
Chí Cao Minh

28 May 2008

  Uniprocessor systems hitting limits

  Design complexity overwhelming

  Power consumption increasing dramatically

  Instruction-level parallelism exhausted

  Solution is multiprocessor systems

  Simpler processor design (but many of them)

  Reduce power requirements

  Expose opportunity for thread-level parallelism

1

  Commonly achieved via lock-based parallel programs

  Unfortunately, parallel programming with locks is hard

  Option 1: Coarse-grain locks

▪  Simplicity at less concurrency

  Option 2: Fine-grain locks

▪  Better performance (maybe) at more complexity

2

3

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 10

4

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 10

5

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 5

  What is a transaction?

  Group of instructions in computer program:

  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }

  Required properties: Atomicity, Isolation, Serializability

  Key idea: Use transactions to build parallel programs

  Large atomic blocks simplify parallel programming

  Simplicity of coarse-grain locks with speed of fine-grain locks

6

  Life cycle of a transaction:

  Start

  Speculative execution (optimistic)

  Build read-set and write-set

▪  Write-set manages write versioning

  Commit

▪  Fine-grain R-W & W-W conflict detection

  Abort & rollback

7

Start

Commit

Failure

…

Read

…

Write

…

Success

Transaction

8

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 5

Read-set:
 Read-set:

Write-set:
 Write-set:
1
6, 3, 1 6, 3, 4

4

9

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 0

Read-set:
 Read-set:

Write-set:
 Write-set:
1
6, 3, 1 6, 3, 1

1

  TM can be implemented in hardware or software

  Hardware-based (HTM)

  [Herlihy 93], [Rajwar 02], [Hammond 04], [Moore 06]

  Strengths: high performance & predictable semantics

  Weaknesses: costly & inflexible

  Software-based (STM)

  [Shavit 95], [Herlihy 03], [Harris 03], [Saha 06], [Dice 06]

  Strengths: low-cost & flexible

  Weaknesses: low performance & unpredictable semantics

10

  Standard method to compare TM systems

  Each TM system evaluated with different apps

  How to pick the better of two HTMs?

  TM system that combines strengths of HTM and STM

  High-performance

  Flexibility

  Low-cost

  Predictable semantics

11

  STAMP: Benchmark suite for TM

  8 applications specifically for evaluating TM

  Comprehensive breadth and depth analysis

  Portable to many kinds of TMs

  Public release: http://stamp.stanford.edu 

  IEEE Intl. Symposium on Workload Characterization (IISWC) 2008

  Signature-Accelerated TM (SigTM): Hybrid TM

  Hardware acceleration of software transactions

  Fast, flexible, cost-effective, & predictable semantics

  Intl. Symposium on Computer Architecture (ISCA) 2007

12

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM

  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

13

  What is a benchmark?

  Program used to evaluate computer performance

  Help accelerate innovation in computer design

  Benchmarks for multiprocessors

  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008)

  Not good for evaluating TM

▪  Regular algorithms without synchronization problems

  Benchmarks for TM systems

  Microbenchmarks from RSTMv3 (2006)

  STMBench7 (2007)

  Haskell applications by Perfumo et. al (2007)

14

  Breadth: variety of algorithms & app domains

  Depth: wide range of transactional behaviors

  Portability: runs on many classes of TM systems

15

RSTMv3
 no
 yes
 yes
 Microbenchmarks

STMbench7
 no
 yes
 yes
 Single program

Perfumo et al.
 no
 yes
 no
 Microbenchmarks;

Written in Haskell

  Breadth

  8 applications covering different domains & algorithms

  Applications not trivially parallelizable

  Depth

  Wide range of transactional behaviors

▪  Transaction length

▪  Read and write set size

▪  Contention amount

  Most spend significant execution time in transactions

  Portability

  Written in C with macro-based transaction annotations

  Works with HTM, STM, and hybrid TM

16

17

bayes
 Machine learning
 Learns structure of a Bayesian
network

genome
 Bioinformatics
 Performs gene sequencing

intruder
 Security
 Detects network intrusions

kmeans
 Data mining
 Implements K-means clustering

labyrinth
 Engineering
 Routes paths in maze

ssca2
 Scientific
 Creates efficient graph representation

vacation
 Online transaction
processing

Emulates travel reservation system

yada
 Scientific
 Refines a Delaunay mesh

  Groups data into K clusters

  Possible applications:

  Biology: plant and animal classification

  WWW: analyze web traffic for patterns

18

Initial data Grouped data (K = 2)

19

Guess

centers

Analyze data

Compute adjust-

ments to centers

Update centers

Converged?

no

yes

Transaction

Privatization

  Emulates travel reservation system

  Similar to 3-tier design in SPECjbb2000

20

Kozyrakis

Olukotun

Manager

Reserve

Cancel

Update

Customers

Hotels

Flights

Cars

Client Tier Manager Tier Database Tier

Mitra

Osgood

21

Manager does
 cancelation

Get task?

reserve
Task kind?

Manager does
 reservation

Manager does
 update

cancel update

Done

no

yes

Transaction Transaction Transaction

bayes
 60584
 24
 9
 0.59
 83%

genome
 1717
 32
 2
 0.14
 97%

intruder
 330
 71
 16
 3.54
 33%

kmeans
 153
 25
 25
 0.81
 3%

labyrinth
 219571
 35
 36
 0.94
 100%

ssca2
 50
 1
 2
 0.00
 17%

vacation
 3161
 401
 8
 0.02
 92%

yada
 9795
 256
 108
 2.51
 100%

22

  First comprehensive benchmark suite for TM

  Meets breadth, depth, and portability requirements

  Useful tool for analyzing TM systems (including SigTM)

  Public release: http://stamp.stanford.edu 
  Early adopters:

▪  Industry: Microsoft, Intel, Sun, & more

▪  Academia: U. Wisconsin, U. Illinois, & more

  TL2-x86 STM

23

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM

  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

24

  HTM: HW does write versioning & conflict detection

  Advantages:

▪  High performance

▪  Predictable semantics

  Disadvantages:

▪  Expensive (e.g., requires cache modifications)

▪  Inflexible (e.g., fixed capacity for write versioning)

  STM: SW does write versioning & conflict detection

  Advantages:

▪  Low-cost

▪  Easy to change and evolve

  Disadvantages:

▪  High overhead

▪  Unpredictable semantics

25

  Hybrid hardware and software TM design

  Fast, flexible, cost-effective

  Predictable semantics

  Design approach:

  Start with software transactions → flexible & cost-effective

  Add hardware (“signatures”) to accelerate → fast

▪  Also provides predictable semantics

26

Write versioning
 HW
 SW
 SW

Conflict detection
 HW
 SW
 HW

  Program: atomically remove head of linked-list

27

ListNode n; 
atomic { 
  n = head; 
  if (n != null) { 

    head = head.next; 

  } 
} 

ListNode n; 
STMstart(); 
  n = STMread(&head); 
  if (n != null) { 
    ListNode t; 
    t = STMread(&head.next); 
    STMwrite(&head, t); 
  } 
STMcommit(); 

High-level
 Low-level

Compiler

  Called at transaction start → init transaction meta data

  Constant total cost per transaction

  Expensive only for short transactions

28

STMstart() { 
  checkpoint(); // used to rollback 
  other_initialization(); 
} 

  Called to read shared data → add to read-set

  Building read-set is expensive

  Total cost per transaction varies

  Locality of read accesses, size of read-set, transaction length

29

STMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  ReadSet.insert(addr); 

  return *addr; 
} 

  Called to write shared data → add to write-set

  Total cost per transaction varies

  Locality of write accesses, size of write-set, transaction length

  Less cost than STMread (# reads ≥ # writes)

30

STMwrite(addr, val) { 
  WriteSet.insert(addr, val); 
} 

  Called at transaction end → atomically commit changes

  Expensive: scan read-set (1x); scan write-set (3x)

31

STMcommit() { 
  foreach (addr in WriteSet)   // write set scan 1 
    lock(addr); 
  foreach (addr in ReadSet)    // read set scan 
    validate(addr);            // someone wrote? 
  foreach (addr in WriteSet)   // write set scan 2 
    *addr = WriteSet.getValue(addr); 

  foreach (addr in WriteSet)   // write set scan 3 
    unlock(addr); 
} 

  Measured single-thread STM performance

  1.8x – 5.6x slowdown over sequential

  Hybrid TM should focus on STMread and STMcommit 
32

0.0

0.5

1.0

1.5

2.0

kmeans

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
tia

l)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

  Each HW thread has 2 HW signatures (read & write)

  Each signature implemented by a Bloom filter

▪  Fixed-size bit array with set of hash functions

  No other HW modifications (e.g., no extra cache bits)

  Operations on signature (Bloom filter): insert & lookup

33

0
 1
 2
 3
 hash(N) = N mod 4 

0
 1
 2
 3
insert(2) ‐> 

insert(6) ‐> aliasing 

lookup(2)  ‐> hit 

lookup(3)  ‐> miss 

lookup(10) ‐> false hit 

  How SigTM uses its signatures:

  Tx read/write → insert address into read/write signature

  Coherence messages → look up address in signature

▪  Enabled/disabled by software

  If lookup hits in signature, either:

  Trigger SW abort handler (conflict detection)

  NACK remote request (atomicity & isolation enforcement)

  Signatures may generate false conflicts

  Performance but not correctness issue

  Reduce with longer signatures & better hash functions

  With this HW, how does the SW change?

34

  No need to build SW read-set

  Replaced by read signature

  Read signature provides continuous validation

  Snoops coherence messages & any hits cause abort

35

SigTMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  read_sig_insert(addr); // 1 instruction 
  return *addr; 
} 

  Read signature eliminates scan of read-set to validate

  Write signature eliminates locks

  Snoops coherence messages & NACKs any hits

  Two write-set scans instead of three

36

SigTMcommit() { 
  enable_write_sig_lookup(); 
  foreach (addr in WriteSet) // write set scan 1 
    fetch_exclusive(addr); 

  enable_write_sig_nack(); 
  foreach (addr in WriteSet) // write set scan 2 
    *addr = WriteSet.getValue(addr); 
  disable_write_sig_lookup(); 
} 

  Execution-driven simulation

  1–16 core x86 chip-multiprocessor with MESI coherence

  Supports HTM, STM, and SigTM

  Used STAMP benchmark suite for evaluation

  Three experiments:

  Does SigTM reduce the overhead of SW transactions?

  How fast is SigTM?

  How much hardware does SigTM cost?

37

  Measured single-thread performance on STM and SigTM

  SigTM effectively accelerates read & commit

38

0.0

0.5

1.0

1.5

2.0

STM
 SigTM

kmeans

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
tia

l)

0

1

2

3

4

5

6

STM
 SigTM

vacation

Write

Read

Commit

Busy

  Measured speedup on 1–16 cores

  In general, SigTM faster than STM but slower than HTM

39

0
 5
 10
 15

HTM
 SigTM
 STM

0

5

10

15

0
 5
 10
 15

Sp
ee

du
p

Processor Cores

kmeans

0

5

10

15

0
 5
 10
 15

Sp

ee
du

p

Processor Cores

vacation

  Measured performance drop as signatures get shorter

  Mesa

  Recommend 1024 bits for read sig, 128 bits for write sig

40

0.80
0.85
0.90
0.95
1.00

2048
1024
 512
 256
 128
 64
 32

intruder
 kmeans
 vacation

0.80

0.85

0.90

0.95

1.00

20
48

10
24

51
2

25
6

12
8
 64

32

N
or

m
al

iz
ed

 S
pe

ed
up

Write Signature Length (bits)

0.0

0.2

0.4

0.6

0.8

1.0

20
48

10
24

51
2

25
6

12
8
 64

32

N
or

m
al

iz
ed

 S
pe

ed
up

Read Signature Length (bits)

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM

  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

41

  Two acceptable outcomes:

  T1 commits first; T1 uses only non-incremented n.val 
  T2 commits first; T1 uses only incremented n.val 

  Works correctly with lock-based synchronization

  Race-free program

42

ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2

  All STMs may give unexpected results

  T1 may use both old & new value after privatization

  Cause: Non-transactional accesses are not instrumented

  Non-Tx writes do not cause Tx to abort

  Tx commit not atomic with respect to non-Tx accesses

43

ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2

44

  Definition: Transactions isolated from non-Tx accesses

  HTM → inherent strong isolation

  Non-Tx cause coherence messages

  Conflict detection mechanism enforces strong isolation

  STM → supplemented strong isolation

  Additional annotations needed for non-Tx accesses

  Some can be optimized but still a source of overhead

  SigTM → inherent strong isolation

  Without additional instrumentation or overhead

  STMs have unpredictable results because:

  Non-Tx writes do not cause transactions to abort

  Tx commit not atomic with respect to non-Tx accesses

  Non-Tx writes cause SigTM to abort a transaction

  Coherence messages looked up in read signature

  Hits in read signature trigger transaction abort

  SigTM commit is atomic with respect to non-Tx accesses

  Write signature used to provide atomic writeback

  Coherence messages looked up in write signature

  Hits in write signature → NACK non-Tx accesses

45

  TM is promising for simplifying parallel programming

My contributions to the TM community:

  STAMP

  Comprehensive benchmark suite for TM

  Public release: http://stamp.stanford.edu 
  Early adopters: MSFT, Intel, U. Wisconsin, U. Illinois, & more 

  Signature-Accelerated TM (SigTM)

  Hardware acceleration of software transactions

  Fast, flexible, cost-effective, & predictable semantics

  Attractive design for industry

46

  Committee

  Advisor: Christos Kozyrakis

  Co-advisor: Kunle Olukotun

  Brad Osgood, Subhasish Mitra

  Family

  Chanh, Ling Ling, Lyly

  TCC research group

  Austen, Brian, JaeWoong, Jared, Martin, Nathan, Nju, Sewook, Tayo, Woongki

  Darlene Hadding, Teresa Lynn

  Joseph and Hon Mai Goodman

  Friends

  AAGSA, SVSA, & many more

47

