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The Parallel Programming Crisis

 Multi-cores for scalable performance
 No faster single core any more

 Parallel programming is a must, but still
hard
 Multiple threads access shared memory
 Correct synchronization is required

 Conventional: lock-based synchronization
 Coarse-grain locks: serialize system
 Fine-grain locks: hard to be correct
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Alternative:
Transactional Memory (TM)
 Memory transactions [Knight’86][Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take

effect

 Isolation
 No other code can observe memory updates before

commit

 Serializability
 Transactions seem to commit in a single serial order
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Advantages of TM

 As easy to use as coarse-grain locks
 Programmer declares the atomic region
 No explicit declaration or management of locks

 As good performance as fine-grain locks
 System implements synchronization
 Optimistic concurrency [Kung’81]
 Slow down only on true conflicts (R-W or W-W)
 Fine-grain dependency detection

 No trade-off between performance &
correctness
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Implementation of TM

 Software TM [Harris’03][Saha’06][Dice’06]

 Versioning & conflict detection in software
 No hardware change, flexible
 Poor performance (up to 8x)

 Hardware TM [Herlihy & Moss’93]
[Hammond’04][Moore’06]

 Modifying data cache hardware
 High performance
 Correctness: strong isolation
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Software Environment for HTM

 Programming language [Carlstrom’07]
 Parallel programming interface

 Operating system
 Provides virtualization, resource management, …
 Challenges for TM

 Interaction of active transaction and OS

 Productivity tools
 Correctness and performance debugging tools
 Build up on TM features



7

Contributions

 An operating system for hardware TM

 Productivity tools for parallel
programming

 Full-system prototyping & evaluation
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Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions
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TCC: Transactional
          Coherence/Consistency
 A hardware-assisted TM

implementation
 Avoids overhead of software-only

implementation
 Semantically correct TM implementation

 A system that uses TM for coherence
& consistency
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 All transactions, all the time
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TCC Execution Model
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 See [ISCA’04] for details
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Processor
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CMP Architecture for TCC

Transactionally Read Bits:

ld 0xdeadbeef

Transactionally Written Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming
address to R bits

Commit:
Read pointers from Store
Address FIFO, flush
addresses with W bits set

 See [PACT’05] for details
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ATLAS Prototype Architecture

 Goal
 Convinces a proof-of-concept of TCC
 Experiments with software issues

Main memory & I/O

Coherent bus with commit token arbiter
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Mapping to BEE2 Board
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Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions
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What should we do
if OS needs to run
in the middle of

transaction?

Challenges in OS for HTM
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Challenges in OS for HTM

 Loss of isolation at exception
 Exception info is not visible to OS until commit
 I.e. faulting address in TLB miss

 Loss of atomicity at exception
 Some exception services cannot be undone
 I.e. file I/O

 Performance
 OS preempts user thread in the middle of

transaction
 I.e. interrupts
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Practical Solutions

 Performance
 A dedicated CPU for operating system
 No need to preempt user thread in the

middle of transaction

 Loss of isolation at exception
 Mailbox: separate communication layer

between application and OS

 Loss of atomicity at exception
 Serialize system for irrevocable exceptions
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P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

Operating system BootloaderATLAS core

Initial
context

TM application

Execution overview (1) -
                  Start of an application

 ATLAS core
 A user-level program runs on OS CPU
 Same address space as TM application
 Start application & listen to requests from apps

 Initial context
 Registers, PC, PID, …



20

P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

ATLAS core

Exception
Information

TM application

Execution overview (2) -
           Exception

 Proxy kernel forward the exception information to OS CPU
 Fault address for TLB misses
 Syscall number and arguments for syscalls

 OS CPU services the request and returns the result
 TLB mapping for TLB misses
 Return value and error code for syscalls

Operating system

Exception
Result

Proxy kernel
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Operating System Statistics

 Strategy: Localize modifications
 Minimize the work needed to track main stream kernel

development

 Linux kernel (version 2.4.30)
 Device driver that provides user-level access to

privilege-level information
 ~1000 lines (C, ASM)

 Proxy kernel
 Runs on application CPU
 ~1000 lines (C, ASM)

 A full workstation for programmer’s perspective



22

System Performance

 Total execution time scales
 OS time scales, too
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Scalability of OS CPU

 Single CPU for operating system
 Eventually, it will become a bottleneck as

system scales
 Multiple CPUs for OS will need to run SMP

OS

 Micro-benchmark experiment
 Simultaneous TLB miss requests
 Controlled injection ratio
 Looking for the number of application CPUs

that saturates OS CPU
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Experiment results

 Average TLB miss rate = 1.24%
 Start to congest from 8 CPUs

 With victim TLB (Average TLB miss rate = 0.08%)
 Start to congest from 64 CPUs
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Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions
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Challenges in Productivity Tools
for Parallel Programming
 Correctness

 Nondeterministic behavior
 Related to a thread interleaving

 Need to track an entire interleaving
 Very expensive in time/space

 Performance
 Detailed information of the performance

bottleneck events
 Light-weight monitoring

 Do not disturb the interleaving
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Opportunities with HTM

 TM already tracks all reads/writes
 Cheaper to record memory access

interleaving

 TM allows non-intrusive logging
 Software instrumentation in TM system
 Not in user’s application

 All transactions, all the time
 Everything in transactional granularity



Thesis Defense Talk

Tool 1: ReplayT
Deterministic Replay



29

Deterministic Replay

 Challenges in recording an interleaving
 Record every single memory access
 Intrusive
 Large footprint

 ReplayT’s approach
 Record only a transaction interleaving
 Minimally overhead: 1 event per transaction
 Footprint: 1 byte per transaction (thread ID)
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ReplayT Runtime

Log Phase Replay Phase

Commit

time time

LOG:

T0

T1

T2 T2

Commit

T0

T1

T2 T2

Commit protocol
replays logged
commit order

T0 T1 T2
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Runtime Overhead

 Minimal time & space overhead

B: baseline
L: log mode
R: replay mode

 Average on 10
benchmarks
 7 STAMP,

3 SPLASH/SPLASH2

 Less than 1.6%
overhead for logging

 More overhead in replay
mode
 longer arbitration time

 1B per 7119 insts.



Thesis Defense Talk

Tool 2. AVIO-TM
Atomicity Violation Detection
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Atomicity Violation

 Problem: programmer breaks an atomic
task into two transactions

ATMDepositATMDeposit::
    atomic {atomic {
        t = Balancet = Balance
    Balance = t + $100    Balance = t + $100
    }}

    atomic {atomic {
        Balance = t + $100Balance = t + $100
    }}

ATMDepositATMDeposit::
  atomic {  atomic {
          t = Balancet = Balance
    }} directDepositdirectDeposit::

    atomic {atomic {
        t = Balancet = Balance
        Balance = t + $1,000Balance = t + $1,000
    }}


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Atomicity Violation Detection

 AVIO [Lu’06]
 Atomic region = No unserializable interleavings
 Extracts a set of atomic region from correct runs
 Detects unserializable interleavings in buggy runs

 Challenges of AVIO
 Need to record all loads/stores in global order

 Slow (28x)
 Intrusive - software instrumentation
 Storage overhead

 Slow analysis
 Due to the large volume of data
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My Approach: AVIO-TM

 Data collection in deterministic rerun
 Captures original interleavings

 Data collection at transaction granularity
 Eliminate repeated loggings for same address

(10x)
 Lower storage overhead

 Data analysis in transaction granularity
 Less possible interleavings  faster extraction
 Less data  faster analysis
 More accurate with complementary detection tools



Thesis Defense Talk

Tool 3. TAPE
Performance Bottleneck

Monitor
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TM Performance Bottlenecks

 Dependency conflicts
 Aborted transactions waste useful cycles

 Buffer overflows
 Speculative states may not fit into cache
 Serialization

 Workload imbalance

 Transaction API overhead
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Dependency Conflicts

Write XWrite X

Useful Arbitration Commit Abort

Time

T0

Read XRead XT1

Useful cycles are wasted in T1
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TAPE on ATLAS

 TAPE [Chafi, ICS2005]

 Light weight runtime monitor for performance
bottlenecks

 Hardware
 Tracks information of performance bottleneck

events

 Software
 Collects information from hardware for events
 Manages them through out the execution
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TAPE Conflict

 Commit X 
from Thread 1

T0

Read X

Object: X
Writing Thread: 1
Wasted cycles: 82,402

Restart

Read X

Read PC: 0x100037FC

Per Thread
  Read PC: 0x100037FC
  …
  Occurrence: 34

Per Transaction
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Read_PC   Object_Addr  Occurence Loss      Write_Proc    Read in source line
10001390  100830e0     30        6446858   1             ..//vacation/manager.c:134
10001500  100830e0     32        1265341   3             ..//vacation/manager.c:134
10001448  100830e0     29         766816   4             ..//vacation/manager.c:134
10005f4c  304492e4      3         750669   6             ..//lib/rbtree.c:105

TAPE Conflict Report

 Now, programmers know,
 Where the conflicts are
 What the conflicting objects are
 Who the conflicting threads are
 How expensive the conflicts are

 Productive performance tuning!
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Runtime Overhead

 Base overhead
 2.7% for 1p

 Overhead from real
conflicts
 More CPU

configuration has
higher chance of
conflicts

 Max. 5% in total
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Conclusion

 An operating system for hardware TM
 A dedicated CPU for the operating system
 Proxy kernel on application CPU
 Separate communication channel between them

 Productivity tools for parallel programming
 ReplayT: Deterministic replay
 AVIO-TM: Atomicity violation detection
 TAPE: Runtime performance bottleneck monitor

 Full-system prototyping & evaluation
 Convincing proof-of-concept
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RAMP Tutorial

 ISCA 2006 and ASPLOS 2008

 Audience of >60 people (academia & industry)
 Including faculties from Berkeley, MIT, and UIUC

 Parallelized, tuned, and debugged apps with ATLAS
 From speedup of 1 to ideal speedup in a few minutes
 Hands-on experience with real system

“most successful hands-on tutorial
in last several decades”

- Chuck Thacker (Microsoft Research)
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