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Transactional Execution of Java Programs

• Goals
Run existing Java programs using transactional memory
Require no new language constructs
Require minimal changes to program source
Compare performance of locks and transactions

• Non-Goals
Create a new programming language
Add new transactional extensions
Run all Java programs correctly without modification
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TCC Transactional Memory

• Continuous Transactional Architecture
“all transactions, all the time”
Transactional Coherency and Consistency (TCC)
• Replaces MESI Snoopy Cache Coherence (SCC) protocol

At hardware level, two classes of transactions
1. indivisible transactions for programmer defined atomicity
2. divisible transactions for outside critical regions

Divisible transactions can be split if convenient
• For example, when hardware buffers overflow
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Translating Java to Transactions

• Three rules create transactions in Java programs
1. synchronized defines an indivisible transaction
2. volatile references define indivisible transactions
3. Object.wait performs a transaction commit

• Allows us to run:
Histogram based on our ASPLOS 2004 paper
Benchmarks described in Harris and Fraser OOPSLA 2003
SPECjbb2000 benchmark
All of Java Grande (5 kernels and 3 applications)

• Performance comparable or better in almost all cases
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Defining indivisible transactions

• synchronized blocks define indivisible transactions
public static void main (String args[]){

a(); a();      // divisible transactions

synchronized (x){ COMMIT();

b(); b();      // indivisible transaction

} COMMIT();

c(); c();      // divisible transactions

} COMMIT();

• We use closed nesting for nested synchronized blocks 
public static void main (String args[]){

a(); a();      // divisible transactions

synchronized (x){ COMMIT();

b1(); b1();     //

synchronized (y) { //

b2(); b2();     // indivisible transaction

} //

b3(); b3();     //

} COMMIT();

c(); c();      // divisible transactions

} COMMIT();
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Coping with condition variables

• In our execution, Object.wait commits the transaction 
• Why not rollback transaction on Object.wait?

This is the approach of Conditional Critical Regions (CCRs) 
as well as Harris’s retry keyword
This does handle most common usage of condition variables
while (!condition) wait();
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Coping with condition variables

• However, need Object.wait commit to run current code
• Motivating example: A simple barrier implementation

synchronized (lock) {

count++;

if (count != thread_count) {

lock.wait();

} else {

count = 0;

lock.notifyAll();

}

}

Code like this is found in Sun Java Tutorial, SPECjbb2000, and Java Grande

• With rollback, all threads think they are first to barrier
• With commit, barrier works as intended
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Coping with condition variables

• Nested transaction problem
We don’t want to commit value of “a” when we wait:
synchronized (x) {

a = true; 

synchronized (y) {

while (!b)

y.wait();

c = true;}}

With locks, wait releases specific lock
With transactions, wait commits all outstanding transactions
In practice, nesting examples are very rare

• It is bad to wait while holding a lock
• wait and notify are usually used for unnested top level coordination 
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Coping with condition variables

• Not happy with unclean semantics
Most existing Java programs work correctly
Unfortunately no guarantee

• Fortunately, if you prefer rollback…
Barrier code example can be rewritten to use rollback
Presumably this is generally true…
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Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

• JikesRVM
Derived from release version 2.3.4
Scheduler pinned threads to avoid context switching
Garbage Collector disabled and 1GB heap used
All necessary code precompiled before measurement
Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-16 single issue PowerPC coreCPU
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Transactions remove lock overhead

• SPECjbb2000 benchmark
• Problem

Locking is used because of 1% 
of operations than span two 
warehouses
Pay for lock overhead 100% of 
the time for 1% case. 

• Solution
Transactions make the 
common case fast, time lost to 
violations not even visible in 
this example.
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Transactions keep data structures simple

• TestHashtable
mix of read/writes to Map

• Problem
Java has 3 basic Map classes
Which to choose?

• HashMap
– No synchronization

• Hashtable
– Singe coarse lock

• ConcurrentHashMap
– Fine grained locking

• Solution
ConcurrentHashMap scales
but has single CPU overhead
With transactions, just use 
HashMap and scale like CHM
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Transactions can scale better with contention

• Low Contention
Transactions have 
slight edge without 
lock overhead

• High Contention
CHM scales to 4 
but then slows
Transactions scale 
to 16 cpus
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Java Grande Applications: MolDyn

• MolDyn
Time spent on locks close to 
time lost to violations
Both scale to 8 CPUs and 
slow at 16 CPUs
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Java Grande Applications: MonteCarlo

• MonteCarlo
Similar to SPECjbb2000 
(and Histogram in paper)
Performance difference 
attributable to lock overhead
Both scale to 16 CPUs
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Java Grande Applications: RayTracer

• RayTracer
Another contention example

• 2 CPUs
Lock and Violation time 
approximately equal
Difference in Busy time 
attributable to commit overhead 
(see paper graph)

• 4 CPUs
Overall time about equal
Lock time as percentage of 
overall time has increased

• 8 CPUs
Transactions pull ahead as 
Lock percentage increases

• 16 CPUs
Transactions still ahead as 
Lock and Violation percentage 
grows 0
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Transactional Execution of Java Programs

• Goals (revisited)
Run existing Java programs using transactional memory

• Can run a wide variety of existing benchmarks

Require no new language constructs
• Used existing synchronized, volatile, and Object.wait

Require minimal changes to program source
• No changes required for these programs

Compare performance of locks and transactions
• Generally better performance from transactions


