Architectures for
Transactional Memory

Austen McDonald

Our New MULTICORE Overlords

e The free lunch for software developers is over

— No longer improving thread performance with
New processors

e Chip Multiprocessors (cmp/Multicore) are here

— Improve performance by exploiting thread
parallelism

To make programs faster, mortal programmers
will try parallel programming...

Parallel Programming is Hard

e Thread level parallelism is great until we want
to share data

e Fundamentally, it’s hard to work on shared
data at the same time

— so we don’t—mutual exclusion via locks

e Locks have problems
— performance/correctness, fine/coarse tradeoff
— deadlocks and failure recovery

Transactional Memory (TM)

e Execute large, programmer-defined regions
atomically and in isolation [knight’86, Herlihy & Moss ’93]

atomic {
X =X +Y;
}
e Declarative
— No management of locks
e Optimistically executing in parallel gains
performance

TM Example

....O.....
...............
[]

0000 OOOO0

TM Example

""""""""""""
)

0000 OOOO0

ooooooooooooooooooooooooooo
... ™)
oooo
'))
ooooo
[J [Y
° e
®)
oooo
' (Y
L)
L)
L)
L)

0000 6000

TM Example

................
°e,

ooooooo
oooooo
oooooooo
......

TM Example

................
°e,

ooooooo
oooooo
oooooooo
......

TM Example

....O.....
...............
[]

5030 060

11

TM Example

0000 OOOO0

Goals: Modify nodes 3 and 4 in a thread-safe way.

Locking prevents concurrency

12

TM Example

5030 5060

READ:

VVRITES Goal: Modify node 3 in a thread-safe way.

WRITE:

TM Example

X B °
....o.‘
ooooo
oooooooo
......
...

TM Example

X B °
....o.‘
ooooo
oooooooo
......
...

5030 060

WRITE: 3

15

TM Example

O..
0.
O
O

READ: 1, 2,3 READ: 1, 2,4
WRITE: 3 WRITE: 4

Goals: Modify nodes 3 and 4 in a thread-safe way.

TM Example

READ: 1, 2,3 READ: 1, 2,4

WRITE: 3 il eI WRITE: 4
RW conflicts

16

TM Example

X B °
....o.‘
° ° '}
(] L)
ooooo
......
...

5030 060

WRITE: 3 WRITE: 3

TM Example

READ: 1, 2,3
WRITE: 3

RW conflicts

READ: 1, 2,3
WRITE: 3

18

19

Guts of TM

e To build TM, you need...

Versioning Conflict Detection Conflict Resolution
X = X + V; atomic { atomic { X=X+Y;
} X =X+ Y; X =X/ 8;
} } X=x/ 8;1
Where do you put the How do you detect that How do you enforce
new X until commit? reads/writes to X need to be serialization when

serialized? required?

Hardware or Software TM?

e Can be implemented in HW or SW
e SW is slow

— Bookkeeping is expensive: 2-8x slowdown

e SW has correctness pitfalls

— Even for correctly synchronized code!

e Let's use hardware for TM

20

21

Challenges

1. What's the best implementation in hardware?

e Many available options

2. What’s the right HW/SW interface?

e Changing software needs (OSs and Languages)
e Changing parallel architectures

Contributions

e Designed and compared HTM systems

e Extended one system to replace coherence
and consistency with only transactions

e Devised a sufficient software/hardware
interface for current and future OS/PL on TM

22

YU B be

23

5 Years of My Life on One Slide

Building a TM system in hardware

An architecture with only transactions
What about the interface to software?
Conclusions

Versioning

e \ersioning: storing new values

e Eager: store new values in memory, old values
in undo log

e Commits fast, Aborts slow

e Lazy: store new values in writebuffer

e Aborts fast, Commits slow

24

Conflict Detection

e Conflict Detection: detecting RW/WW
conflicts

— Pessimistic: detect conflicts on cache misses

e Avoids useless work, but may cause deadlock/livelock
and prevents some serializable schedules

— Optimistic: wait until end of transaction

e Forward progress can be guaranteed, but some wasted
work [explain forward progress]

25

Versioning+Conflict Detection

e EP, LP, LO
— Not Eager-Optimistic

e Note: conflict resolution depends on other
two choices

26

Building a Lazy-Optimistic HTM

Lazy Versioning

— Need to keep new versions (and read-set tracking) until
commit

— Already have a cache—let’s put it there!

Optimistic Conflict Detection
— Need to detect conflicts at commit time
— Coherence protocol already detects sharing

Conflict Resolution
— The first committer wins

— Simple and guarantees forward progress
Aggressive Conflict Resolution

27

LO HTM Specifics

Bus Arbiters

Bus & Snoop Control Bus & Snoop Control Bus & Snoop Control

I

Refill Bus

On-chip L2 Cache

Changes for TM

LO HTM Specifics

Read Bits:
1d Oxdeadbeef

Write Bits:
st Oxcafebabe

Commit:

Acquire permission to
commit

Upgrade lines listed in Store
Address FIFO
Conflict Detection:

Compare incoming address
to R bits

S

]]
]]
(N
]
.H
I
N
—nd
[]

(€

29

1.

2.

Performance Questions

Will transactions perform as well as locks?

What is the best HTM system and why?

30

Methodology

e Execution-driven x86 simulator
— 1 IPC (except Id/st)

e SPLASH-2 Benchmarks
— Heavily optimized for MESI

e STAMP

— Representative applications for today’s workloads
— Wide range of transactional behaviors
— Difficult to parallelize, TM only apps

31

1. TM vs Locks

0.6 radix

0.5 |

0.4

0.3

0.2

Normalized Execution Time

0.1

00 2 4 81632 2 4 81632 2 4 81632
MESI Lazy Eager

Optimistic Pessimistic
e Performs similar to locks
— TM overhead is negligible [McDonald '05]

e Similar performance at low contention for all TM schemes

Useful
Memory Access
Load Imbalance

2 4 8 1632
Lazy

Pessimistic

32

2. Which TM System is Best?

0.8

0.7

=
o))

o
(@]

Normalized Execution Time
o o
w H

o
[N}

0.1

labyrinth

Useful

| Memory Access
Load Imbalance
Conflict

00 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Lazy Lazy Eager
Optimistic Pessimistic Pessimistic

e Pessimistic conflict detection degrades performance

e Rolling back undo log in eager versioning is expensive

33

OmRjodmm

2. Which TM System is Best?

Same for SPLASH applications
Same: 2 of 8 STAMP

— genome, kmeans

LO Better: 4 of 8 STAMP

— bayes, labyrinth, vacation, yada
EP/LP Better: 2 of 8 STAMP

— intruder, ssca2

How can | decide on one system?

35

2. Which TM System is Best?

e Conflict Detection/Resolution principal offender
— Need intelligent decisions on conflict

e Simple for Optimistic Conflict Detection

— Priority/aging and random backoff all you need for
progress and fairness [Scott ‘04]

e More complex for Pessimistic

— More potential performance problems
— Stall or Abort?
e Need deadlock/livelock detection

— Best solution requires hardware predictor
[Bobba '08’]

36

Summary of Results

e TM performs as well as locks

e Lazy-Optimistic is the best performing,
simplest architecture for TM

37

3. An architecture with only transactions
4. What about the interface to software?
5. Conclusions

38

39

Only Transactions

Transactions manage communication

— Can we dispense with coherence/consistency
protocols?

e Should be no sharing outside of transactions
e |[n transactions, only care about sharing at boundaries

— Easier to reason about parallel programs

TCC: Transactional Coherence and Consistency
[Hammond '04, McDonald "05]

TCC

e Everything is run inside of a transaction [Hammond '04]
— Even when you don’t explicitly create one

e Still have explicit transactions
— To ensure atomicity

— Regions between explicit transactions can be split, by the system, into
arbitrary transactions

e Simplified Reasoning
— One mechanism to communicate between threads
e Hardware is simpler
— Debugging becomes easier [Chafi’05]
e All accesses are tracked = detect missing explicit transactions
— Deterministic replay [Wee '08]

40

TCC Modifies Lazy-Optimistic

e No need for MESI

® COm m It Lz%((jj/rsetsosre Violation
— Send data

e Only way to maintain
coherence

1]
ES
]
I
]
ES
]

Commit Address

Snoop Commit
Control Control

TCC Design Space

e Commit-through or Commit-back
— Commit-through
— Commit-back, snooping and M bit

e Line or word-level granularity

— Communicating less often so word-level is
possible
e Avoids false sharing
e Need word-level R, W, and V bits

42

TCC Performance

e Should be similar to LO

e \More transactions means more transactional
overhead

e Commits happen more often and contain
data, not just addresses

— Will bandwidth become a bottleneck?

43

Summary of Results

e Neither overhead nor bandwidth are a
problem

— TCC performs similarly to LO and therefore to
locks

[McDonald ’05]

45

4. What about the interface to software?
5. Conclusions

46

Won’t Someone Think of the
Software

How does TM interact with library-based
software containing transactions?

How do we handle I/O and system calls within
transactions?

How do we handle exceptions and contention
within transactions?

How do we implement TM programming
languages?

Towards a TM ISA

e | defined a flexible, ISA-level semantics for TM

— Any TM system
[McDonald '06]

e Four primitives:
— Two-phase Commit
— Transactional Handlers
— Nested Transactions
— Non-Transactional Loads and Stores

48

Two-Phase Commit

e TM systems have monolithic commit
e Two-Phase Commit: validate and commit

— Validate ensures no conflicts
— Run code in between as part of the transaction

e Examples:
— Finalize I/O operations started in the transaction

49

Transactional Handlers

e TM events processed by hardware
— Prevents “smart” decisions on commit and violate

e Handlers: fast code on commit, conflict, and abort

— Software can register multiple handlers per transaction
e Stack of handlers maintained in software

— Handlers have access to all transactional state

e They decide what to commit or rollback, to re-execute or not, ...

e Example:
— Contention managers

— 1/0O operations within transactions and conditional
synchronization

50

Nested Transactions

e Early TM systems did not run transactions
within transactions

— Subsumption creates long dependency chains

e Nested Transactions: closed and open
— Independent conflict tracking

— Some cases, independent isolation/atomicity
behavior

51

Closed Nesting

atomic { atomic {
lots of work() lots_of_work()
count++ atomic {
} count++
}
}

e Performance improvement (reduce conflict penalty)
e Examples:

— Composable libraries

52

53

Open Nesting

atomic {
atomic { lots of work()
lots of work() malloc(..) {
malloc(..) { openatomic {
[modify free list] [modify free list]
} }
lots of work() }
} lots of work()
}

e Examples:
— System calls, communication between transactions/0S/etc.

e Open nesting provides atomicity & isolation for enclosed
code

Non-Transactional Loads and Stores

e Often, transactions contain dependencies that
are irrelevant

e Non-Transactional Loads and Stores

— Avoid creating unneeded dependencies
— Prevent spurious conflicts

e Example:
— Object-based TM (only dependence on header)

54

TM ISA Implementation

e Combinations of hardware and software
— Nested Transactions like function calls

— Handlers stored on a stack
e Implemented like exceptions

e Need additional R/W bits or nesting level
entry in cache lines

55

TM ISA Evaluation

e Will the overhead be prohibitive?

— No, you’ve already seen it ©

e Will the ISA be sufficient for all needs?
— No formal proof

— Examples [McDonald '06, Carlstrom '06, Carlstrom ‘07]

56

Semantic Concurrency Control

atomic { atomic {
lots _of _work(); lots _of _work();
insert(key=8, datal); insert(key=9, data2);
} }
4
2 6
|2 ———m - 4
1 3| | 1o I|'!)

e |sthere a conflict?
— TM: yes, conflict on same memory location
— Logically: no, operation on different keys

e Common performance loss in TM programs
— Large, compound transactions

57

Transactional Collection Classes

e Read operations track semantic dependencies

e Using open nested transactions

e Write operations deferred until commit

e Using open nested transactions

e Commit handler checks for semantic conflicts
e Commit handler performs write operations

e Commit/abort handlers clear dependencies
[Carlstrom "07]

58

Transactional Collection Classes

W
92
]

Collection Classes

Simple TM

N W
U O
1 1

Speedup

0 5 10 15 20 25 30

Processors

TestMap

— a long transaction containing a single map operation

59

Summary of Results

e TM needs rich semantics
— Modern OS/PL
— Changing underlying architectures

e Four primitives provide needed functionality
— Two-Phase Commit
— Transactional Handlers
— Nested Transactions
— Non-Transactional Loads and Stores

e These primitives are low overhead and sufficiently
flexible

60

Motivation & Contributions

Building a TM system in hardware

An architecture with only transactions
What about the interface to software?

I

SIGNPOST

Contributions/Conclusions

e Evaluated hardware TM systems
— The best system from efficiency/complexity standpoint is
Lazy-Optimistic
e Replaced coherence and consistency with only
transactions

— Using only transactions for communication is
advantageous and efficient

e Devised a hardware/software interface for TM

— Simple primitives provide TM with flexible and needed
semantics

62

Acknowledgements

GOD
Advisors: Christos (the Man) Kozyrakis and Kunle (Papa “K”) Olukotun
Thesis/Defense Committee: Mendel, Phil, Eric
Parents & Sister: Pete and Jane, Liz
— (meet them, they’re here!)

TCC Group

— Brian Carlstrom, JaeWoong Chung, Chi Cao Minh, Hassan Chafi, Jared Casper,
and Nathan Bronson

Admins: Teresa and Darlene
Aunt Elizabeth for the food

GT Peeps

— Advisor: Kenneth Mackenzie
— Josh, Chad, Craig, Peter

Friends

Vijay, Kayvon, Jeff, Martin, Natasha, Doantam, Adam, Ted, Dan

Zack, Nick, Brian & Rose, Asela, Ming, Danny, Doug, Zaz, Adam, Josh, Sam, Stone, Rich, Ray, Byron, Susan, Jynette,
Kristi, Kokeb, Wendy, Adelaide, Ellen, Sean, Brogan & O’Haras, Rick, Shane, Lawrence, Eric, Burhan & Abby, Todd &
Veronica, Anthony & Jasamine, Liz, Lucy, Rama, JT

63

64

3.

Deadlock '
Interactio

4. Composing

5. Recovering |

Simulation Parameters

CPU 1-32 single-issue x86 cores
L1 32-KB, 32-byte cache line, 4-way associative

Private L2 512-KB, 32-byte cache line, 16-way associative, 3
cycle latency

L1/L2 Victim Cache 16 entries fully associative
Bus Width 32 bytes

Bus Arbitration 3 pipelined cycles

Bus Transfer Latency 3 pipelined cycles
Shared Cache 8MB, 16-way, 20 cycles hit time

Main Memory 100 cycles latency, up to 8 outstanding
transfers

66

Table 4.2: The basic characterization of the STAMP applications. The number of instructions per transaction does
not include instructions that occur as part of TM barriers. The Lazy HTM was used to measure the read and write
sets and the amount of time spent in transactions. The amounts of read and write barriers were collected using
the Lazy STM, and the Lazy HTM was used to find the fraction of time spent in transactions. For the number of
retries, 16 threads were used on all systems. The transactional statistics for genome and intruder follow bimodal
distributions, and those for vacation are trimodal. The rest of the applications have normal distributions.

Per Transaction Time Retries Per Transaction Working Set

Application Instruc- Read Write Read Write ,llr,lr) HTM STM Small L
tions Set Set Barrier Barrier ac;I;st Lazy Eager Lazy Eager ga IEBIEQ
{mean) (90 pctile) (90 pctile) (90 petile) (90 pctile) {mean) {mean) (mean) (mean) (KB) (MB)

haves 60584 452 304 24 9 83% 0.66 6.50 0.59 0.66 128

hayes+ 57130 448 266 26 9 830 0.69 5.78 0.61 0.69 128

DENOe 1717 98 15 32 2 97% 0.10 0.47 0.14 2.20 128
genome-+ 1709 108 15 30 2 97T% 0.02 0.26 0.06 1.14 128

intruder 330 51 20 71 16 33% 1.79 6.27 3.54 3.31 32
intruder+ 331 54 18 54 9 43% 0.67 2.05 1.95 2.96 128

kmeans-high 117 14 17 17 % 0.07 0.13 2.73 3.10 16
kmeans-high+ 153 16 25 25 6% 0.05 0.11 3.49 3.68 16
kmeans-low 117 14 17 17 3% 0.02 0.05 0.89 0.80 16
kmeans-low+ 153 16 25 25 3% 0.01 0.02 0.51 0.70 16

labyrinth 219571 35 36 100% 0.72 2.64 0.94 111 G4
labyrinth+ GETS09 46 47 100% 2.55 10.59 1.07 1.38

sscal 50 1 2 17% 0.01 0.01 0.00 0.01
sscaZ-+ 50 1 2 16% 0.00 0.00 0.00 0.00

vacation-high 432 12 86% 0.37 1.01 0.00 0.01
vacation-high+ 12 92% 0.25 0.66 0.04 0.05
vacation-low 3 86Y% 0.07 0.25 0.00 0.00
vacation-low+ 8 92% 0.05 0.18 0.02 0.03

vada 100% 0.52 3.06 2.51 4.35
yvada+ 100% 0.45 2.04 1.38 2.52

| S]

e =

1
2

B2 = B =

[S SN TN T RSN ST B

Hardware or Software TM?

Speedup

e Software is slower: 2x to 8x overhead due to barriers
— Short term: discourages parallel programming
— Long term: wastes energy

e Software is harder: have to avoid programming pitfalls
— Not the same semantics as locks
— Strong vs Weak Isolation

68

69

Is STM Correct?

atomic{ atomic{
if (list != NULL) { if (list != NULL) {
e = list; .
. p = list;
list = e.next;
) p.x = 9;
rl = e.x; }

r2 = e.x;
assert(rl == r2); list =_>-_>-_>

e The privatization example
— T1 removes a head; T2 increments head

— Correctly synchronized code with locks

e |nconsistent results with all STMs
— T1 assertion may fail from time to time

3. Resource Overflow

0.6 genome
0.5 Useful
) Overflow
= | W L1 Miss
=
c 04 Memory Access
',8 Load Imbalance
3 TM Overhead
o Conflict
ux_, 0.3
©
(D)
N
£ 0.2
S
=2
0.1
00 2 4 8 16 32 2 4 8 16 32
L1 Only 512k L2

Lazy Optimistic
e OQOverflow mitigated by simple L2 and victim cache

e Virtualization [Chung’06]

70

Conflict Detection

Pessimistic

Optimistic

Implementing HTM

Versioning

Eager

Lazy

Not logical in HW

Store new values on side
Slow commits
Fast aborts

Conflicts at TX boundaries
[Hammond ‘04, McDonald ‘05]

Store new values in place
Fast commits

Undo log to store old values
Slow aborts

Conflicts at Id/st granularity
[Moore '06]

Store new values on side
Slow commits
Fast aborts

Conflicts at Id/st granularity
[Ananian '05]

71

72

Violations

Commit/Comm.

[Idle/Synch. [

_‘m _‘Eﬂ?

91-00S
91-001
8-00S
8-001

91-00S
91-001
8-00S
8-001

91-00S
91-001
8-00S
8-001

91-008
91-001
8-00S
8-001

91-00S8
91-001
8-00S
8-001

91-00S
91-001
8-20S
8-001

91-00S
91-001
SR ESINN 8-008
=) RN 8-001

91-00S8
91-001
8-00S
8-001

91-00S
91-001
8-00S
8-001

Te n O wun o
NN NN — —

(9,) awWi] uonNIaX3 paziew.loN

water SPECjbb

equake mp3d ocean radix swim tomcatv

barnes

NL; NL, NLz NL4
N N

—
Mu|ti-tracking E Data

Lookup
Address

Match?

Associativity-
based

73

Case 1

X0 X1
rd A
check
wr B
check
wr C
check
commit
commit
Success

Case 2
X0 X1

wr A
check

rd A

check
stall

commit

commit

Early Detect

Case 3
X0 X1
rd A

check

wr A
check

commit

rd A

check

commit

Abort

Case 4

check

rd A
Wr

check

No progress

<+— JNIL

Case 1

Success

Case 2
X0 X1

wr A

rd A

commit
check

rd A

commit
check

<«

Abort

Case 3
X0 X1
rd A

wr A

commit
check

commit
check

Success

commit
check

Forward progress

TCB Stack

(
“~—{ xtcb ptr_base
N

"~ xtcbptr_top

Transaction Control Block

/ Register Checkpoint

e |
.-

Y xchptr_baset

* Kept in caches (logically part of the TCB).

Handler PC

Handler PC

T Must be stored in registers (logically part of the TCB).

I TCB fields stored in thread-private memory.

76

