
April 15 2008 Thesis Defense Talk

ATLAS
Software Development Environment
for Hardware Transactional Memory

Sewook Wee

Computer Systems Lab
Stanford University

2

The Parallel Programming Crisis

 Multi-cores for scalable performance
 No faster single core any more

 Parallel programming is a must, but still
hard
 Multiple threads access shared memory
 Correct synchronization is required

 Conventional: lock-based synchronization
 Coarse-grain locks: serialize system
 Fine-grain locks: hard to be correct

3

Alternative:
Transactional Memory (TM)
 Memory transactions [Knight’86][Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take

effect

 Isolation
 No other code can observe memory updates before

commit

 Serializability
 Transactions seem to commit in a single serial order

4

Advantages of TM

 As easy to use as coarse-grain locks
 Programmer declares the atomic region
 No explicit declaration or management of locks

 As good performance as fine-grain locks
 System implements synchronization
 Optimistic concurrency [Kung’81]
 Slow down only on true conflicts (R-W or W-W)
 Fine-grain dependency detection

 No trade-off between performance &
correctness

5

Implementation of TM

 Software TM [Harris’03][Saha’06][Dice’06]

 Versioning & conflict detection in software
 No hardware change, flexible
 Poor performance (up to 8x)

 Hardware TM [Herlihy & Moss’93]
[Hammond’04][Moore’06]

 Modifying data cache hardware
 High performance
 Correctness: strong isolation

6

Software Environment for HTM

 Programming language [Carlstrom’07]
 Parallel programming interface

 Operating system
 Provides virtualization, resource management, …
 Challenges for TM

 Interaction of active transaction and OS

 Productivity tools
 Correctness and performance debugging tools
 Build up on TM features

7

Contributions

 An operating system for hardware TM

 Productivity tools for parallel
programming

 Full-system prototyping & evaluation

8

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

9

TCC: Transactional
 Coherence/Consistency
 A hardware-assisted TM

implementation
 Avoids overhead of software-only

implementation
 Semantically correct TM implementation

 A system that uses TM for coherence
& consistency
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 All transactions, all the time

10

TCC Execution Model
CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Undo

Execute

Code

ld 0xccccRe-

Execute

Code

...

ld 0x1234

ld 0x5678

...

ld 0xcccc
...

...

0xcccc
0xcccc

st 0xcccc

...

ld 0xabdc

ld 0xe4e4

...

 See [ISCA’04] for details

ti
m

e

11

Processor

W7:0

TAG

(2-ported)

Data

Cache

Violation
Load/Store

Address

Snoop

Control

Commit Address

Commit

Control

Commit

Data

Store

Address

FIFO

Register

Checkpoint

Commit Bus

Refill Bus

Commit

Address In

Commit

Data Out

Commit

Address Out

DATA

(single-ported)
R7:0V

CMP Architecture for TCC

Transactionally Read Bits:

ld 0xdeadbeef

Transactionally Written Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming
address to R bits

Commit:
Read pointers from Store
Address FIFO, flush
addresses with W bits set

 See [PACT’05] for details

12

ATLAS Prototype Architecture

 Goal
 Convinces a proof-of-concept of TCC
 Experiments with software issues

Main memory & I/O

Coherent bus with commit token arbiter

CPU0

TCC
Cache

CPU1

TCC
Cache

CPU2

TCC
Cache

CPU7

TCC
Cache

…

13

Mapping to BEE2 Board

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

Arb-
iter

switch
memory

14

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

15

What should we do
if OS needs to run
in the middle of

transaction?

Challenges in OS for HTM

16

Challenges in OS for HTM

 Loss of isolation at exception
 Exception info is not visible to OS until commit
 I.e. faulting address in TLB miss

 Loss of atomicity at exception
 Some exception services cannot be undone
 I.e. file I/O

 Performance
 OS preempts user thread in the middle of

transaction
 I.e. interrupts

17

Practical Solutions

 Performance
 A dedicated CPU for operating system
 No need to preempt user thread in the

middle of transaction

 Loss of isolation at exception
 Mailbox: separate communication layer

between application and OS

 Loss of atomicity at exception
 Serialize system for irrevocable exceptions

18

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

Arb
iter

switch
memory

CPU

$ M

CPU

$ M

switch

CPU

$ M Arb
iter

switch
memory

CPU

$ M

CPU

$ M

switch

CPU

$ M

CPU

$ M

switch

CPU

$ M

CPU

$ M

switch

Architecture Update

Linux

proxy
kernel

19

P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

Operating system BootloaderATLAS core

Initial
context

TM application

Execution overview (1) -
 Start of an application

 ATLAS core
 A user-level program runs on OS CPU
 Same address space as TM application
 Start application & listen to requests from apps

 Initial context
 Registers, PC, PID, …

20

P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

ATLAS core

Exception
Information

TM application

Execution overview (2) -
 Exception

 Proxy kernel forward the exception information to OS CPU
 Fault address for TLB misses
 Syscall number and arguments for syscalls

 OS CPU services the request and returns the result
 TLB mapping for TLB misses
 Return value and error code for syscalls

Operating system

Exception
Result

Proxy kernel

21

Operating System Statistics

 Strategy: Localize modifications
 Minimize the work needed to track main stream kernel

development

 Linux kernel (version 2.4.30)
 Device driver that provides user-level access to

privilege-level information
 ~1000 lines (C, ASM)

 Proxy kernel
 Runs on application CPU
 ~1000 lines (C, ASM)

 A full workstation for programmer’s perspective

22

System Performance

 Total execution time scales
 OS time scales, too

23

Scalability of OS CPU

 Single CPU for operating system
 Eventually, it will become a bottleneck as

system scales
 Multiple CPUs for OS will need to run SMP

OS

 Micro-benchmark experiment
 Simultaneous TLB miss requests
 Controlled injection ratio
 Looking for the number of application CPUs

that saturates OS CPU

24

Experiment results

 Average TLB miss rate = 1.24%
 Start to congest from 8 CPUs

 With victim TLB (Average TLB miss rate = 0.08%)
 Start to congest from 64 CPUs

25

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

26

Challenges in Productivity Tools
for Parallel Programming
 Correctness

 Nondeterministic behavior
 Related to a thread interleaving

 Need to track an entire interleaving
 Very expensive in time/space

 Performance
 Detailed information of the performance

bottleneck events
 Light-weight monitoring

 Do not disturb the interleaving

27

Opportunities with HTM

 TM already tracks all reads/writes
 Cheaper to record memory access

interleaving

 TM allows non-intrusive logging
 Software instrumentation in TM system
 Not in user’s application

 All transactions, all the time
 Everything in transactional granularity

Thesis Defense Talk

Tool 1: ReplayT
Deterministic Replay

29

Deterministic Replay

 Challenges in recording an interleaving
 Record every single memory access
 Intrusive
 Large footprint

 ReplayT’s approach
 Record only a transaction interleaving
 Minimally overhead: 1 event per transaction
 Footprint: 1 byte per transaction (thread ID)

30

ReplayT Runtime

Log Phase Replay Phase

Commit

time time

LOG:

T0

T1

T2 T2

Commit

T0

T1

T2 T2

Commit protocol
replays logged
commit order

T0 T1 T2

31

Runtime Overhead

 Minimal time & space overhead

B: baseline
L: log mode
R: replay mode

 Average on 10
benchmarks
 7 STAMP,

3 SPLASH/SPLASH2

 Less than 1.6%
overhead for logging

 More overhead in replay
mode
 longer arbitration time

 1B per 7119 insts.

Thesis Defense Talk

Tool 2. AVIO-TM
Atomicity Violation Detection

33

Atomicity Violation

 Problem: programmer breaks an atomic
task into two transactions

ATMDepositATMDeposit::
 atomic {atomic {
 t = Balancet = Balance
 Balance = t + $100 Balance = t + $100
 }}

 atomic {atomic {
 Balance = t + $100Balance = t + $100
 }}

ATMDepositATMDeposit::
 atomic { atomic {
 t = Balancet = Balance
 }} directDepositdirectDeposit::

 atomic {atomic {
 t = Balancet = Balance
 Balance = t + $1,000Balance = t + $1,000
 }}



34

Atomicity Violation Detection

 AVIO [Lu’06]
 Atomic region = No unserializable interleavings
 Extracts a set of atomic region from correct runs
 Detects unserializable interleavings in buggy runs

 Challenges of AVIO
 Need to record all loads/stores in global order

 Slow (28x)
 Intrusive - software instrumentation
 Storage overhead

 Slow analysis
 Due to the large volume of data

35

My Approach: AVIO-TM

 Data collection in deterministic rerun
 Captures original interleavings

 Data collection at transaction granularity
 Eliminate repeated loggings for same address

(10x)
 Lower storage overhead

 Data analysis in transaction granularity
 Less possible interleavings  faster extraction
 Less data  faster analysis
 More accurate with complementary detection tools

Thesis Defense Talk

Tool 3. TAPE
Performance Bottleneck

Monitor

37

TM Performance Bottlenecks

 Dependency conflicts
 Aborted transactions waste useful cycles

 Buffer overflows
 Speculative states may not fit into cache
 Serialization

 Workload imbalance

 Transaction API overhead

38

Dependency Conflicts

Write XWrite X

Useful Arbitration Commit Abort

Time

T0

Read XRead XT1

Useful cycles are wasted in T1

39

TAPE on ATLAS

 TAPE [Chafi, ICS2005]

 Light weight runtime monitor for performance
bottlenecks

 Hardware
 Tracks information of performance bottleneck

events

 Software
 Collects information from hardware for events
 Manages them through out the execution

40

TAPE Conflict

 Commit X
from Thread 1

T0

Read X

Object: X
Writing Thread: 1
Wasted cycles: 82,402

Restart

Read X

Read PC: 0x100037FC

Per Thread
 Read PC: 0x100037FC
 …
 Occurrence: 34

Per Transaction

41

Read_PC Object_Addr Occurence Loss Write_Proc Read in source line
10001390 100830e0 30 6446858 1 ..//vacation/manager.c:134
10001500 100830e0 32 1265341 3 ..//vacation/manager.c:134
10001448 100830e0 29 766816 4 ..//vacation/manager.c:134
10005f4c 304492e4 3 750669 6 ..//lib/rbtree.c:105

TAPE Conflict Report

 Now, programmers know,
 Where the conflicts are
 What the conflicting objects are
 Who the conflicting threads are
 How expensive the conflicts are

 Productive performance tuning!

42

Runtime Overhead

 Base overhead
 2.7% for 1p

 Overhead from real
conflicts
 More CPU

configuration has
higher chance of
conflicts

 Max. 5% in total

43

Conclusion

 An operating system for hardware TM
 A dedicated CPU for the operating system
 Proxy kernel on application CPU
 Separate communication channel between them

 Productivity tools for parallel programming
 ReplayT: Deterministic replay
 AVIO-TM: Atomicity violation detection
 TAPE: Runtime performance bottleneck monitor

 Full-system prototyping & evaluation
 Convincing proof-of-concept

44

RAMP Tutorial

 ISCA 2006 and ASPLOS 2008

 Audience of >60 people (academia & industry)
 Including faculties from Berkeley, MIT, and UIUC

 Parallelized, tuned, and debugged apps with ATLAS
 From speedup of 1 to ideal speedup in a few minutes
 Hands-on experience with real system

“most successful hands-on tutorial
in last several decades”

- Chuck Thacker (Microsoft Research)

45

Acknowledgements
 My wife So Jung and our baby (coming soon)
 My parents who have supported me for last 30

years
 My advisors: Christos Kozyrakis and Kunle

Olukotun
 My committee: Boris Murmann and Fouad A.

Tobagi
 Njuguna Njoroge, Jared Casper, Jiwon Seo, Chi Cao

Minh, and all other TCC group members
 RAMP community and BEE2 developers
 Shan Lu from UIUC
 Samsung Scholarship
 All of my friends at Stanford & my Church

