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  Uniprocessor systems hitting limits

  Design complexity overwhelming 

  Power consumption increasing dramatically


  Instruction-level parallelism exhausted


  Solution is multiprocessor systems

  Simpler processor design (but many of them)


  Reduce power requirements


  Expose opportunity for thread-level parallelism
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  Commonly achieved via lock-based parallel programs


  Unfortunately, parallel programming with locks is hard

  Option 1: Coarse-grain locks

▪  Simplicity at less concurrency


  Option 2: Fine-grain locks

▪  Better performance (maybe) at more complexity
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  What is a transaction?

  Group of instructions in computer program:

  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }


  Required properties:  Atomicity, Isolation, Serializability


  Key idea: Use transactions to build parallel programs

  Large atomic blocks simplify parallel programming

  Simplicity of coarse-grain locks with speed of fine-grain locks
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  Life cycle of a transaction:


  Start


  Speculative execution (optimistic)


  Build read-set and write-set

▪  Write-set manages write versioning


  Commit

▪  Fine-grain R-W & W-W conflict detection


  Abort & rollback
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  TM can be implemented in hardware or software


  Hardware-based (HTM)

  [Herlihy 93], [Rajwar 02], [Hammond 04], [Moore 06]

  Strengths: high performance & predictable semantics


  Weaknesses: costly & inflexible


  Software-based (STM)

  [Shavit 95], [Herlihy 03], [Harris 03], [Saha 06], [Dice 06]

  Strengths: low-cost & flexible


  Weaknesses: low performance & unpredictable semantics
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  Standard method to compare TM systems

  Each TM system evaluated with different apps

  How to pick the better of two HTMs? 


  TM system that combines strengths of HTM and STM

  High-performance

  Flexibility


  Low-cost


  Predictable semantics
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  STAMP: Benchmark suite for TM

  8 applications specifically for evaluating TM

  Comprehensive breadth and depth analysis


  Portable to many kinds of TMs

  Public release: http://stamp.stanford.edu 

  IEEE Intl. Symposium on Workload Characterization (IISWC) 2008


  Signature-Accelerated TM (SigTM): Hybrid TM

  Hardware acceleration of software transactions

  Fast, flexible, cost-effective, & predictable semantics


  Intl. Symposium on Computer Architecture (ISCA) 2007
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  Background & Motivation


  STAMP: Benchmark suite for TM


  SigTM: Effective hybrid TM

  Fast, flexible, low-cost


  Predictable semantics


  Conclusions
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  What is a benchmark?

  Program used to evaluate computer performance

  Help accelerate innovation in computer design


  Benchmarks for multiprocessors

  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008) 

  Not good for evaluating TM

▪  Regular algorithms without synchronization problems


  Benchmarks for TM systems

  Microbenchmarks from RSTMv3 (2006)

  STMBench7 (2007)

  Haskell applications by Perfumo et. al (2007)
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  Breadth: variety of algorithms & app domains


  Depth: wide range of transactional behaviors


  Portability: runs on many classes of TM systems
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RSTMv3
 no
 yes
 yes
 Microbenchmarks


STMbench7
 no
 yes
 yes
 Single program


Perfumo et al.
 no
 yes
 no
 Microbenchmarks; 

Written in Haskell




  Breadth

  8 applications covering different domains & algorithms

  Applications not trivially parallelizable


  Depth

  Wide range of transactional behaviors

▪  Transaction length

▪  Read and write set size

▪  Contention amount


  Most spend significant execution time in transactions


  Portability

  Written in C with macro-based transaction annotations

  Works with HTM, STM, and hybrid TM
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bayes
 Machine learning
 Learns structure of a Bayesian 
network


genome
 Bioinformatics
 Performs gene sequencing


intruder
 Security
 Detects network intrusions


kmeans
 Data mining
 Implements K-means clustering


labyrinth
 Engineering
 Routes paths in maze


ssca2
 Scientific
 Creates efficient graph representation


vacation
 Online transaction 
processing


Emulates travel reservation system


yada
 Scientific
 Refines a Delaunay mesh




  Groups data into K clusters


  Possible applications:

  Biology: plant and animal classification

  WWW: analyze web traffic for patterns
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  Emulates travel reservation system

  Similar to 3-tier design in SPECjbb2000
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bayes
 60584
 24
 9
 0.59
 83%


genome
 1717
 32
 2
 0.14
 97%


intruder
 330
 71
 16
 3.54
 33%


kmeans
 153
 25
 25
 0.81
 3%


labyrinth
 219571
 35
 36
 0.94
 100%


ssca2
 50
 1
 2
 0.00
 17%


vacation
 3161
 401
 8
 0.02
 92%


yada
 9795
 256
 108
 2.51
 100%
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  First comprehensive benchmark suite for TM

  Meets breadth, depth, and portability requirements

  Useful tool for analyzing TM systems (including SigTM)


  Public release:  http://stamp.stanford.edu 
  Early adopters:

▪  Industry:  Microsoft, Intel, Sun, & more


▪  Academia:  U. Wisconsin, U. Illinois, & more


  TL2-x86 STM
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  Background & Motivation


  STAMP: Benchmark suite for TM


  SigTM: Effective hybrid TM

  Fast, flexible, low-cost


  Predictable semantics


  Conclusions
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  HTM:  HW does write versioning & conflict detection

  Advantages:

▪  High performance

▪  Predictable semantics


  Disadvantages:

▪  Expensive (e.g., requires cache modifications)

▪  Inflexible (e.g., fixed capacity for write versioning)


  STM:  SW does write versioning & conflict detection

  Advantages:

▪  Low-cost

▪  Easy to change and evolve


  Disadvantages:

▪  High overhead

▪  Unpredictable semantics
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  Hybrid hardware and software TM design

  Fast, flexible, cost-effective

  Predictable semantics


  Design approach:

  Start with software transactions → flexible & cost-effective


  Add hardware (“signatures”) to accelerate → fast

▪  Also provides predictable semantics
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Write versioning
 HW
 SW
 SW


Conflict detection
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  Program:  atomically remove head of linked-list
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ListNode n; 
atomic { 
  n = head; 
  if (n != null) { 

    head = head.next; 

  } 
} 

ListNode n; 
STMstart(); 
  n = STMread(&head); 
  if (n != null) { 
    ListNode t; 
    t = STMread(&head.next); 
    STMwrite(&head, t); 
  } 
STMcommit(); 

High-level
 Low-level

Compiler




  Called at transaction start → init transaction meta data


  Constant total cost per transaction

  Expensive only for short transactions
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STMstart() { 
  checkpoint(); // used to rollback 
  other_initialization(); 
} 



  Called to read shared data → add to read-set


  Building read-set is expensive

  Total cost per transaction varies


  Locality of read accesses, size of read-set, transaction length 
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STMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  ReadSet.insert(addr); 

  return *addr; 
} 



  Called to write shared data → add to write-set


  Total cost per transaction varies 

  Locality of write accesses, size of write-set, transaction length 


  Less cost than STMread (# reads ≥ # writes)
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STMwrite(addr, val) { 
  WriteSet.insert(addr, val); 
} 



  Called at transaction end → atomically commit changes


  Expensive: scan read-set (1x); scan write-set (3x)
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STMcommit() { 
  foreach (addr in WriteSet)   // write set scan 1 
    lock(addr); 
  foreach (addr in ReadSet)    // read set scan 
    validate(addr);            // someone wrote? 
  foreach (addr in WriteSet)   // write set scan 2 
    *addr = WriteSet.getValue(addr); 

  foreach (addr in WriteSet)   // write set scan 3 
    unlock(addr); 
} 



  Measured single-thread STM performance


  1.8x – 5.6x slowdown over sequential


  Hybrid TM should focus on STMread and STMcommit 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  Each HW thread has 2 HW signatures (read & write)

  Each signature implemented by a Bloom filter

▪  Fixed-size bit array with set of hash functions


  No other HW modifications (e.g., no extra cache bits)


  Operations on signature (Bloom filter): insert & lookup
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0
 1
 2
 3
 hash(N) = N mod 4 

0
 1
 2
 3
insert(2) ‐> 

insert(6) ‐> aliasing 

lookup(2)  ‐> hit 

lookup(3)  ‐> miss 

lookup(10) ‐> false hit 



  How SigTM uses its signatures:

  Tx read/write → insert address into read/write signature

  Coherence messages → look up address in signature

▪  Enabled/disabled by software


  If lookup hits in signature, either:

  Trigger SW abort handler (conflict detection)

  NACK remote request (atomicity & isolation enforcement)


  Signatures may generate false conflicts

  Performance but not correctness issue 

  Reduce with longer signatures & better hash functions


  With this HW, how does the SW change?
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  No need to build SW read-set

  Replaced by read signature


  Read signature provides continuous validation

  Snoops coherence messages & any hits cause abort
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SigTMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  read_sig_insert(addr); // 1 instruction 
  return *addr; 
} 



  Read signature eliminates scan of read-set to validate

  Write signature eliminates locks


  Snoops coherence messages & NACKs any hits

  Two write-set scans instead of three
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SigTMcommit() { 
  enable_write_sig_lookup(); 
  foreach (addr in WriteSet) // write set scan 1 
    fetch_exclusive(addr); 

  enable_write_sig_nack(); 
  foreach (addr in WriteSet) // write set scan 2 
    *addr = WriteSet.getValue(addr); 
  disable_write_sig_lookup(); 
} 



  Execution-driven simulation

  1–16 core x86 chip-multiprocessor with MESI coherence

  Supports HTM, STM, and SigTM


  Used STAMP benchmark suite for evaluation


  Three experiments:

  Does SigTM reduce the overhead of SW transactions?


  How fast is SigTM?

  How much hardware does SigTM cost?
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  Measured single-thread performance on STM and SigTM


  SigTM effectively accelerates read & commit
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  Measured speedup on 1–16 cores


  In general, SigTM faster than STM but slower than HTM
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  Measured performance drop as signatures get shorter


  Mesa


  Recommend 1024 bits for read sig, 128 bits for write sig
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  Background & Motivation


  STAMP: Benchmark suite for TM


  SigTM: Effective hybrid TM

  Fast, flexible, low-cost


  Predictable semantics


  Conclusions
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  Two acceptable outcomes:

  T1 commits first;  T1 uses only non-incremented n.val 
  T2 commits first;  T1 uses only incremented n.val 

  Works correctly with lock-based synchronization

  Race-free program 
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ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1 
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2 



  All STMs may give unexpected results

  T1 may use both old & new value after privatization


  Cause: Non-transactional accesses are not instrumented

  Non-Tx writes do not cause Tx to abort

  Tx commit not atomic with respect to non-Tx accesses
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ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1 
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2 
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  Definition:  Transactions isolated from non-Tx accesses


  HTM → inherent strong isolation

  Non-Tx cause coherence messages

  Conflict detection mechanism enforces strong isolation


  STM → supplemented strong isolation

  Additional annotations needed for non-Tx accesses


  Some can be optimized but still a source of overhead


  SigTM → inherent strong isolation

  Without additional instrumentation or overhead




  STMs have unpredictable results because:

  Non-Tx writes do not cause transactions to abort

  Tx commit not atomic with respect to non-Tx accesses


  Non-Tx writes cause SigTM to abort a transaction

  Coherence messages looked up in read signature

  Hits in read signature trigger transaction abort


  SigTM commit is atomic with respect to non-Tx accesses

  Write signature used to provide atomic writeback


  Coherence messages looked up in write signature

  Hits in write signature → NACK non-Tx accesses
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  TM is promising for simplifying parallel programming


My contributions to the TM community:


  STAMP

  Comprehensive benchmark suite for TM

  Public release: http://stamp.stanford.edu 
  Early adopters:  MSFT, Intel, U. Wisconsin, U. Illinois, & more 

  Signature-Accelerated TM (SigTM)

  Hardware acceleration of software transactions

  Fast, flexible, cost-effective, & predictable semantics

  Attractive design for industry
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