Parallelizing
SPEC|bb2000 with
Transactional Memory

JaeWoong Chung,

Chi Cao Minh, Brian D. Carlstrom,
Christos Kozyrakis

Computer Systems Lab
Stanford University
http://tcc.stanford.edu




The question we all share

m [M provides
m Speculative parallelism for sequential applications
m Coarse-grain synchronization for parallel applications

m How can TM help parallelize complex applications?
m Beyond basic data-structures
m Can we get 90% of performance at 10% of the effort?

m \We parallelized SPECjbb2000 with transactions
m |rregular code from the enterprise domain




Ccontents

SPECjbb2000 overview
Methodology

Transactional programming with
m Flat transaction

m Closed nesting

m Open nesting

Other interesting ideas
Conclusion




SPECjbb2000 overview (1)

m 3 tier enterprise system

Client Tier : Transaction Server Tier Database Tier

(B-Tree)

|
|
|
Driver Threads District : orderTable
|
|
|

itemTable

_ / newlD
Transaction (Integer) / (B-Tree)

|
WarehouSe e stockTable
l (B-Tree)

' Warehouse :
itemTable

m Shared data CRIED)
m B-tree structure in database tier stockTable
= Shared variables in transaction server tier = (& 11€€)

m Shared warehouse




SPEC|bb2000 overview (2)

m [ransactionManager::go()
m 5 types of e-commerce transactions
= \WWe worked on this loop.

while (workToDo) {
switch( e-commerce tx type ) {
case new_order:
case payment:
case order_status:
case delivery :
case stock level:




Methodology

m Execution-driven simulator
m Transactional Coherence and Consistency
m 8 PowerPC core
m 32K L1 and 256K L2 cache
m 16 bytes bus

m Java environment
s JikesRVM (JVM)
m GNU classpath (Java runtime library)

m synchronized blocks are removed.
m For SPECjbb2000, too




Flat transaction

m Speculative parallelism
= No analysis on potential races

m 1 transaction for 1 e-commerce transaction
= Equivalent to having 1 global lock

case new_order:
atomic { // generate new order }; break;

case payment:
atomic { // make payment }; break;

case order_status:
atomic { // check order status }; break;

case delivery :
atomic { // make delivery }; break;

case stock_level:
atomic { // check stock }; break;

m 3.09x speedup over coarse-grain locking
m 62.7 % cycles lost due to violation




Analysis of violations

m Profiler provides us a violation report

m Violation sources
m JikesRVM, GNU classpath

= Minor impact

s SPECjbb2000

= New_order type takes almost 50% of all transactions.

Case new_order: Shared Variable

=) // 1. initialize a new order e-commerce TV /B-Tree

= /[ 2. assigh a new order IC (hewID++)

—) // 3. retrieve items/stocks from waienous: (itemTable, stockTable)
=) // 4. calculate the cost and update w=archouse

=) // 5. record the order for delivery (orderTable) <= B_Tree

—) // 6. display the processing result




Closed nesting (1)

m Child TX Is merged to parent TX at commit.

SEFReduction of violation penalty

m Parent RW-set <= Parent RW-set U Child RW-set
#élosed nesting doesn’t break the atomicity of original TX.

Core O Core 1l

/I A is initially O;
atomic {

—

atomic {
A++; [[1




Closed nesting (2)

m 2 closed nested transactions

Case new_order:
/[ 1. initialize a new order TX

/[ 2. assign a new order ID (newlID++)

// 3. retrieve items/stocks from warehouse (itemTable,
stockTable)

// 4. calculate the cost and update warehouse

/[ 5. record the order for delivery (orderTable)
// 6. display the result

m 47.9 % reduction In violation cycles
m 5.36X speedup




Open nesting (1)

m Child TX communicates to all the other TXes

m Child W-set is broadcasted through system.
SEECommunication in the middle of a transaction

= Child R-set is cleaned out.
SEFElimination of violations

Core O

Il A is initially 0O;
atomic {

open_atomic {
A++; 11

No conflict !




Open nesting (2)

m 1 open nested transaction

/[ 2. assigh a new order ID (hewID++)

/Il 3. retrieve items/stocks from warehouse (itemTable,
stockTable)

/[ 4. calculate the cost and update warehouse
/[ 5. record the order for delivery (orderTable)
/[ 6. display the result

Case new_order:
/' 1. initialize a new order §

newl|D++

m 12 % reduction in the number of violation
m 4.96x speedup

m Compensation code for rollback
m Here rollback results in only a gap in newlD.




Other interesting ideas

m Mixture of open/close nesting
m Advantages from both nested transactions

m Smaller flat transactions
m newlD is incremeted In a separate flat transaction.

m [n general, programmers should guarantee the
correctness.

m Composabillity is a challenge.

m Early release
m For B-tree structure
m See talk on “Early Release: Friend or Foe?”




Conclusion

m \We parallelized SPECjbb2000 with transactions.

m Flat transaction for speculative parallelism
= A reasonable speedup is obtained.

m Closed nesting
= The violation penalty is reduced.

m Open nesting
= Violations are eliminated.

m Good speedup with small changes In source code
m A couple of nested transactions

m \We are heading for a transactional benchmark
suite.

m Realistic transactional applications




Questions?

Jae Woong Chung

Iwchung@stanford.edu

Computer Systems Lab.
Stanford University
http://tcc.stanford.edu




