
1

Architectures for
Transactional Memory

Austen McDonald

2

Our New MULTICORE Overlords

• The free lunch for software developers is over
– No longer improving thread performance with

new processors

• Chip Multiprocessors (CMP/Multicore) are here
– Improve performance by exploiting thread

parallelism

To make programs faster, mortal programmers
will try parallel programming…

M O T I V A T I O N

3

Parallel Programming is Hard

• Thread level parallelism is great until we want
to share data

• Fundamentally, it’s hard to work on shared
data at the same time

– so we don’t—mutual exclusion via locks

• Locks have problems

– performance/correctness, fine/coarse tradeoff

– deadlocks and failure recovery

M O T I V A T I O N

4

Transactional Memory (TM)

• Execute large, programmer-defined regions
atomically and in isolation *Knight ’86, Herlihy & Moss ’93+

atomic {
x = x + y;

}

• Declarative

– No management of locks

• Optimistically executing in parallel gains
performance

M O T I V A T I O N

5

TM Example

M O T I V A T I O N

1

2

3 4

Goal: Modify node 3 in a thread-safe way.

6

TM Example

M O T I V A T I O N

2

3 4

1

7

TM Example

M O T I V A T I O N

3 4

1

2

8

TM Example

M O T I V A T I O N

3 4

1

2

9

TM Example

M O T I V A T I O N

3 4

1

2

10

TM Example

M O T I V A T I O N

3 4

1

2

11

TM Example

M O T I V A T I O N

3 4

1

2

Locking prevents concurrency

Goals: Modify nodes 3 and 4 in a thread-safe way.

12

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ:

WRITE:
Goal: Modify node 3 in a thread-safe way.

13

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE:

14

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE: 3

15

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE: 3

Transaction B

READ: 1, 2, 4

WRITE: 4

Goals: Modify nodes 3 and 4 in a thread-safe way.

16

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE: 3

Transaction B

READ: 1, 2, 4

WRITE: 4
WW conflicts

RW conflicts

17

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE: 3

Transaction B

READ: 1, 2, 3

WRITE: 3

18

TM Example

M O T I V A T I O N

3 4

1

2

Transaction A

READ: 1, 2, 3

WRITE: 3

Transaction B

READ: 1, 2, 3

WRITE: 3
WW conflicts

RW conflicts

19

Guts of TM

• To build TM, you need…

B U I L D I N G A N H T M

Versioning

Where do you put the
new x until commit?

Conflict Detection

How do you detect that
reads/writes to x need to be
serialized?

atomic {
x = x + y;

}

atomic {
x = x + y;

}

atomic {
x = x / 8;

}

T0 T1

Conflict Resolution

How do you enforce
serialization when
required?

T0 T1
x = x + y; x = x / 8;

x = x / 8;

20

Hardware or Software TM?

• Can be implemented in HW or SW

• SW is slow

– Bookkeeping is expensive: 2-8x slowdown

• SW has correctness pitfalls

– Even for correctly synchronized code!

• Let’s use hardware for TM

21

Challenges

1. What’s the best implementation in hardware?
• Many available options

2. What’s the right HW/SW interface?
• Changing software needs (OSs and Languages)

• Changing parallel architectures

T H E S I S

22

Contributions

• Designed and compared HTM systems

• Extended one system to replace coherence
and consistency with only transactions

• Devised a sufficient software/hardware
interface for current and future OS/PL on TM

T H E S I S

23

5 Years of My Life on One Slide

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T

24

• Versioning: storing new values

• Eager: store new values in memory, old values
in undo log

• Commits fast, Aborts slow

• Lazy: store new values in writebuffer
• Aborts fast, Commits slow

B U I L D I N G A N H T M

Versioning

25

Conflict Detection

• Conflict Detection: detecting RW/WW
conflicts

– Pessimistic: detect conflicts on cache misses

• Avoids useless work, but may cause deadlock/livelock
and prevents some serializable schedules

– Optimistic: wait until end of transaction

• Forward progress can be guaranteed, but some wasted
work [explain forward progress]

26

Versioning+Conflict Detection

• EP, LP, LO

– Not Eager-Optimistic

• Note: conflict resolution depends on other
two choices

27

Building a Lazy-Optimistic HTM

Lazy Versioning
– Need to keep new versions (and read-set tracking) until

commit

– Already have a cache—let’s put it there!

Optimistic Conflict Detection
– Need to detect conflicts at commit time

– Coherence protocol already detects sharing

Conflict Resolution
– The first committer wins

– Simple and guarantees forward progress
Aggressive Conflict Resolution

B U I L D I N G A N H T M

28

LO HTM Specifics

CPU 1

Bus & Snoop Control

Commit Bus

Refill Bus

On-chip L2 Cache

Bus Arbiters

. . .

CPU 2

L1

Bus & Snoop Control

CPU N

L1

Bus & Snoop Control

L1

Changes for TM

B U I L D I N G A N H T M

29

LO HTM Specifics

B U I L D I N G A N H T M

d

Processor

TAG
Data

Cache

Violation
Load/Store

Address

Snoop

Control

Commit Address

Commit

Control

Store

Address

FIFO

Register

Checkpoint

Request Bus

Refill Bus

Commit

Address In

Commit

Address Out

DATARMESI W

Read Bits:

ld 0xdeadbeef

Write Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming address
to R bits

Commit:
Acquire permission to
commit

Upgrade lines listed in Store
Address FIFO

30

Performance Questions

1. Will transactions perform as well as locks?

2. What is the best HTM system and why?

B U I L D I N G A N H T M

31

Methodology

• Execution-driven x86 simulator

– 1 IPC (except ld/st)

• SPLASH-2 Benchmarks

– Heavily optimized for MESI

• STAMP

– Representative applications for today’s workloads

– Wide range of transactional behaviors

– Difficult to parallelize, TM only apps

32

1. TM vs Locks

B U I L D I N G A N H T M

• Performs similar to locks
– TM overhead is negligible *McDonald ’05+

• Similar performance at low contention for all TM schemes

33

B U I L D I N G A N H T M

• Pessimistic conflict detection degrades performance

• Rolling back undo log in eager versioning is expensive

2. Which TM System is Best?

34

• Early conflict detection saves expensive memory accesses
– High contention, many accesses / Tx

2. Which TM System is Best?

35

2. Which TM System is Best?

• Same for SPLASH applications

• Same: 2 of 8 STAMP

– genome, kmeans

• LO Better: 4 of 8 STAMP

– bayes, labyrinth, vacation, yada

• EP/LP Better: 2 of 8 STAMP

– intruder, ssca2

• How can I decide on one system?

36

2. Which TM System is Best?

• Conflict Detection/Resolution principal offender
– Need intelligent decisions on conflict

• Simple for Optimistic Conflict Detection
– Priority/aging and random backoff all you need for

progress and fairness *Scott ‘04+

• More complex for Pessimistic
– More potential performance problems

– Stall or Abort?
• Need deadlock/livelock detection

– Best solution requires hardware predictor
*Bobba ’08’+

37

Summary of Results

• TM performs as well as locks

• Lazy-Optimistic is the best performing,
simplest architecture for TM

• Resource overflow is not a problem

B U I L D I N G A N H T M

38

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T

39

Only Transactions

Transactions manage communication

– Can we dispense with coherence/consistency
protocols?

• Should be no sharing outside of transactions

• In transactions, only care about sharing at boundaries

– Easier to reason about parallel programs

TCC: Transactional Coherence and Consistency
*Hammond ’04, McDonald ’05]

A L L T R A N S A C T I O N S A L L T H E T I M E

40

TCC

• Everything is run inside of a transaction *Hammond ’04+

– Even when you don’t explicitly create one

• Still have explicit transactions
– To ensure atomicity

– Regions between explicit transactions can be split, by the system, into
arbitrary transactions

• Simplified Reasoning
– One mechanism to communicate between threads

• Hardware is simpler

– Debugging becomes easier *Chafi ’05+

• All accesses are tracked  detect missing explicit transactions

– Deterministic replay *Wee ’08+

A L L T R A N S A C T I O N S A L L T H E T I M E

41

TCC Modifies Lazy-Optimistic

• No need for MESI

• Commit

– Send data
• Only way to maintain

coherence

A L L T R A N S A C T I O N S A L L T H E T I M E

d

Processor

TAG
Data

Cache

Violation
Load/Store

Address

Snoop

Control

Commit Address

Commit

Control

Store

Address

FIFO

Register

Checkpoint

Request Bus

Refill Bus

Commit

Address In

Commit

Address Out

DATARMESI W

Data

42

TCC Design Space

• Commit-through or Commit-back

– Commit-through

– Commit-back, snooping and M bit

• Line or word-level granularity

– Communicating less often so word-level is
possible

• Avoids false sharing

• Need word-level R, W, and V bits

43

TCC Performance

• Should be similar to LO

• More transactions means more transactional
overhead

• Commits happen more often and contain
data, not just addresses

– Will bandwidth become a bottleneck?

44

TCC Performance

45

Summary of Results

• Neither overhead nor bandwidth are a
problem
– TCC performs similarly to LO and therefore to

locks

• Word-level granularity helps alleviate false
sharing

• Update does not significantly improve
performance
*McDonald ’05+

A L L T R A N S A C T I O N S A L L T H E T I M E

46

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T

47

Won’t Someone Think of the
Software

• How does TM interact with library-based
software containing transactions?

• How do we handle I/O and system calls within
transactions?

• How do we handle exceptions and contention
within transactions?

• How do we implement TM programming
languages?

W H A T A B O U T S O F T W A R E

48

Towards a TM ISA

• I defined a flexible, ISA-level semantics for TM

– Any TM system
*McDonald ’06+

• Four primitives:

– Two-phase Commit

– Transactional Handlers

– Nested Transactions

– Non-Transactional Loads and Stores

W H A T A B O U T S O F T W A R E

49

Two-Phase Commit

• TM systems have monolithic commit

• Two-Phase Commit: validate and commit

– Validate ensures no conflicts

– Run code in between as part of the transaction

• Examples:

– Finalize I/O operations started in the transaction

W H A T A B O U T S O F T W A R E

50

Transactional Handlers

• TM events processed by hardware
– Prevents “smart” decisions on commit and violate

• Handlers: fast code on commit, conflict, and abort
– Software can register multiple handlers per transaction

• Stack of handlers maintained in software

– Handlers have access to all transactional state
• They decide what to commit or rollback, to re-execute or not, …

• Example:
– Contention managers
– I/O operations within transactions and conditional

synchronization

W H A T A B O U T S O F T W A R E

51

Nested Transactions

• Early TM systems did not run transactions
within transactions

– Subsumption creates long dependency chains

• Nested Transactions: closed and open

– Independent conflict tracking

– Some cases, independent isolation/atomicity
behavior

W H A T A B O U T S O F T W A R E

52

Closed Nesting

• Performance improvement (reduce conflict penalty)

• Examples:

– Composable libraries

W H A T A B O U T S O F T W A R E

atomic {

lots_of_work()

count++

}

atomic {

lots_of_work()

atomic {

count++

}

}

53

Open Nesting

W H A T A B O U T S O F T W A R E

atomic {
lots_of_work()
malloc(…) {

[modify free list]
}
lots_of_work()

}

• Examples:
– System calls, communication between transactions/OS/etc.

• Open nesting provides atomicity & isolation for enclosed
code

atomic {
lots_of_work()
malloc(…) {

openatomic {
[modify free list]

}
}
lots_of_work()

}

54

Non-Transactional Loads and Stores

• Often, transactions contain dependencies that
are irrelevant

• Non-Transactional Loads and Stores

– Avoid creating unneeded dependencies

– Prevent spurious conflicts

• Example:

– Object-based TM (only dependence on header)

W H A T A B O U T S O F T W A R E

55

TM ISA Implementation

• Combinations of hardware and software

– Nested Transactions like function calls

– Handlers stored on a stack

• Implemented like exceptions

• Need additional R/W bits or nesting level
entry in cache lines

W H A T A B O U T S O F T W A R E

56

TM ISA Evaluation

• Will the overhead be prohibitive?

– No, you’ve already seen it 

• Will the ISA be sufficient for all needs?

– No formal proof

– Examples *McDonald ’06, Carlstrom ’06, Carlstrom ‘07+

W H A T A B O U T S O F T W A R E

57

Semantic Concurrency Control

• Is there a conflict?
– TM: yes, conflict on same memory location

– Logically: no, operation on different keys

• Common performance loss in TM programs
– Large, compound transactions

4

2 6

1 3 5 7

atomic {
lots_of_work();
insert(key=8, data1);

}

atomic {
lots_of_work();
insert(key=9, data2);

}

W H A T A B O U T S O F T W A R E

58

Transactional Collection Classes

• Read operations track semantic dependencies
• Using open nested transactions

• Write operations deferred until commit
• Using open nested transactions

• Commit handler checks for semantic conflicts

• Commit handler performs write operations

• Commit/abort handlers clear dependencies
*Carlstrom ’07+

W H A T A B O U T S O F T W A R E

59

Transactional Collection Classes

TestMap

– a long transaction containing a single map operation

W H A T A B O U T S O F T W A R E

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Sp
ee

d
u

p

Processors

Collection Classes

Simple TM

60

Summary of Results

• TM needs rich semantics
– Modern OS/PL

– Changing underlying architectures

• Four primitives provide needed functionality
– Two-Phase Commit

– Transactional Handlers

– Nested Transactions

– Non-Transactional Loads and Stores

• These primitives are low overhead and sufficiently
flexible

W H A T A B O U T S O F T W A R E

61

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T

62

Contributions/Conclusions

• Evaluated hardware TM systems

– The best system from efficiency/complexity standpoint is
Lazy-Optimistic

• Replaced coherence and consistency with only
transactions

– Using only transactions for communication is
advantageous and efficient

• Devised a hardware/software interface for TM

– Simple primitives provide TM with flexible and needed
semantics

T H E S I S

63

Acknowledgements

• GOD
• Advisors: Christos (the Man) Kozyrakis and Kunle (Papa “K”) Olukotun
• Thesis/Defense Committee: Mendel, Phil, Eric
• Parents & Sister: Pete and Jane, Liz

– (meet them, they’re here!)

• TCC Group
– Brian Carlstrom, JaeWoong Chung, Chi Cao Minh, Hassan Chafi, Jared Casper,

and Nathan Bronson

• Admins: Teresa and Darlene
• Aunt Elizabeth for the food
• GT Peeps

– Advisor: Kenneth Mackenzie
– Josh, Chad, Craig, Peter

• Friends
Vijay, Kayvon, Jeff, Martin, Natasha, Doantam, Adam, Ted, Dan
Zack, Nick, Brian & Rose, Asela, Ming, Danny, Doug, Zaz, Adam, Josh, Sam, Stone, Rich, Ray, Byron, Susan, Jynette,
Kristi, Kokeb, Wendy, Adelaide, Ellen, Sean, Brogan & O’Haras, Rick, Shane, Lawrence, Eric, Burhan & Abby, Todd &
Veronica, Anthony & Jasamine, Liz, Lucy, Rama, JT

64

65

The Difficulties with Parallel
Programming

1. Finding independent tasks in the algorithm

2. Mapping tasks to execution units (e.g. threads)

3. Defining & implementing synchronization
– Race conditions

– Deadlock avoidance

– Interactions with the memory model

4. Composing parallel tasks

5. Recovering from errors

6. Portable & predictable performance

7. Scalability

8. Locality management

And, of course, all the sequential issues…

66

Simulation Parameters

• CPU 1–32 single-issue x86 cores

• L1 32-KB, 32-byte cache line, 4-way associative

• Private L2 512-KB, 32-byte cache line, 16-way associative, 3
cycle latency

• L1/L2 Victim Cache 16 entries fully associative

• Bus Width 32 bytes

• Bus Arbitration 3 pipelined cycles

• Bus Transfer Latency 3 pipelined cycles

• Shared Cache 8MB, 16-way, 20 cycles hit time

• Main Memory 100 cycles latency, up to 8 outstanding
transfers

67

68

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S

p

e

e

d

u

p

Processors

3-tier Server (Vacation)

Ideal

STM

S
p

e
e
d

u
p

Hardware or Software TM?

• Software is slower: 2x to 8x overhead due to barriers
– Short term: discourages parallel programming

– Long term: wastes energy

• Software is harder: have to avoid programming pitfalls
– Not the same semantics as locks

– Strong vs Weak Isolation

M O T I V A T I O N

69

Is STM Correct?

atomic{

if (list != NULL) {

e = list;

list = e.next;

}}

r1 = e.x;

r2 = e.x;

assert(r1 == r2);

atomic{

if (list != NULL) {

p = list;

p.x = 9;

}

Thread 2Thread 1

list 0 1

• The privatization example

– T1 removes a head; T2 increments head

– Correctly synchronized code with locks

• Inconsistent results with all STMs

– T1 assertion may fail from time to time

70

3. Resource Overflow

B U I L D I N G A N H T M

• Overflow mitigated by simple L2 and victim cache

• Virtualization *Chung ’06+

71

B U I L D I N G A N H T M

Versioning

C
o

n
fl

ic
t

D
et

e
ct

io
n

Eager Lazy

O
p

ti
m

is
ti

c
Pe

ss
im

is
ti

c

Not logical in HW

Store new values in place
Fast commits

Undo log to store old values
Slow aborts

Conflicts at ld/st granularity
*Moore ’06+

Store new values on side
Slow commits
Fast aborts

Conflicts at TX boundaries
*Hammond ’04, McDonald ‘05]

Store new values on side
Slow commits
Fast aborts

Conflicts at ld/st granularity
*Ananian ’05+

Implementing HTM

72

73

V

MOESI

D E R4R1 R2 R3 W4W1 W2 W3

NL1 NL2 NL3 NL4

Tag

=

Lookup

 Address

Match?

Data
...
...Multi-tracking

Associativity-
based

NL1:0V

MOESI

D E Tag

=

Lookup

Address

Match?
Match

Level

Data
...
...R W

74

Pessimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM

E

75

Optimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM

E

commit
check

76

