
Transactional Execution of Java Programs Brian D. Carlstrom

Transactional Execution of
Java Programs

Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi, Austen McDonald
Chi Cao Minh, Lance Hammond, Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

Transactional Execution of Java Programs 2

Transactional Execution of Java Programs

• Goals
Run existing Java programs using transactional memory
Require no new language constructs
Require minimal changes to program source
Compare performance of locks and transactions

• Non-Goals
Create a new programming language
Add new transactional extensions
Run all Java programs correctly without modification

Transactional Execution of Java Programs 3

TCC Transactional Memory

• Continuous Transactional Architecture
“all transactions, all the time”
Transactional Coherency and Consistency (TCC)
• Replaces MESI Snoopy Cache Coherence (SCC) protocol

At hardware level, two classes of transactions
1. indivisible transactions for programmer defined atomicity
2. divisible transactions for outside critical regions

Divisible transactions can be split if convenient
• For example, when hardware buffers overflow

Transactional Execution of Java Programs 4

Translating Java to Transactions

• Three rules create transactions in Java programs
1. synchronized defines an indivisible transaction
2. volatile references define indivisible transactions
3. Object.wait performs a transaction commit

• Allows us to run:
Histogram based on our ASPLOS 2004 paper
Benchmarks described in Harris and Fraser OOPSLA 2003
SPECjbb2000 benchmark
All of Java Grande (5 kernels and 3 applications)

• Performance comparable or better in almost all cases

Transactional Execution of Java Programs 5

Defining indivisible transactions

• synchronized blocks define indivisible transactions
public static void main (String args[]){

a(); a(); // divisible transactions

synchronized (x){ COMMIT();

b(); b(); // indivisible transaction

} COMMIT();

c(); c(); // divisible transactions

} COMMIT();

• We use closed nesting for nested synchronized blocks
public static void main (String args[]){

a(); a(); // divisible transactions

synchronized (x){ COMMIT();

b1(); b1(); //

synchronized (y) { //

b2(); b2(); // indivisible transaction

} //

b3(); b3(); //

} COMMIT();

c(); c(); // divisible transactions

} COMMIT();

Transactional Execution of Java Programs 6

Coping with condition variables

• In our execution, Object.wait commits the transaction
• Why not rollback transaction on Object.wait?

This is the approach of Conditional Critical Regions (CCRs)
as well as Harris’s retry keyword
This does handle most common usage of condition variables
while (!condition) wait();

Transactional Execution of Java Programs 7

Coping with condition variables

• However, need Object.wait commit to run current code
• Motivating example: A simple barrier implementation

synchronized (lock) {

count++;

if (count != thread_count) {

lock.wait();

} else {

count = 0;

lock.notifyAll();

}

}

Code like this is found in Sun Java Tutorial, SPECjbb2000, and Java Grande

• With rollback, all threads think they are first to barrier
• With commit, barrier works as intended

Transactional Execution of Java Programs 8

Coping with condition variables

• Nested transaction problem
We don’t want to commit value of “a” when we wait:
synchronized (x) {

a = true;

synchronized (y) {

while (!b)

y.wait();

c = true;}}

With locks, wait releases specific lock
With transactions, wait commits all outstanding transactions
In practice, nesting examples are very rare

• It is bad to wait while holding a lock
• wait and notify are usually used for unnested top level coordination

Transactional Execution of Java Programs 9

Coping with condition variables

• Not happy with unclean semantics
Most existing Java programs work correctly
Unfortunately no guarantee

• Fortunately, if you prefer rollback…
Barrier code example can be rewritten to use rollback
Presumably this is generally true…

Transactional Execution of Java Programs 10

Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

• JikesRVM
Derived from release version 2.3.4
Scheduler pinned threads to avoid context switching
Garbage Collector disabled and 1GB heap used
All necessary code precompiled before measurement
Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-16 single issue PowerPC coreCPU

Transactional Execution of Java Programs 11

Transactions remove lock overhead

• SPECjbb2000 benchmark
• Problem

Locking is used because of 1%
of operations than span two
warehouses
Pay for lock overhead 100% of
the time for 1% case.

• Solution
Transactions make the
common case fast, time lost to
violations not even visible in
this example.

0

10

20

30

40

50

60

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Busy Lock Violations

Transactional Execution of Java Programs 12

Transactions keep data structures simple

• TestHashtable
mix of read/writes to Map

• Problem
Java has 3 basic Map classes
Which to choose?

• HashMap
– No synchronization

• Hashtable
– Singe coarse lock

• ConcurrentHashMap
– Fine grained locking

• Solution
ConcurrentHashMap scales
but has single CPU overhead
With transactions, just use
HashMap and scale like CHM

0

2

4

6

8

10

12

1 2 4 8 16

CPUs

Sp
ee

du
p

HashMap
Hashtable
ConcurrentHashMap
Transactional HashMap

Transactional Execution of Java Programs 13

Transactions can scale better with contention

• Low Contention
Transactions have
slight edge without
lock overhead

• High Contention
CHM scales to 4
but then slows
Transactions scale
to 16 cpus

0

5

10

15

20

25

30

35

40

45

C
H

M
 F

in
e-

2

Tr
an

s.
 H

M
-2

C
H

M
 F

in
e-

4

Tr
an

s.
 H

M
-4

C
H

M
 F

in
e-

8

Tr
an

s.
 H

M
-8

C
H

M
 F

in
e-

16

Tr
an

s.
 H

M
-1

6

C
H

M
 F

in
e-

2

Tr
an

s.
 H

M
-2

C
H

M
 F

in
e-

4

Tr
an

s.
 H

M
-4

C
H

M
 F

in
e-

8

Tr
an

s.
 H

M
-8

C
H

M
 F

in
e-

16

Tr
an

s.
 H

M
-1

6

low contention high contention

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Violations
Lock
Busy

•TestCompound
Atomic swap of Map elements (low and high contention experiments)
Extra lock overhead compared to TestHashtable to lock keys

Transactional Execution of Java Programs 14

Java Grande Applications: MolDyn

• MolDyn
Time spent on locks close to
time lost to violations
Both scale to 8 CPUs and
slow at 16 CPUs

0

10

20

30

40

50

60

70

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Busy Lock Violations

Transactional Execution of Java Programs 15

Java Grande Applications: MonteCarlo

• MonteCarlo
Similar to SPECjbb2000
(and Histogram in paper)
Performance difference
attributable to lock overhead
Both scale to 16 CPUs

0

10

20

30

40

50

60

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Busy Lock Violations

Transactional Execution of Java Programs 16

Java Grande Applications: RayTracer

• RayTracer
Another contention example

• 2 CPUs
Lock and Violation time
approximately equal
Difference in Busy time
attributable to commit overhead
(see paper graph)

• 4 CPUs
Overall time about equal
Lock time as percentage of
overall time has increased

• 8 CPUs
Transactions pull ahead as
Lock percentage increases

• 16 CPUs
Transactions still ahead as
Lock and Violation percentage
grows 0

10

20

30

40

50

60

70

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Busy Lock Violations

Transactional Execution of Java Programs 17

Transactional Execution of Java Programs

• Goals (revisited)
Run existing Java programs using transactional memory

• Can run a wide variety of existing benchmarks

Require no new language constructs
• Used existing synchronized, volatile, and Object.wait

Require minimal changes to program source
• No changes required for these programs

Compare performance of locks and transactions
• Generally better performance from transactions

