allocation. To reduce allocation, avoid allo-

cating intermediate results. For example use a mutable, but unsynchronized, StringBuffer

and convert to a String at the end of an calculation, rather than using Strings through-

out. To reuse resouces, use pools or caches such as getInteger. Pooling is key for other

expensive system resources such as threads and database connections.

11.3.3 Thou shall not abuse exceptions

Exceptions should be used for exceptional conditions, not for normal control flow. Al-

though this is primarily a performance consideration for jdb at development-time, not for

java at development time, it can seriously impact developer productivity. In addition to

the time lost when running in jdb, unnecessary RuntimeExceptions can make it hard to

track down real problems. For example JDK 1.1’s java.text.* classes would often throw

NullPointerExceptions and IndexOutOfBoundsException in their normal course of op-

eration of attempting to parse different formats. Unfortunately this meant that telling a

debugger to stop on NullPointerException would encounter a lot of false problems. Some

other bad examples are Weblogic and javax.mail which do not use File.exists to see if

153

a file exists, but instead catch IOException.

11.3.4 Thou shall not forsake buffering

Reading and writing characters one at a time without buffering is painfully slow in any

language. Java internationalization adds a new twist. Even if a stream of bytes is buffered,

the one at a time conversion from characters to bytes and bytes to characters is just as bad.

For example when reading characters from a file, it is very important to use a pipeline

of BufferedReader, InputStreamReader, and FileInputStream. The BufferedReader

batches requests for characters to the InputStreamReader which in turn batches requests

for bytes to the underlying FileInputStream.

The dangerous alternative is to use a pipeline of InputStreamReader, BufferedInputStream,

and FileInputStream. Although the BufferedInputStream batches requests for bytes to

the FileInputStream, the InputStreamReader will only convert a character at a time.

Another example of the advantage of avoiding one-at-a-time operations is using System.arraycopy.

In addition to having a native implementation, System.arraycopy is superior to a Java copy

loop because it performs bounds checks once on each array instead of once for each access.

11.3.5 Thou shall not forsake arrays

Vectors are very heavily used in Java. Their encapsulation of sizing is very useful. Unfor-

tunately this encapsulation comes with the cost of method-call overhead to access elements

and length information. In addition, APIs trafficking in Vectors do not provide compile-

time type safety.

Object arrays provide an alternative. Unfortunately in exchange for type safety and

improved access speed comes the pains of manual sizing. A Vector-like class that provides

automatic resizing and type safety through subclassing while exposing the underlying array

for more efficient and type free access is a good compromise.

11.3.6 Thou shall honor pointer equality

A small but important point is to take advantage of pointer equality whenever possible. In

this system that meant avoiding String.equals by interning Symbols. The implementation

assumed that Boolean.FALSE was the only false Boolean value. This is a general safe

154

assumption, although there is no way to prevent someone from using new Boolean(false),

leaving one to wonder why the constructor is even public. Finally, another way to take

advantage of pointer equality is to use hashtables that rely on == equality instead of equals.

11.4 Final Thoughts

An important lesson learned was to minimize special cases and keep things simple. When

special cases and complexity are added, they should have a clear purpose and goal. The

simplification and cleanup in the second pass, especially of the Expression and Object

mixup, revealed this. By the end of the second pass a simple modular implementation

allowing for more iterative change in later passes.

In the end, this Scheme in Java implementation served its purpose by quickly providing

a scripting extension language. However over time as other scripting languages were made

available in Java, the unfamiliarity of the Scheme language to the average system implemen-

tor led the embedding application to seek out other solutions. In the end the application

chose to support extensions in Scheme, JavaScript, and Java.

155

156

Chapter 12

Acknowledgments

Thanks to my wife Jennifer for all her support and patience in getting my thesis completed.

Thanks to my mom for nagging me to get my masters when most people no longer thought

it was that important. Thanks to my dad for introducing me to Lisp at the impressionable

age of twelve. It makes up for introducing me to Basic at the age of six which Dijkstra

says should have rendered me incapable of properly learning to program. Of course maybe

he was right. Thanks to my sister Rachael for having nothing to do with computers but

hopefully still thinking I’m a cool brother, even if it is because I bribe her.

Thanks to Olin Shivers and Norman Adams for indoctrinating an MIT Scheme student

with a Yale Scheme point of view and generally showing me the ways of the force. Thanks

to Michael Blair, better known as Ziggy, for my first introduction to Scheme as my TA

in 6.001. Thanks to Franklyn Turbak to helping me get it right in 6.821. Thanks to my

friends Jason Wilson, David LaMacchia, Brian Zuzga, and Natalya Cohen, the Switzerland

Summer of 1992 UROPs, that made all my course VI classes bearable. Thanks to Arthur

Gleckler, Philip Greenspun, Elmer Hung, Brian LaMacchia, and Rajeev Surati, the Swiss

elders for their help, advice and friendship.

Thanks to Lucille Glassman for reviewing this document and providing primary and

secondary DNS name service. Thanks to Dmitri Schoeman for helping me squeeze out the

last ounce of performance out of the Java run-time as well as some last minute encourage-

ment, reviewing, and Krispy Kreme doughnuts. Thanks to Stephanie Shaw and Simanta

Chakraborty for providing a place to stay with high speed Internet access while at the ’tute.

See Stephanie, I did finish my thesis before you. And last by certainly not least, thanks to

157

Anne Hunter for getting me through the MIT bureaucracy a few years late, but hey, better

late than never.

158

Appendix A

Benchmark Results

All tests were performed on a Dell Dimension T800r system with an 800MHz Intel Pentium

III processor with 512MB of RAM running Windows 2000 Professional Service Pack 1.

159

A
.1

S
cr

ip
t

A
.1

.1
S
u
n

J
D

K
1
.3

.0

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
7
2
4
4

4
7
0

9
1
9
4

1
0

0
7
3
1

4
1
0

3
3
1

1
6
9
2

6
0

2
0

1
4
0
7
1

1
1
0

2
5
7
3

1
6
1

4
0

1
4
3
1
0

2
1
7
2
0
5

4
7
1

9
1
5
3

1
0

1
0

7
4
1

4
0
1

3
3
0

1
6
7
2

7
1

1
0

1
4
0
2
0

1
1
0

2
5
7
4

1
5
0

4
0

1
4
3
8
1

3
1
7
2
7
5

4
8
1

9
1
6
3

1
0

1
0

7
4
1

4
1
1

3
3
0

1
7
0
3

6
0

1
0

1
4
0
3
0

1
2
0

2
5
5
4

1
6
0

4
0

1
4
3
1
1

4
1
7
2
0
5

4
8
1

9
1
6
3

0
0

7
4
1

4
2
1

3
3
1

1
6
8
2

6
0

1
0

1
4
0
2
0

1
2
0

2
5
7
4

1
5
0

4
0

1
4
3
2
1

5
1
7
1
7
4

4
6
0

9
1
6
3

1
0

0
7
4
2

4
0
0

3
4
1

1
6
8
2

6
0

2
0

1
4
0
4
0

1
2
1

2
5
5
3

1
6
0

4
0

1
4
3
1
1

A
.1

.2
S
u
n

J
D

K
1
.2

.2

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
3
0
4
9
4

7
0
1

6
1
4
9

1
0

2
0

1
0
2
2

5
3
1

5
4
0

3
5
9
6

1
3
0

5
0

2
6
6
4
8

1
7
0

4
6
9
7

2
9
1

9
0

1
9
3
9
8

2
3
0
4
2
4

7
0
1

6
1
0
9

4
0

1
0

1
0
3
1

5
3
1

5
4
1

3
5
9
5

1
2
0

4
0

2
6
8
6
9

1
7
0

4
7
3
7

2
9
0

9
1

1
9
2
6
7

3
3
0
4
4
4

6
8
1

6
1
0
8

4
1

2
0

1
0
3
1

5
2
1

5
4
1

3
6
0
5

1
2
0

4
0

2
6
7
4
8

1
7
1

4
7
8
7

2
4
0

1
2
0

1
9
1
3
8

4
3
0
4
2
3

6
9
1

6
1
4
9

4
0

1
0

1
0
5
2

5
6
0

5
7
1

3
5
0
5

1
2
0

5
0

2
6
6
6
9

1
8
0

4
7
2
7

3
0
0

9
0

1
9
2
7
8

5
3
0
4
0
4

6
9
1

6
1
1
9

3
0

1
0

1
0
5
2

5
5
1

5
3
0

3
6
0
6

1
2
0

5
0

2
6
7
5
8

1
8
1

4
7
1
6

3
0
1

1
0
0

1
9
2
4
8

A
.1

.3
S
u
n

J
D

K
1
.1

.8

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
3
8
6
7
5

7
3
1

1
5
9
1
3

1
0

1
0

1
0
9
2

6
5
1

5
7
1

4
1
7
6

1
6
0

2
0

3
7
9
6
5

1
7
0

5
9
0
8

2
2
1

1
9
0

2
0
5
4
9

2
3
8
6
7
5

7
3
1

1
5
9
1
3

1
0

0
1
0
9
2

6
5
1

5
6
1

4
1
6
6

1
7
0

2
0

3
7
9
1
4

1
7
1

5
9
0
8

2
4
0

1
9
1

2
0
5
4
9

3
3
8
6
6
6

7
4
1

1
5
9
2
3

1
0

1
0

1
0
8
2

6
5
1

5
6
0

4
1
5
6

1
7
1

3
0

3
7
8
6
4

1
6
0

5
9
0
9

2
2
0

2
0
1

2
0
5
2
9

4
3
8
6
7
6

7
5
1

1
5
9
3
3

1
0

0
1
0
8
2

6
5
0

5
6
1

4
1
6
6

1
6
0

3
0

3
7
8
6
4

1
6
0

5
9
1
9

2
2
0

2
0
0

2
0
5
4
0

5
3
8
6
7
6

7
4
1

1
5
9
1
3

1
0

0
1
0
9
1

6
5
1

5
7
1

4
1
6
6

1
7
0

3
0

3
7
9
2
5

1
6
0

5
9
1
9

2
3
0

2
1
0

2
0
5
2
0

160

A
.1

.4
IB

M
J
D

K
1
.3

.0
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
4
0
2
7
8

1
0
9
2

1
1
8
1
7

1
0

0
2
0
1
2

7
3
1

1
1
4
2

3
9
4
6

1
9
0

1
0

2
8
7
3
1

2
1
1

5
3
5
7

2
5
1

3
0

4
1
2
7
9

2
4
0
6
1
9

1
0
7
2

1
1
6
8
7

2
0

0
2
0
0
3

7
1
1

1
1
1
1

3
8
6
6

1
9
0

1
0

2
8
4
5
1

2
1
0

5
1
5
8

2
7
0

3
0

4
1
3
0
0

3
3
6
9
5
3

1
0
6
2

1
1
7
2
7

1
0

0
2
0
5
3

6
7
1

1
0
6
1

4
2
3
6

2
0
1

1
0

2
9
4
7
2

2
3
0

5
2
5
8

2
7
0

4
0

4
0
3
6
9

4
3
6
9
3
3

1
1
0
2

1
1
8
6
7

2
0

0
1
9
9
3

6
3
1

1
0
9
1

4
3
7
7

1
9
0

1
0

2
9
6
2
3

2
3
0

5
2
6
8

2
7
0

4
0

4
0
6
0
8

5
3
6
8
0
2

1
0
6
2

1
3
0
7
8

3
0

1
0

2
0
5
3

6
5
1

1
0
9
2

4
2
6
6

1
3
0

2
0

2
9
7
0
3

2
3
0

5
2
7
8

2
8
0

6
0

4
1
1
3
0

A
.1

.5
IB

M
J
D

K
1
.1

.8
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
4
6
5
3
7

1
0
6
1

1
1
3
3
7

1
0

1
0

2
3
7
3

8
0
1

1
2
8
2

4
5
2
7

8
0

1
0

3
3
5
6
8

2
9
1

6
1
5
8

3
3
1

6
0

4
8
2
3
9

2
4
6
4
0
6

1
0
4
1

1
1
4
3
6

1
0

1
1

2
3
7
3

7
8
1

1
2
8
2

4
5
0
6

1
0
1

1
0

3
3
8
2
8

2
8
1

6
1
8
8

3
5
1

1
4
0

4
7
7
4
9

3
4
6
1
8
7

1
0
5
1

1
1
4
5
7

1
0

1
0

2
3
9
3

7
9
1

1
2
6
2

4
5
3
7

9
0

1
0

3
3
5
2
8

2
7
0

6
1
7
9

3
5
1

5
0

4
7
7
9
9

4
4
6
6
3
7

1
0
6
2

1
2
1
9
7

1
0

1
0

2
3
7
4

8
1
1

1
2
7
2

4
4
8
6

9
0

1
0

3
3
5
2
9

2
7
0

6
1
4
9

3
4
0

1
3
1

4
8
1
5
9

5
4
6
3
5
7

1
0
5
1

1
1
3
4
7

1
0

1
0

2
3
6
3

7
9
1

1
2
8
2

4
5
3
7

1
0
0

2
0

3
3
4
9
8

2
8
0

6
2
3
9

3
3
1

6
0

4
7
1
8
8

A
.1

.6
M

ic
ro

so
ft

S
D

K
fo

r
J
a
v
a

3
.1

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
0
3
8
9

5
0
1

1
0
6
1
5

0
1
0

8
9
1

3
8
1

3
8
0

2
2
6
4

4
0

9
0

1
7
1
9
5

1
5
0

2
9
4
4

1
9
0

4
0

1
6
3
3
4

2
2
0
3
1
0

5
1
0

1
0
5
8
6

0
1
0

8
8
1

3
9
1

3
9
0

2
2
4
3

4
0

9
1

1
7
2
2
4

1
5
1

2
9
2
4

1
9
0

4
0

1
6
3
2
4

3
2
0
3
2
9

4
9
1

1
0
5
9
5

1
0

0
8
9
2

3
8
0

4
0
1

2
2
5
3

4
0

9
0

1
7
1
8
5

1
5
0

2
9
4
4

1
9
1

4
0

1
6
3
3
3

4
2
0
3
0
9

5
0
1

1
0
5
7
5

1
0

0
9
1
1

3
9
1

3
9
0

2
2
5
4

4
0

9
0

1
7
1
6
5

1
4
0

2
9
4
4

2
0
0

4
0

1
6
3
0
4

5
2
0
3
1
9

5
0
0

1
0
5
9
6

1
0

1
0

8
8
1

3
9
0

3
9
1

2
2
3
3

4
0

9
0

1
7
3
5
5

1
5
1

2
9
4
4

1
9
0

4
0

1
6
3
1
4

161

A
.2

K
a
w

a

A
.2

.1
S
u
n

J
D

K
1
.3

.0

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
8
5
1

7
2
1

3
2
8
5

8
0

4
0

2
7
1

7
0

7
0

1
0
8
1

7
0

4
0

2
3
3
4

3
0

7
0

8
5
1

4
0

1
3
9
2

2
8
6
1

7
0
1

3
3
2
5

8
0

3
0

2
7
1

7
0

7
0

1
0
5
1

7
1

4
0

2
3
4
3

3
0

7
0

8
2
1

3
0

1
3
3
2

3
8
6
1

7
4
1

3
2
9
5

8
0

4
0

2
7
1

7
0

7
0

1
0
7
1

7
1

3
0

2
3
4
3

3
0

7
0

8
2
1

4
0

1
3
7
2

4
8
7
1

7
1
1

3
3
0
5

8
0

3
0

2
7
1

7
0

7
0

1
0
5
1

7
1

4
0

2
3
5
3

3
0

7
0

8
2
1

4
0

1
3
4
2

5
8
7
1

7
2
1

3
2
8
5

8
0

4
0

2
7
1

7
0

7
0

1
0
8
1

7
1

4
0

2
3
3
3

3
0

7
0

8
3
1

4
0

1
3
8
2

A
.2

.2
S
u
n

J
D

K
1
.2

.2

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
5
1
2

1
2
3
2

1
8
1
3

9
0

5
0

1
9
0

1
4
1

1
4
0

1
1
1
1

8
0

8
1

1
9
4
2

4
0

7
1

9
0
1

4
0

1
9
6
3

2
1
5
4
2

1
2
1
2

1
7
9
2

1
0
0

8
0

1
3
1

1
4
0

1
3
0

1
2
7
2

9
0

7
0

1
8
6
3

4
0

7
0

9
2
1

3
0

1
9
4
3

3
1
5
7
2

1
1
8
2

1
8
1
3

1
0
0

5
0

1
6
0

1
3
0

1
4
0

1
1
1
2

8
0

8
0

1
6
9
3

3
0

7
0

8
7
1

4
0

1
9
9
3

4
1
5
6
2

1
2
2
2

1
7
6
3

1
0
0

5
0

1
7
0

1
4
0

1
3
0

1
1
1
2

8
0

8
0

1
7
3
3

3
0

7
0

8
9
1

4
0

1
9
8
3

5
1
5
1
2

1
2
2
2

1
8
1
3

1
0
0

5
0

1
8
0

1
4
0

1
3
0

1
1
1
2

8
0

8
0

1
9
1
3

3
0

7
0

9
0
1

4
1

1
9
5
2

A
.2

.3
S
u
n

J
D

K
1
.1

.8

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
8
9
3

1
4
0
2

5
8
8
9

9
0

5
0

1
8
0

1
5
0

1
3
1

1
3
4
1

6
1

4
0

2
2
1
3

7
0

7
0

9
2
1

3
0

2
0
5
3

2
1
8
9
3

1
4
3
2

5
8
7
9

1
0
0

4
0

1
9
0

1
4
0

1
4
1

1
3
6
2

5
0

5
0

2
2
0
3

7
0

8
0

9
1
1

4
0

2
0
5
3

3
1
8
9
3

1
3
9
2

5
8
5
9

1
0
0

5
0

1
8
0

1
5
0

1
3
1

1
3
6
1

6
1

5
0

2
2
0
3

7
0

7
0

9
1
1

4
0

2
0
6
3

4
1
8
8
3

1
4
0
2

5
8
3
9

1
0
0

5
0

1
8
0

1
5
0

1
3
0

1
3
3
2

6
0

5
1

2
2
2
3

7
0

7
0

9
2
1

4
0

2
0
6
3

5
1
8
7
3

1
3
9
2

5
8
4
9

1
0
0

5
0

1
8
0

1
5
0

1
4
0

1
3
4
2

6
0

4
1

2
1
9
3

7
0

7
0

9
1
1

5
0

2
0
4
3

162

A
.2

.4
IB

M
J
D

K
1
.3

.0
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
9
4
1

1
1
5
2

3
7
4
5

1
2
0

8
0

3
5
1

9
0

9
0

6
8
1

1
1
0

4
0

1
0
4
2

3
0

7
0

1
4
5
2

5
0

1
6
5
2

2
9
3
1

1
1
5
2

3
7
4
5

1
1
1

8
0

3
5
0

9
0

9
1

6
9
1

1
2
0

4
0

1
0
2
1

3
0

7
0

1
4
5
2

5
1

1
6
3
2

3
9
3
1

1
1
6
2

3
7
4
5

1
1
0

8
0

3
5
1

1
0
0

8
0

6
8
1

1
2
0

4
0

1
0
4
2

3
0

7
0

1
4
6
2

6
0

1
6
5
3

4
9
6
2

1
1
7
1

3
7
3
6

1
2
0

7
0

3
8
1

9
0

9
0

6
8
1

1
2
0

4
0

1
0
3
1

3
1

7
0

1
4
5
2

6
0

1
6
6
2

5
9
3
1

1
1
5
2

3
7
6
5

1
1
1

8
0

3
5
0

9
0

8
0

6
8
1

1
2
1

3
0

1
0
5
1

3
0

7
0

1
4
5
2

5
0

1
6
5
3

A
.2

.5
IB

M
J
D

K
1
.1

.8
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
9
6
1

1
0
1
1

3
9
0
6

1
4
0

6
0

3
3
1

9
0

1
1
0

9
6
2

6
0

3
0

1
2
6
2

3
0

7
0

1
3
1
2

9
0

1
5
3
2

2
9
7
1

1
0
0
2

3
9
2
5

1
4
0

8
0

3
3
1

9
0

1
1
0

9
9
2

7
0

3
0

1
2
8
2

3
0

8
0

1
3
2
2

4
0

1
5
4
2

3
9
5
1

9
9
2

3
9
3
5

1
4
0

7
1

3
2
0

9
0

1
1
0

9
6
2

7
0

3
0

1
2
8
2

3
0

7
0

1
3
1
2

4
0

1
5
4
2

4
9
7
1

9
7
2

3
7
8
5

1
5
0

7
0

3
2
1

9
0

1
1
0

9
7
1

7
1

3
0

1
2
2
1

3
0

6
1

1
3
1
1

6
1

1
5
8
2

5
9
6
1

9
7
1

3
7
9
6

1
5
0

6
0

3
5
1

9
0

1
0
0

9
4
1

7
0

3
0

1
2
4
2

3
0

7
0

1
2
9
2

4
0

1
5
7
3

A
.2

.6
M

ic
ro

so
ft

S
D

K
fo

r
J
a
v
a

3
.1

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
9
3
1

7
4
1

7
6
2
1

5
0

3
0

1
2
0

8
0

8
1

7
6
1

3
0

4
0

1
1
6
1

3
0

8
1

6
0
0

2
0

1
7
5
3

2
9
3
2

7
5
1

7
7
2
1

5
0

3
0

1
3
0

8
0

7
1

7
6
1

3
0

4
0

1
1
4
1

4
0

8
1

6
1
0

2
0

1
7
6
3

3
9
3
1

7
6
1

7
6
9
1

5
0

3
0

1
3
0

7
1

7
0

7
6
1

3
0

4
0

1
1
5
2

3
0

8
0

6
0
1

2
0

1
7
6
2

4
9
3
1

7
6
1

7
6
8
1

4
0

3
0

1
3
0

8
0

7
1

7
5
1

4
0

3
0

1
1
5
1

3
0

7
1

6
1
0

2
0

1
7
8
3

5
9
4
1

7
6
1

7
8
6
1

5
0

3
0

1
2
1

9
0

7
0

7
6
1

3
0

4
0

1
1
5
2

3
0

7
0

5
9
1

3
0

1
7
5
2

163

A
.3

S
IL

K

A
.3

.1
S
u
n

J
D

K
1
.3

.0

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
9
6
7
4

1
1
8
8
7

1
1
1
8
6

1
0

1
0

1
7
6
2

1
0
1
2

1
1
0
2

6
0
9
8

8
0

1
0

1
4
2
8
1

6
4
1

4
8
7
7

7
1
1

4
0

6
1
3
0
8

2
9
6
1
4

1
1
8
2
7

1
1
2
1
6

1
0

0
1
7
6
3

1
0
2
1

1
1
0
2

6
0
9
9

8
0

2
0

1
4
2
1
0

6
4
1

4
8
6
7

7
1
1

4
0

6
1
2
8
8

3
9
6
1
3

1
1
8
2
7

1
1
2
1
7

1
0

0
1
7
6
2

1
0
1
2

1
1
0
1

6
0
9
9

8
0

1
0

1
4
2
2
1

6
3
0

4
8
5
7

7
1
1

4
1

6
1
3
9
8

4
9
6
3
4

1
1
8
1
7

1
1
1
8
6

1
0

1
0

1
7
5
3

1
0
1
1

1
1
1
2

6
1
1
8

9
0

1
1

1
4
2
1
0

6
3
1

4
8
5
7

7
2
1

4
0

6
1
2
5
8

5
9
6
5
4

1
1
8
2
7

1
1
1
9
6

1
0

0
1
7
6
3

1
0
0
1

1
1
1
2

6
0
9
9

8
0

1
0

1
4
2
5
0

6
4
1

4
8
5
7

7
0
1

6
0

6
1
2
4
8

A
.3

.2
S
u
n

J
D

K
1
.2

.2

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
5
9
0
2

1
3
1
3
9

4
9
1
7

1
0

0
2
0
2
3

1
1
4
2

1
2
6
2

7
3
2
0

1
2
1

6
0

1
8
1
1
6

7
1
1

5
5
2
8

8
9
1

6
0

9
3
9
3
5

2
1
5
8
9
3

1
3
1
2
9

4
9
2
7

2
0

1
0

2
0
3
3

1
1
7
2

1
2
3
2

7
3
3
0

1
2
0

5
0

1
8
0
9
7

7
0
1

5
4
9
7

8
6
2

6
0

9
3
8
4
5

3
1
5
9
1
3

1
3
1
3
9

4
9
0
7

2
0

1
0

2
0
3
3

1
1
6
1

1
2
4
2

7
3
4
1

1
2
0

5
0

1
8
1
2
6

7
1
1

5
5
3
8

8
9
2

6
0

9
3
9
1
5

4
1
6
0
0
3

1
3
2
5
9

4
9
4
7

2
0

1
0

2
0
7
3

1
1
5
2

1
2
7
2

7
3
7
0

8
0

6
0

1
8
0
1
6

7
5
1

5
4
3
8

8
8
2

6
0

9
4
9
1
6

5
1
5
9
7
3

1
3
1
5
9

4
9
1
7

2
0

1
0

2
0
2
3

1
1
5
2

1
2
6
2

7
3
2
0

1
2
1

5
0

1
8
1
2
6

7
1
1

5
5
2
8

9
1
1

6
0

9
3
9
4
5

A
.3

.3
S
u
n

J
D

K
1
.1

.8

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
3
9
7
5

1
6
2
3
3

1
5
3
5
2

1
0

1
0

2
5
1
4

1
5
0
2

1
5
2
2

9
8
7
5

1
3
0

3
0

2
2
3
6
2

9
3
1

6
7
1
0

1
0
4
1

8
1

1
2
6
7
5
2

2
2
3
9
6
5

1
6
2
4
3

1
5
3
5
2

1
0

0
2
5
0
4

1
5
0
2

1
5
2
2

9
8
7
4

1
2
0

3
0

2
2
3
8
3

9
0
1

6
7
3
0

1
0
4
1

8
0

1
2
6
7
7
2

3
2
3
9
7
4

1
6
2
3
4

1
5
3
4
2

1
0

2
0

2
4
8
3

1
5
0
2

1
5
4
3

9
8
7
4

1
2
0

3
0

2
2
3
8
2

9
1
2

6
7
1
9

1
0
4
2

8
0

1
2
6
7
2
2

4
2
3
9
7
5

1
6
2
3
3

1
5
3
4
2

2
0

0
2
5
0
4

1
5
1
2

1
5
3
2

9
9
0
4

1
2
1

2
0

2
2
3
4
2

9
3
1

6
7
2
0

1
0
4
1

8
0

1
2
6
7
7
3

5
2
3
9
8
4

1
6
2
3
4

1
5
3
3
2

1
0

1
0

2
4
9
3

1
5
0
3

1
5
3
2

9
9
0
4

1
2
0

2
0

2
2
3
3
2

9
2
2

6
7
0
9

1
0
4
2

8
0

1
2
6
8
2
2

164

A
.3

.4
IB

M
J
D

K
1
.3

.0
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
6
4
4
9

7
0
7
0

1
9
0
0
7

0
1
0

1
1
2
2

7
1
1

6
2
1

4
7
1
7

7
0

2
0

9
4
9
3

3
9
1

3
3
9
5

4
7
1

7
0

3
8
8
9
6

2
6
3
7
9

7
1
0
1

1
8
9
8
7

1
0

1
0

1
1
1
2

6
9
1

6
2
1

4
8
3
6

1
0
1

1
0

9
4
6
3

3
9
1

3
3
3
5

4
8
0

5
0

3
9
1
7
7

3
6
3
8
0

7
1
0
0

1
8
9
8
7

0
0

1
1
2
2

6
9
1

6
3
1

4
8
2
7

1
0
0

2
0

9
4
5
3

3
9
1

3
3
4
5

4
7
0

5
0

3
7
9
3
5

4
6
4
1
9

7
0
4
0

1
8
9
7
7

0
1
0

1
1
4
2

6
8
1

6
2
1

4
7
1
7

8
0

1
0

9
3
8
3

3
8
1

3
3
0
5

4
6
0

5
0

3
8
9
3
6

5
6
3
9
9

7
1
1
0

1
9
0
6
8

1
0

1
0

1
1
4
2

7
0
1

6
4
0

4
8
6
7

1
0
1

1
0

9
5
0
3

3
8
1

3
3
9
5

4
8
0

5
0

3
8
2
5
5

A
.3

.5
IB

M
J
D

K
1
.1

.8
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
8
6
2
3

9
8
6
4

1
6
8
4
4

0
0

1
4
9
2

1
0
2
2

8
8
1

5
4
6
8

1
0
0

1
0

1
1
7
6
7

5
1
1

4
7
4
6

6
2
1

3
0

5
3
0
0
7

2
8
6
4
3

9
8
6
4

1
6
8
1
4

1
0

1
0

1
5
0
2

1
0
1
2

8
9
1

5
5
1
8

8
0

2
0

1
1
8
0
7

5
1
1

4
7
7
7

6
1
0

5
1

5
3
2
4
6

3
8
5
7
2

9
8
9
4

1
6
8
2
5

1
0

1
0

1
4
9
2

1
0
2
1

9
0
1

5
4
9
8

8
0

1
0

1
1
7
9
6

5
0
1

4
7
6
7

6
0
1

4
0

5
4
0
3
8

4
8
5
5
3

9
8
7
4

1
6
8
1
4

0
1
0

1
5
2
2

1
0
3
2

8
9
1

5
5
1
8

8
0

1
0

1
1
6
7
7

5
0
1

4
7
3
6

6
1
1

4
0

5
2
7
4
6

5
8
6
5
2

9
9
7
5

1
6
8
2
4

0
1
0

1
4
8
2

1
0
3
1

9
0
2

5
5
3
8

8
0

1
0

1
1
8
8
7

5
1
1

4
7
4
6

6
3
1

4
0

5
2
9
9
7

A
.3

.6
M

ic
ro

so
ft

S
D

K
fo

r
J
a
v
a

3
.1

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
2
0
3
8

1
2
2
9
7

1
6
2
8
4

1
0

0
1
8
4
2

1
2
7
2

9
5
2

6
3
0
9

6
0

2
0

2
0
7
7
0

6
8
1

4
6
9
6

8
6
2

6
0

5
9
4
5
5

2
1
2
0
4
7

1
2
2
6
8

1
6
2
4
3

1
0

1
0

1
8
6
3

1
2
7
2

9
4
1

6
3
0
9

6
0

2
1

2
0
7
6
9

6
8
1

4
6
9
7

8
7
1

5
0

5
9
4
7
6

3
1
2
0
4
7

1
2
2
8
8

1
6
2
4
3

1
0

0
1
8
6
3

1
2
8
2

9
4
1

6
3
1
9

5
0

2
0

2
0
7
5
0

6
7
1

4
7
0
7

8
7
1

5
0

5
9
4
7
6

4
1
2
0
9
7

1
2
2
9
8

1
6
2
6
3

1
0

1
0

1
8
5
3

1
2
6
2

9
5
1

6
3
3
9

7
0

2
0

2
0
7
4
0

6
7
1

4
7
0
7

8
8
1

5
0

5
9
4
9
6

5
1
2
0
7
7

1
2
2
8
8

1
6
2
5
3

1
0

1
0

1
8
6
3

1
2
7
2

9
4
1

6
3
2
9

5
0

2
0

2
0
7
4
0

6
9
1

4
6
9
7

8
8
1

5
0

5
9
4
6
6

165

A
.4

S
k
ij

A
.4

.1
S
u
n

J
D

K
1
.3

.0

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
3
3
2
9
2

3
0
6
4

1
0
7
3
5

3
1

2
0

6
4
9
9

1
9
8
3

2
6
0
3

2
1
5
7
1

3
9
0

2
0

3
4
4
4
0

1
1
3
1

9
4
1
4

1
3
1
2

3
3
0

3
8
0
7
5
8

2
1
3
1
2
1
9

3
0
5
4

1
0
8
3
6

2
0

2
0

6
5
5
0

1
9
7
2

2
6
3
4

2
1
6
2
1

4
0
1

1
0

3
4
4
7
9

1
1
1
2

9
4
2
4

1
3
1
1

3
4
1

3
8
1
3
2
8

3
1
3
1
1
4
9

3
0
6
4

1
0
8
1
6

3
0

2
0

6
5
2
9

2
0
0
3

2
6
1
4

2
1
6
6
1

4
2
0

2
0

3
4
4
7
0

1
1
2
2

9
4
2
3

1
3
1
2

3
2
1

3
8
1
3
3
8

4
1
3
1
1
5
8

3
0
8
5

1
0
7
9
5

2
0

2
0

6
5
6
0

1
9
9
3

2
6
3
3

2
1
6
7
2

4
2
0

2
0

3
4
4
7
0

1
1
0
1

9
4
4
4

1
3
1
2

3
3
0

3
8
1
4
7
9

5
1
3
1
2
0
8

3
0
5
5

1
0
8
2
5

3
0

2
0

6
5
3
0

1
9
8
3

2
6
1
3

2
1
6
9
1

4
0
1

4
0

3
4
4
5
0

1
1
0
1

9
4
1
4

1
3
3
2

3
2
0

3
8
1
5
1
9

A
.4

.2
S
u
n

J
D

K
1
.2

.2

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
6
5
0
4
7

2
5
7
4

7
3
0
0

3
1

2
0

6
5
3
9

2
4
1
3

2
9
1
5

1
5
2
7
2

3
3
0

9
0

2
9
3
0
2

1
2
1
2

9
8
4
4

1
5
8
3

3
9
0

2
6
8
6
0
6

2
1
6
5
4
3
7

2
5
9
4

7
2
7
1

8
0

2
0

6
7
9
0

2
3
4
3

2
9
4
4

1
5
3
8
2

3
7
1

5
0

2
9
6
3
2

1
1
9
2

9
8
6
4

1
5
8
3

3
9
0

2
7
0
1
5
9

3
1
6
4
7
8
7

2
6
0
4

7
5
7
0

3
0

2
1

6
7
0
9

2
3
6
4

2
9
4
4

1
5
4
7
2

3
5
1

5
0

3
0
0
2
3

1
2
1
2

9
9
2
4

1
6
3
2

3
2
1

2
7
1
6
3
0

4
1
6
4
5
9
7

2
5
7
4

7
4
8
1

3
0

1
0

6
6
6
9

2
2
9
3

2
9
8
5

1
5
2
3
2

4
0
0

4
0

3
0
0
4
4

1
1
7
1

9
7
9
4

1
4
9
2

4
0
1

2
6
8
1
9
6

5
1
6
4
4
0
6

2
6
1
4

7
3
6
1

3
0

8
0

6
7
1
9

2
4
2
4

2
9
6
4

1
5
5
0
2

3
9
1

5
0

2
9
8
8
3

1
2
3
2

1
0
1
3
4

1
6
0
3

3
8
0

2
7
0
3
6
9

A
.4

.3
S
u
n

J
D

K
1
.1

.8

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
3
9
7
5
5

2
8
3
4

1
1
3
3
6

2
0

2
0

7
5
8
1

2
7
1
4

3
2
9
5

1
6
4
7
3

3
8
1

3
0

3
2
8
1
7

1
3
9
2

1
1
2
9
6

1
7
1
3

4
4
0

3
1
6
4
1
5

2
2
3
8
5
9
3

2
8
2
4

1
1
2
3
6

2
0

2
0

7
5
7
1

2
6
9
4

3
2
8
5

1
6
4
8
4

3
9
0

3
0

3
2
7
8
7

1
3
9
2

1
1
2
0
7

1
7
2
2

4
2
1

3
1
6
4
9
5

3
2
3
8
6
1
3

2
8
3
4

1
1
2
3
7

2
0

2
0

7
5
7
1

2
7
2
3

3
3
0
5

1
6
4
6
4

3
8
0

3
0

3
2
8
3
7

1
3
8
2

1
1
1
8
6

1
7
1
2

4
2
1

3
1
6
5
8
5

4
2
3
8
4
7
3

2
8
1
4

1
1
2
5
6

3
0

2
0

7
5
7
1

2
6
9
4

3
2
9
4

1
6
4
6
4

3
8
1

3
0

3
2
8
4
7

1
3
8
2

1
1
1
8
6

1
7
1
2

4
3
1

3
1
6
5
9
5

5
2
3
8
5
8
3

2
8
3
4

1
1
2
2
6

2
0

2
0

7
5
6
1

2
7
0
4

3
2
9
5

1
6
5
0
4

3
8
0

3
0

3
2
8
3
7

1
3
9
2

1
1
1
7
6

1
7
1
3

4
2
1

3
1
6
6
9
5

166

A
.4

.4
IB

M
J
D

K
1
.3

.0
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
2
0
8
7
4

2
7
6
4

1
0
5
6
5

2
0

2
0

7
1
5
0

1
7
7
3

2
7
3
4

1
2
1
8
7

4
1
1

1
0

2
8
1
2
0

1
2
5
2

9
9
9
5

1
5
3
2

4
0
0

2
0
2
7
8
2

2
1
1
9
9
2
3

2
7
5
4

1
0
4
7
5

2
0

2
0

7
1
4
0

1
7
6
3

2
7
4
4

1
2
2
1
7

4
1
1

2
0

2
8
1
5
0

1
2
5
2

1
0
0
2
5

1
5
0
2

4
0
0

2
0
2
2
3
1

3
1
3
3
4
1
1

3
0
6
5

1
0
7
2
5

2
0

2
0

8
0
4
2

1
8
0
3

3
0
8
4

1
3
9
2
0

4
8
1

1
0

3
2
4
8
6

1
3
9
2

1
1
3
7
7

1
6
6
2

4
0
1

2
2
9
0
6
9

4
1
2
0
3
6
3

2
7
4
4

1
0
7
2
5

3
0

2
0

7
1
1
0

1
7
7
3

2
7
5
4

1
2
1
8
7

4
5
1

1
0

2
7
7
1
0

1
2
1
2

9
8
5
4

1
4
3
2

3
8
0

2
0
3
2
5
3

5
1
3
2
1
6
0

3
0
3
5

1
0
7
4
5

3
0

2
0

7
9
8
2

1
8
0
2

3
0
6
5

1
3
9
2
0

4
2
0

8
0

3
2
1
8
7

1
3
3
1

1
1
1
1
6

1
5
9
3

4
0
0

2
3
3
7
9
7

A
.4

.5
IB

M
J
D

K
1
.1

.8
#

b
o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
1
8
5
0
1

2
5
1
3

1
1
5
9
7

3
0

2
0

7
4
2
1

1
8
8
3

2
7
9
4

1
2
5
1
8

3
6
0

3
0

2
8
5
1
1

1
2
6
2

9
7
2
4

1
5
5
2

3
4
1

2
0
2
6
3
1

2
1
1
8
1
4
0

2
5
4
3

1
1
5
3
7

3
0

2
0

7
3
7
1

1
8
8
2

2
8
2
4

1
2
5
6
8

3
5
1

2
0

2
8
5
7
1

1
2
6
2

9
6
0
4

1
5
5
2

3
5
0

2
0
4
6
4
5

3
1
1
8
0
9
0

2
5
3
4

1
1
4
8
6

3
0

2
0

7
3
5
1

1
8
9
3

2
7
6
4

1
2
4
8
8

3
6
0

2
0

2
8
5
1
1

1
2
5
2

9
6
5
4

1
5
3
2

3
5
1

2
0
1
9
0
0

4
1
1
8
1
8
0

2
5
1
3

1
1
5
7
7

3
0

2
0

7
3
7
1

1
9
0
2

2
7
6
4

1
2
4
7
8

3
6
1

2
0

2
8
2
7
0

1
2
6
2

9
5
2
4

1
5
1
2

3
5
1

2
0
1
7
4
0

5
1
1
8
0
4
0

2
5
3
4

1
1
5
6
6

3
1

2
0

7
3
6
0

1
8
9
3

2
7
7
4

1
2
5
8
8

3
5
0

2
0

2
8
6
4
2

1
2
6
1

9
7
4
4

1
5
2
2

3
5
0

2
0
3
3
2
3

A
.4

.6
M

ic
ro

so
ft

S
D

K
fo

r
J
a
v
a

3
.1

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
9
6
3
9
7

5
2
9
7

2
0
4
6
0

6
0

5
0

1
4
9
6
1

7
0
6
1

7
2
8
0

1
8
9
1
7

7
3
1

3
0

5
5
7
7
1

2
8
3
4

2
8
5
7
1

3
4
4
5

7
4
1

3
9
9
0
8
4

2
2
9
6
4
5
6

5
3
2
8

2
0
5
2
0

6
0

5
0

1
4
9
8
1

7
0
3
0

7
2
8
1

1
8
8
9
7

7
3
1

3
0

5
5
8
1
0

2
8
1
4

2
8
5
3
1

3
4
6
5

7
5
1

3
9
8
7
4
4

3
2
9
6
4
9
7

5
2
9
7

2
0
4
2
0

6
0

5
0

1
4
9
9
1

7
0
2
0

7
2
8
1

1
8
8
7
7

7
7
1

3
0

5
5
7
9
0

2
8
1
4

2
8
5
4
1

3
4
8
6

7
4
1

3
9
8
7
9
3

4
2
9
6
3
8
7

5
2
9
7

2
0
4
4
0

6
0

5
0

1
4
9
6
1

7
0
5
0

7
2
8
1

1
8
9
1
7

7
5
1

3
0

5
5
8
8
1

2
8
2
4

2
8
5
5
1

3
4
5
5

7
5
1

3
9
8
9
1
3

5
2
9
6
4
8
6

5
3
0
8

2
0
4
3
9

6
0

6
0

1
4
9
5
2

7
0
3
0

7
2
7
0

1
8
9
1
8

7
3
1

3
0

5
5
7
6
0

2
8
3
4

2
8
5
6
1

3
4
5
5

7
3
1

4
0
0
7
0
6

167

A
.5

W
in

S
ch

e
m

e
b
a
se

d
o
n

S
ch

e
m

e
4
8

0
.5

2

A
.5

.1
w

it
h
o
u
t

,b
e
n
ch

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
0
1
3

3
4
4
5

6
9
1

6
0

5
0

5
1
1

2
4
0

2
5
0

3
2
2
9
7

9
0

7
0

2
3
5
3

1
2
1

1
1
5
1

1
0
3
2

1
3
0

1
1
5
2
7

2
2
0
4
3

3
6
2
5

8
3
1

8
0

6
0

5
4
1

2
9
0

3
5
1

3
3
5
2
8

9
0

8
0

2
3
5
4

1
2
0

1
1
5
2

9
9
1

2
1
0

1
1
3
6
7

3
2
0
4
3

3
6
5
5

8
2
1

8
0

7
0

5
4
1

2
6
0

3
5
1

3
3
5
0
8

8
0

7
0

2
3
5
4

1
2
0

1
1
6
2

9
9
1

2
0
0

1
1
4
0
7

4
2
0
4
3

3
6
2
5

8
2
1

8
0

8
0

5
5
1

2
6
0

3
5
1

3
3
5
1
8

9
0

8
0

2
3
5
4

1
3
0

1
1
5
2

9
9
1

2
0
0

1
1
3
7
7

5
2
0
3
3

3
6
3
5

8
3
1

7
0

7
0

5
4
1

2
7
1

3
4
0

3
3
5
9
8

9
0

7
1

2
3
4
3

1
2
0

1
1
6
2

9
7
1

2
3
0

1
1
3
7
7

A
.5

.2
w

it
h

,b
e
n
ch

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
1
0
8
1

2
0
2
3

6
4
1

6
0

4
0

2
7
1

2
2
0

1
5
0

3
1
6
3
6

8
0

1
2
0

1
2
0
2

1
3
0

4
3
1

7
2
1

1
2
0

6
4
4
9

2
1
1
6
2

2
0
7
3

7
3
1

7
0

4
0

2
8
0

2
2
1

1
5
0

3
2
1
4
6

1
4
0

6
0

1
2
7
2

6
0

4
3
1

6
8
1

1
2
0

6
5
2
9

3
1
0
9
1

2
0
6
3

7
3
1

8
0

4
0

3
4
1

1
6
0

2
2
0

3
2
0
9
7

7
0

7
0

1
2
6
2

6
0

4
3
0

6
9
1

2
0
1

6
3
8
9

4
1
0
9
1

2
0
7
3

7
3
1

6
0

5
1

3
4
0

1
6
0

2
2
1

3
2
1
1
6

7
0

6
0

1
2
8
2

6
0

4
4
1

6
7
0

2
0
1

6
3
7
9

5
1
0
8
2

2
0
8
3

7
2
1

6
0

4
0

3
5
0

1
5
0

2
2
1

3
2
1
0
6

7
0

7
0

1
2
6
2

7
0

4
3
1

6
8
1

2
0
0

6
3
2
9

168

A
.6

S
C

M
5
d
3

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
5
0
0
0

6
0
0
0

2
2
0
0
0

0
0

1
0
0
0

0
1
0
0
0

1
0
0
0

0
0

4
0
0
0

0
3
0
0
0

1
0
0
0

0
5
1
0
0
0

2
4
0
0
0

4
0
0
0

2
1
0
0
0

0
0

0
0

1
0
0
0

1
0
0
0

0
0

3
0
0
0

0
3
0
0
0

0
0

4
3
0
0
0

3
4
0
0
0

4
0
0
0

2
0
0
0
0

0
0

1
0
0
0

0
1
0
0
0

0
0

0
4
0
0
0

0
3
0
0
0

0
0

4
2
0
0
0

4
5
0
0
0

4
0
0
0

2
0
0
0
0

0
0

1
0
0
0

0
1
0
0
0

0
0

0
4
0
0
0

0
2
0
0
0

1
0
0
0

0
4
3
0
0
0

5
4
0
0
0

4
0
0
0

2
0
0
0
0

0
0

1
0
0
0

0
0

1
0
0
0

0
0

3
0
0
0

1
0
0
0

2
0
0
0

0
0

4
3
0
0
0

169

A
.7

M
IT

S
ch

e
m

e
7
.5

.1
0

A
.7

.1
p
la

in
lo

a
d

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
5
3
3
8

6
8
8
0

2
3
8
3

1
0

1
0

9
3
2

5
8
0

5
4
1

2
3
3
4

5
0

1
1
0

6
2
0
9

2
9
0

2
5
7
4

4
8
0

6
1

3
3
5
5
8

2
5
0
7
7

6
9
0
0

2
4
0
3

1
0

1
0

9
4
2

5
8
1

6
8
1

2
3
3
3

5
0

5
0

6
2
7
9

3
0
1

2
5
6
3

4
9
1

8
0

3
3
6
8
9

3
4
7
1
6

6
8
8
0

2
4
9
4

2
0

1
0

9
2
1

5
9
1

5
5
1

2
4
3
3

4
0

5
0

6
2
2
9

3
7
1

2
5
7
4

4
9
0

6
0

3
3
5
2
9

4
4
7
0
7

6
8
9
0

2
4
8
3

2
0

1
0

9
2
2

5
9
0

5
4
1

2
3
4
4

1
3
0

5
0

6
1
8
9

3
0
0

2
6
4
4

4
8
1

7
0

3
3
6
3
8

5
4
7
2
7

6
9
0
0

2
4
9
4

1
0

0
9
3
1

5
8
1

6
2
1

2
3
4
3

4
0

5
0

6
2
0
9

3
6
1

2
6
0
4

4
8
0

6
0

3
3
6
2
9

A
.7

.2
sf

lo
a
d

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
3
4
1
5

5
1
4
7

2
2
7
4

0
0

6
0
0

4
5
0

4
7
1

2
7
1
4

4
0

4
0

4
1
4
6

2
3
0

1
6
0
2

2
3
1

5
0

2
6
2
1
8

2
3
4
1
5

5
1
3
8

2
3
3
3

1
0

0
6
1
1

3
8
0

4
7
1

2
7
1
4

3
0

5
0

4
2
1
6

1
6
0

1
6
0
3

3
0
0

5
0

2
6
1
9
8

3
3
3
3
5

5
1
4
7

2
3
3
3

0
1
0

6
0
1

4
5
1

4
8
0

2
6
9
4

3
0

4
0

4
1
5
6

1
6
1

1
6
5
2

1
6
0

5
0

2
6
1
8
8

4
3
3
2
5

5
1
6
8

2
3
5
3

0
0

6
1
1

4
6
1

4
7
0

2
7
1
4

4
0

4
0

4
1
3
6

2
4
1

1
5
9
2

1
7
0

1
3
0

2
6
2
0
8

5
3
3
3
5

5
1
3
7

2
3
5
3

0
0

6
2
1

4
5
1

4
8
1

2
7
1
4

3
0

5
0

4
1
5
6

2
4
0

1
5
9
2

2
3
1

5
0

2
6
2
4
7

A
.7

.3
cf

lo
a
d

#
b

o
y
er

b
ro

w
se

ct
a
k

d
d

er
iv

d
er

iv
d

es
tr

u
ct

d
iv

-r
ec

d
iv

-i
te

r
ff

t
fp

ri
n
t

fr
ea

d
p

u
zz

le
ta

k
ta

k
l

ta
k
r

tp
ri

n
t

tr
a
v
er

se

1
2
1
0

7
6
1

1
8
8
3

1
0

0
1
0

1
0

0
2
0
0

2
0

5
0

7
0

1
0

1
0

1
0

4
0

5
5
1

2
2
0
0

5
5
1

1
8
3
3

0
0

1
0

9
0

1
0

1
9
0

2
0

4
0

6
0

1
0

1
0

1
0

4
0

5
8
1

3
1
9
1

5
6
0

1
8
2
3

0
0

8
0

1
0

1
0

2
0
0

2
0

5
0

7
1

1
0

1
0

1
0

4
0

5
6
0

4
1
2
1

6
2
0

1
8
4
3

0
0

1
0

1
0

7
0

1
3
0

2
0

1
2
1

7
0

1
0

1
0

1
0

4
0

5
5
1

5
2
0
1

5
5
0

1
8
3
3

1
0

0
8
0

1
0

1
0

2
0
0

2
0

5
1

7
0

0
1
0

2
0

3
0

5
6
1

170

Bibliography

[1] Hal Abelson and Gerald Jay Sussman with Julie Sussman, Structure and Interpretation

of Computer Programs, MIT Press and McGraw-Hill, (1985, Second edition 1996)

http://mitpress.mit.edu/sicp/

[2] Joshua S. Allen, Performance Analysis Tool, http://www.alphaWorks.ibm.com/

tech/pat

[3] Ken Anderson, Tim Hickey, and Peter Norvig, SILK - A Java-based dialect of Scheme,

http://www.cs.brandeis.edu/silk/silkweb/index.html

[4] Ken Anderson, Tim Hickey, and Peter Norvig, SILK - a playful blend of Scheme and

Java, http://www.cs.brandeis.edu/\simtim/Papers/scheme2000.html

[5] BEA Systems, WebLogic Server Performance Tuning Guide, http://www.weblogic.

com/docs51/admindocs/tuning.html

[6] Pat Niemeyer BeanShell: Lightweight Scripting for Java, http://www.beanshell.org

[7] Per Bothner, Kawa, the Java-based Scheme system, http://www.cygnus.com/$\

sim$bothner/kawa.html

[8] Gene Callahan, Brian Clark, Rob Dodson, and Prasad Yalamanchi, HotScheme, http:

//www.stgtech.com/HotScheme/

[9] George J. Carrette, SIOD: Scheme in One Defun, http://people.delphi.com/gjc/

siod.html

[10] Will Clinger, Gabriel Benchmarks in Scheme, http://www.cs.indiana.edu/l/www/

pub/scheme/gabriel-scheme.tar.Z

171

http://mitpress.mit.edu/sicp/
http://www.alphaWorks.ibm.com/tech/pat
http://www.alphaWorks.ibm.com/tech/pat
http://www.cs.brandeis.edu/silk/silkweb/index.html
http://www.cs.brandeis.edu/$sim $tim/Papers/scheme2000.html
http://www.weblogic.com/docs51/admindocs/tuning.html
http://www.weblogic.com/docs51/admindocs/tuning.html
http://www.beanshell.org
http://www.cygnus.com/$sim $bothner/kawa.html
http://www.cygnus.com/$sim $bothner/kawa.html
http://www.stgtech.com/HotScheme/
http://www.stgtech.com/HotScheme/
http://people.delphi.com/gjc/siod.html
http://people.delphi.com/gjc/siod.html
http://www.cs.indiana.edu/l/www/pub/scheme/gabriel-scheme.tar.Z
http://www.cs.indiana.edu/l/www/pub/scheme/gabriel-scheme.tar.Z

[11] ECMA TC39/TG2, C# Programming Language, http://msdn.microsoft.com/net/

ecma/

[12] ECMA TC39/TG3, Common Language Infrastructure, http://msdn.microsoft.com/

net/ecma/ http://www.ecma.ch/ecma1/TOPICS/ECMA\%20CLI\%20Presentation.

ppt

[13] ECMA, Standard ECMA-262 ECMAScript: A general purpose,cross-platform program-

ming language (June 1997). http://www.ecma.ch/stand/ecma-262.htm

[14] Marc Feeley, James S. Miller, Guillermo J. Rozas, Jason A. Wilson, Compiling Higher-

Order Languages into Fully Tail-Recursive Portable C, (18 March 1994).

[15] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Pat-

terns, Addison-Wesley (15 January 1995). http://www.awl.com/product/0,2627,

0201633612,00.html

[16] James Gosling, Bill Joy, Guy Steele, The Java Language Specification, Addison-Wesley

(September 1996). http://java.sun.com/docs/books/jls/html/index.html

[17] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java Language Specification,

Second Edition, Addison-Wesley (5 June 2000). http://java.sun.com/docs/books/

jls/second_edition/html/j.title.doc.html

[18] Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques, Mor-

gan Kaufmann (September 1992) http://www.mkp.com/books_catalog/catalog.

asp?ISBN=1-55860-190-2

[19] Chris Hanson et al., MIT Scheme Reference Manual, MIT Artificial Intelligence

Laboratory Technical Report 1281 (January 1991). http://www.swiss.ai.mit.edu/

projects/scheme/documentation/scheme_toc.html

[20] Hewlett-Packard, com.hp.io.Poll, http://www.unixsolutions.hp.com/products/

java/sdk12204rnotes.html

[21] Tim Hickney, JScheme, http://tigereye.cs.brandeis.edu/Applets/Jscheme.

html

172

http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://msdn.microsoft.com/net/ecma/
http://www.ecma.ch/ecma1/TOPICS/ECMA%20CLI%20Presentation.ppt
http://www.ecma.ch/ecma1/TOPICS/ECMA%20CLI%20Presentation.ppt
http://www.ecma.ch/stand/ecma-262.htm
http://www.awl.com/product/0,2627,0201633612,00.html
http://www.awl.com/product/0,2627,0201633612,00.html
http://java.sun.com/docs/books/jls/html/index.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-190-2
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-190-2
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme_toc.html
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme_toc.html
http://www.unixsolutions.hp.com/products/java/sdk12204rnotes.html
http://www.unixsolutions.hp.com/products/java/sdk12204rnotes.html
http://tigereye.cs.brandeis.edu/Applets/Jscheme.html
http://tigereye.cs.brandeis.edu/Applets/Jscheme.html

[22] Stéphane Hillion, The scheme package, http://www-sop.inria.fr/koala/shillion/

sp/

[23] Stéphane Hillion, DynamicJava, http://www.inria.fr/koala/djava/

[24] Aubrey Jaffer, SCM, http://www-swiss.ai.mit.edu/\simjaffer/SCM.html

[25] Aubrey Jaffer, test.scm, http://ftp.swiss.ai.mit.edu/pub/scm/OLD/test.scm

[26] Bruce A. Jognson, test.scm, http://www.nmrview.com/swank/index.html

[27] JSR #000051: New I/O APIs for the Java Platform, http://java.sun.com/

aboutJava/communityprocess/jsr/jsr_051_ioapis.html

[28] Richard Kelsey, William Clinger and Jonathan Rees editors, Revised5Report on the

Algorithmic Language Scheme, (2 November 1991). http://www.swiss.ai.mit.edu/

ftpdir/scheme-reports/r5rs-html/r5rs_toc.html

[29] Richard Kelsey and Jonathan Rees, A Tractable Scheme Implementation, in Journal of

Lisp and Symbolic Computation, 7:315-335 (1994). http://www-swiss.ai.mit.edu/

\simjar/s48.html

[30] Paul Kinnucan, Java Development Environment for Emacs, http://sunsite.dk/jde/

[31] Donovan Kolbly, RScheme, http://www.rscheme.org

[32] Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman, Chris Welty, et

al., GNU Emacs Lisp Reference Manual, Free Software Foundation, Cambridge, Mas-

sachusetts, edition 2.4b. ftp://ftp.gnu.ai.mit.edu/pub/gnu/elisp-manual-19-2.

4.2.tar.gz

[33] Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification,

Addison-Wesley (September 1996). http://java.sun.com/doc/books/vmspec/html/

VMSpecTOC.doc.html

[34] John K. Ousterhout, Tcl: An embeddable command language, in The Proceedings of

the 1990 Winter USENIX Conference, pp. 133-146. ftp://ftp.smli.com/pub/tcl/

docs/tclUsenix90.ps

[35] John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley (1 May 1994).

173

http://www-sop.inria.fr/koala/shillion/sp/
http://www-sop.inria.fr/koala/shillion/sp/
http://www.inria.fr/koala/djava/
http://www-swiss.ai.mit.edu/$sim $jaffer/SCM.html
http://ftp.swiss.ai.mit.edu/pub/scm/OLD/test.scm
http://www.nmrview.com/swank/index.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_051_ioapis.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_051_ioapis.html
http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs-html/r5rs_toc.html
http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs-html/r5rs_toc.html
http://www-swiss.ai.mit.edu/$sim $jar/s48.html
http://www-swiss.ai.mit.edu/$sim $jar/s48.html
http://sunsite.dk/jde/
http://www.rscheme.org
ftp://ftp.gnu.ai.mit.edu/pub/gnu/elisp-manual-19-2.4.2.tar.gz
ftp://ftp.gnu.ai.mit.edu/pub/gnu/elisp-manual-19-2.4.2.tar.gz
http://java.sun.com/doc/books/vmspec/html/VMSpecTOC.doc.html
http://java.sun.com/doc/books/vmspec/html/VMSpecTOC.doc.html
ftp://ftp.smli.com/pub/tcl/docs/tclUsenix90.ps
ftp://ftp.smli.com/pub/tcl/docs/tclUsenix90.ps

[36] Project GNU, Guile, http://www.gnu.org/software/guile/guile.html

[37] Wolfgang W. Kuchlin and Jeffrey A. Ward, Experiments with Virtual Threads, Techni-

cal report, CIS Department, Ohio State University, Columbus, OH, September 1992.

[Kuchlin and Ward, 1992]

[38] Michael G. Lehman, HotTEA, http://www.cereus7.com

[39] McCarthy, John. History of LISP., ACM Sigplan Notices 13,8 (August 1978), http:

//www-formal.stanford.edu/jmc/history/lisp.html

[40] Microsoft Corporation, JScript, http://www.microsoft.com/jscript

[41] Microsoft Corporation, Visual Basic, http://www.microsoft.com/vbasic

[42] Microsoft Corporation, ActiveX Scripting (24 October 1996). http://www.microsoft.

com/intdev/sdk/docs/olescrpt/axscript.htm

[43] Scott G. Miller, LISC (LIghtweight Scheme on Caffeine), ftp://ftp.gamora.org/

pub/gamora/lisc

[44] MIT Project on Mathematics and Computation, MIT Scheme, http://www.swiss.

ai.mit.edu/projects/scheme

[45] John Neffenger, VolanoMark, http://www.volano.com/benchmarks.html

[46] Peter Norvig, SILK - Scheme in Fifty KB (in Java), http://www.norvig.com/SILK.

html

[47] Jonathan Rees, Pseudoscheme, http://www.swiss.ai.mit.edu/ftpdir/pseudo

[48] Jonathan A. Rees and Norman I. Adams IV, T: A dialect of Lisp or, lambda: The

ultimate software tool. In Conference Record of the 1982 ACM Symposium on Lisp and

Functional Programming, pp. 114-122 (1982).

[49] JPython, http://www.jpython.org

[50] Rhino: JavaScript for Java, http://www.mozilla.org/rhino

[51] Scriptics, Jacl, http://dev.scriptics.com/software/java

174

http://www.gnu.org/software/guile/guile.html
http://www.cereus7.com
http://www-formal.stanford.edu/jmc/history/lisp.html
http://www-formal.stanford.edu/jmc/history/lisp.html
http://www.microsoft.com/jscript
http://www.microsoft.com/vbasic
http://www.microsoft.com/intdev/sdk/docs/olescrpt/axscript.htm
http://www.microsoft.com/intdev/sdk/docs/olescrpt/axscript.htm
ftp://ftp.gamora.org/pub/gamora/lisc
ftp://ftp.gamora.org/pub/gamora/lisc
http://www.swiss.ai.mit.edu/projects/scheme
http://www.swiss.ai.mit.edu/projects/scheme
http://www.volano.com/benchmarks.html
http://www.norvig.com/SILK.html
http://www.norvig.com/SILK.html
http://www.swiss.ai.mit.edu/ftpdir/pseudo
http://www.jpython.org
http://www.mozilla.org/rhino
http://dev.scriptics.com/software/java

[52] Olin Shivers, Cig—a C Interface Generator for Scheme 48, http://www.swiss.ai.

mit.edu/ftpdir/scsh/scsh-paper.ps

[53] Olin Shivers, A Scheme shell, To appear in the Journal of Lisp and Symbolic Compu-

tation. http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-paper.ps

[54] Olin Shivers and Brian D. Carlstrom, The scsh manual, MIT Laboratory for

Computer Science (November 1995). http://www.swiss.ai.mit.edu/ftpdir/scsh/

scsh-manual.ps

[55] Olin Shivers, Supporting dynamic languages on the Java virtual machine, (25 April

1996). http://www.ai.mit.edu/\simshivers/javaScheme.html

[56] Jeffrey Mark Siskind, Stalin - a STAtic Language ImplementatioN, ftp://ftp.nj.

nec.com/pub/qobi/stalin-0.8.tar.Z

[57] Guy L. Steele, Common Lisp the Language, Second Edition, Digital Press (May 1990)

http://www.cs.cmu.edu/Web/Groups/AI/html/cltl/cltl2.html

[58] T. Suganuma, et al., Overview of the IBM Java Just-in-Time Compiler, http://www.

research.ibm.com/journal/sj/391/suganuma.html

[59] Sun Microsystems, Inc., Multithreaded Programming Guide, http://www1.fatbrain.

com/bookinfo/bookinfo.cl?theisbn=DM10002726 http://docs.sun.com/ab2/

coll.45.13/MTP/@Ab2TocView?Ab2Lang=C&Ab2Enc=iso-8859-1

[60] Robert Tolksdorf, Programming Languages for the Java Virtual Machine, http://

grunge.cs.tu-berlin.de/\simtolk/vmlanguages.html

[61] Christian Queinnec, PS3I, http://youpou.lip6.fr/queinnec/VideoC/ps3i.html

[62] Pinku Surana and Mark DePristo, The Hotdog Compiler, http://www.cs.

northwestern.edu/\simsurana

[63] Michael Travers, Skij, http://alphaworks.ibm.com/tech/Skij

[64] John Vert, Writing Scalable Applications for Windows NT, Windows NT Base Group

http://msdn.microsoft.com/library/techart/msdn_scalabil.htm

175

http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-paper.ps
http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-paper.ps
http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-paper.ps
http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-manual.ps
http://www.swiss.ai.mit.edu/ftpdir/scsh/scsh-manual.ps
http://www.ai.mit.edu/$sim $shivers/javaScheme.html
ftp://ftp.nj.nec.com/pub/qobi/stalin-0.8.tar.Z
ftp://ftp.nj.nec.com/pub/qobi/stalin-0.8.tar.Z
http://www.cs.cmu.edu/Web/Groups/AI/html/cltl/cltl2.html
http://www.research.ibm.com/journal/sj/391/suganuma.html
http://www.research.ibm.com/journal/sj/391/suganuma.html
http://www1.fatbrain.com/bookinfo/bookinfo.cl?theisbn=DM10002726
http://www1.fatbrain.com/bookinfo/bookinfo.cl?theisbn=DM10002726
http://docs.sun.com/ab2/coll.45.13/MTP/@Ab2TocView?Ab2Lang=C&Ab2Enc=iso-8859-1
http://docs.sun.com/ab2/coll.45.13/MTP/@Ab2TocView?Ab2Lang=C&Ab2Enc=iso-8859-1
http://grunge.cs.tu-berlin.de/$sim $tolk/vmlanguages.html
http://grunge.cs.tu-berlin.de/$sim $tolk/vmlanguages.html
http://youpou.lip6.fr/queinnec/VideoC/ps3i.html
http://www.cs.northwestern.edu/$sim $surana
http://www.cs.northwestern.edu/$sim $surana
http://alphaworks.ibm.com/tech/Skij
http://msdn.microsoft.com/library/techart/msdn_scalabil.htm

[65] Chris Walton, LispkitLisp Compiler in Java, (1997) http://www.dcs.ed.ac.uk/home/

cdw/MyProjects/SECD/Applet/lispkit.html

[66] Arjuna Wijeyekoon, MIT Scheme in Java, http://web.mit.edu/arjuna/www/

scheme/scheme.html

176

http://www.dcs.ed.ac.uk/home/cdw/MyProjects/SECD/Applet/lispkit.html
http://www.dcs.ed.ac.uk/home/cdw/MyProjects/SECD/Applet/lispkit.html
http://web.mit.edu/arjuna/www/scheme/scheme.html
http://web.mit.edu/arjuna/www/scheme/scheme.html

	Introduction
	Interpretation Strategies
	Expression Interpreter
	Statement Interpreter
	Byte-code Interpreter
	Byte-code Generation

	First-Pass Implementation
	Beginning
	Expression.eval
	Procedure.apply
	Syntax
	Scheme types and their Java representation
	SelfEvaluating
	booleans
	symbols
	numbers
	characters
	strings
	pairs
	vectors
	procedures
	ports

	Reader
	Expression.analyze
	Loader
	Writer
	Primitives
	Script
	REPL
	ScriptException
	Java-to-Scheme API
	Extensions to Scheme for Java
	java.lang.Object
	java.util.*
	Processes
	Mail

	Analysis of First-Pass Implementation
	Performance
	Maintainability
	Standard Compliance

	Second-Pass Implementation
	Removing SelfEvaluating Expression
	Expression Inheritance Cleanup
	Primitive Type Marshalling

	Compiler
	CompileTimeEnvironment
	GlobalVariables as Cells
	Table-Driven Syntax

	Primitives
	I/O Primitives
	Externalizing Primitive Definitions
	Removing Non-Primitive Primitives
	Partitioning Primitive Definitions

	Arrays
	StringBuffer to char[]
	Arguments from Vector to Object[]

	Application Special Cases
	Unrolling Primitives

	Handling of Exceptions
	Debugging
	Java Debugger
	Stack Traces
	Source
	REPLServer

	Analysis of Second-Pass Implementation
	Modules
	Performance
	Macros

	Third-Pass Implementation
	let Optimization
	Closure Analysis
	Stack
	Until
	Closure Analysis at Compile Time
	Closure Analysis at Run Time

	Quoted
	Removing Implicit Begin
	Analysis of Third-Pass Implementation
	Analysis of let Optimization
	Analysis of Closure Analysis

	Fourth-Pass Implementation
	Applet
	java.net.URL
	Syntax Checking
	ScriptException
	Script Widget

	Reflection
	java.lang.reflect
	Reflection Extensions
	Reflection Performance

	Multi-engine
	Procedures
	Thread-Local Storage versus Stack

	Internationalization
	Performance
	GrowOnlyHashtable
	new Integer
	char[] to String

	Analysis of Fourth-Pass Implementation
	Applet versus Reflection
	Primitives in Applet Environment
	Multi-Engine versus REPLServer versus HTML
	Remaining Limitations to Scheme for Java

	Java and Scheme
	Java Advantages
	Portability
	Language
	Platform

	Java Disadvantages
	Threads
	Synchronization
	Classes
	RuntimeExceptions
	Assert and Macros
	Numbers
	else if
	Exit
	Tail Recursion

	Scheme Advantages
	Size
	Garbage Collection
	Functional Programming

	Scheme Disadvantages
	Language
	Libraries
	I/O
	Platform
	Testing
	Goals

	Language Discussion
	Code-Data Duality
	Packages and Modules
	Type Safety
	Dynamic Invocation
	C
	Scheme
	Java

	Threads, Dynamic Variables, and Thread-Local Storage
	Syntax

	Comparative Analysis
	Comparative Analysis with other Scheme systems
	Java Scheme Systems
	Non-Java Scheme Systems

	Comparative Analysis with other Scheme-like Java systems
	The scheme package
	PS3I
	LISC
	HotScheme
	MIT Scheme in Java
	PAT
	LispkitLISP Compiler in Java

	Comparative Analysis with other Java extension systems
	HotTea
	Rhino
	Jacl
	JPython
	BeanShell
	DynamicJava

	Future Work
	Conclusion
	Scheme-to-Java API
	Java-to-Scheme API
	Java Performance Lessons
	Thou shall not synchronize
	Thou shall not allocate
	Thou shall not abuse exceptions
	Thou shall not forsake buffering
	Thou shall not forsake arrays
	Thou shall honor pointer equality

	Final Thoughts

	Acknowledgments
	Benchmark Results
	Script
	Sun JDK 1.3.0
	Sun JDK 1.2.2
	Sun JDK 1.1.8
	IBM JDK 1.3.0
	IBM JDK 1.1.8
	Microsoft SDK for Java 3.1

	Kawa
	Sun JDK 1.3.0
	Sun JDK 1.2.2
	Sun JDK 1.1.8
	IBM JDK 1.3.0
	IBM JDK 1.1.8
	Microsoft SDK for Java 3.1

	SILK
	Sun JDK 1.3.0
	Sun JDK 1.2.2
	Sun JDK 1.1.8
	IBM JDK 1.3.0
	IBM JDK 1.1.8
	Microsoft SDK for Java 3.1

	Skij
	Sun JDK 1.3.0
	Sun JDK 1.2.2
	Sun JDK 1.1.8
	IBM JDK 1.3.0
	IBM JDK 1.1.8
	Microsoft SDK for Java 3.1

	WinScheme based on Scheme 48 0.52
	without ,bench
	with ,bench

	SCM 5d3
	MIT Scheme 7.5.10
	plain load
	sf load
	cf load

