
The OpenTM Transactional
Application Programming Interface

Woongki Baek, Chi Cao Minh, Martin Trautmann,
Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

1

Motivation
Transactional Memory (TM)

Simplifies parallel programming using large atomic blocks
Performance of fine-grain locks; simplicity of coarse-grain locks

Current practice: TM programming with library-based APIs
Error-prone and difficult to maintain, port, and scale
Reduces effectiveness of compiler optimizations

Needed: a high-level approach for TM programming
Integrated with constructs that define parallel work
Compiler support & optimizations
Portable code across multiple TM platforms

2

OpenTM Contributions
OpenTM = OpenMP + TM

Unified model for expressing parallelism & memory transactions
Familiar & simple environment for high-level programming

TM uses: non-blocking sync, speculative parallelization
Extends shared-memory programming model of OpenMP

Compiler-based OpenTM implementation
Based on the GCC + Gnu OpenMP (GOMP) framework
Retargetable to hardware, software, and hybrid TM systems

Automatic annotation of memory accesses + optimizations
Runtime system for scheduling + contention management

Initial evaluation of performance, programmability, and runtime
OpenTM code is simple, compact, and scales well

3

Outline
Motivation

OpenMP Overview

The OpenTM API

A First OpenTM Implementation

Evaluation

Related Work

Conclusions

4

OpenMP Parallel Model
A widely-used API for shared-memory parallel programming

Consists of a set of compiler directives + runtime library

Based on the fork-join parallel execution model
Master thread executes sequential code
Worker threads execute parallel regions

Parallel loops and parallel sections

Five classes of directives & routines
Parallel: parallel
Work-sharing: for, sections, etc.
Synchronization: critical, atomic, barrier, etc.
Data environment: private, shared, etc.
Runtime: omp_set_num_threads, etc.

OpenMP Parallel Constructs
Parallel Loop

#pragma omp parallel for
for (i=1; i<n; i++) {
b[i]=(a[i]+a[i-1])/2.0;

}

Parallel Section

#pragma omp parallel sections
{
#pragma omp section
XAXIS();

#pragma omp section
YAXIS();

#pragma omp section
ZAXIS();

}

Source: OpenMP API Ver. 2.5

5

OpenTM Transactional Model
Implicit transactions

User specifies only xaction boundaries
No need for manual instrumentation of accesses within xaction

All xaction accesses implicitly operate on transactional state
If needed, instrumentation inserted by the compiler

Strong isolation
Xactions are isolated from non-transactional accesses
Necessary for correct and predictable program behavior
Enforced by underlying TM system or by the compiler

Virtualized transactions
Xactions not bounded by time, memory footprint, or nesting depth

6

7

OpenTM Transactions
Defines boundaries of a strongly isolated transaction

Can be used within parallel regions of OpenMP

Syntax: #pragma omp transaction [clauses] {structured-block}
Ordered clause: requires sequential commit order for xactions
Otherwise, commit order is serializable but not predefined

Code example
#pragma omp parallel for
for (i=0; i<N; i++) {
#pragma omp transaction
{ bin[A[i]] = bin[A[i]] + 1; }

}

OpenTM Transactional Loop
Defines parallel loop with iterations executing as xactions

Syntax: #pragma omp transfor [clauses]
Ordered clause: require sequential commit order for xactions

Ordered loop ⇒ speculative parallelization (TLS)
Unordered loop ⇒ parallel loop with non-blocking synchronization

Schedule clause (see syntax in paper)
Scheduling policy, loop chunk size, transaction size

Other clauses: private variables, shared variables, …

Code example
#pragma omp transfor schedule (static, 42, 6)

for (i=0; i<N; i++) {
bin[A[i]] = bin[A[i]]+1;

} 8

9

OpenTM Transactional Sections
Defines parallel sections executing as xactions
Syntax:
#pragma omp transsections [clauses]
[#pragma omp transsection {structured-block}]+

Ordered clause: require sequential commit order for xactions
Ordered loop ⇒ speculative parallelization (TLS)
Unordered loop ⇒ parallel section with non-blocking synchronization

Code example (method-level speculation)
#pragma omp transsections ordered

#pragma omp transsection
WORK_A();

#pragma omp transsection
WORK_B();

10

Advanced Constructs (Summary)
Conditional synchronization

omp_watch(): notifies runtime to monitor an address
omp_retry(): indicates xaction is blocked on a condition

Runtime system decides retry immediately or suspend thread

Alternative execution path
#pragma omp orelse: alternative code runs if xaction aborts

Transactional handlers
Software handlers invoked on commit, abort, or conflict
Associated with transaction, transfor, transsections, or orelse

Nested transactions
Support for both open and closed nested xactions

Open Issues & Requirements
Philosophy: define an intuitive first set of features for OpenTM

Evolve model after receiving feedback from users

Currently required
User must mark functions that may be used within xactions

Necessary for code generation for software & hybrid TM systems

Currently disallowed
Nesting of xactions and OpenMP synchronization

Can lead to various deadlock or livelock scenarios
I/O and system calls within transactions
Nested parallelism within transactions

Future language considerations
Relaxed conflict detection (e.g., race or exclude variables)

May improve performance but can also lead to bugs
11

12

OpenTM Runtime System
Scheduling of loop iterations across worker threads

Reuse of OpenMP options (static, guided, dynamic)
Extended to handle the number of iterations per xaction

Default is 1 but can change statically or dynamically
Balance xaction overhead vs. frequency of conflicts

Contention management for conflicting xactions
Necessary for performance robustness and fairness
OpenTM runtime controls the policy of underlying TM system

omp_get_cm(): query current contention management policy
omp_set_cm(): set current contention management policy

Policies and parameters are an open research issue

13

Outline
Motivation

OpenMP Overview

The OpenTM API

A First OpenTM Implementation

Evaluation

Related Work

Conclusions

Implementation Approaches
Source-to-source translation

OpenTM ⇒ C with library calls ⇒ executable
Pros: simple to prototype
Cons: debugging intermediate code, lack of optimizations
Our initial OpenTM system followed this approach

Using the Cetus source-to-source framework

Compiler-based system
OpenTM ⇒ executable
Pros: high-level debugging, full compiler optimizations
Cons: compiler complexity
Our current OpenTM system follows this approach

Based on GCC + GOMP to maximize reuse and portability
14

15

Our OpenTM Implementation
Compiler

GCC 4.3.0 + Gnu OpenMP (GOMP) environment
Modified parser, IR, and code generator
Currently working on code optimizations for TM

Interface to underlying TM system
Defined a simple API to interface code with TM system

Supports hardware, software, and hybrid TM systems
Supports both lazy and eager systems for STM

Compiler can easily retarget to any TM system that follows this API

OpenTM runtime system
A set of runtime library routines for OpenMP and OpenTM
Simple conditional synchronization (immediate retry)

Currently working on optimized runtime system

16

OpenTM Code Generation

User Code
C + OpenTM

OpenTM Compiler
(GCC 4.3.0)

OpenTM Runtime
Library

Linker

TM System
Library

Binary
Executable

Compiler Options
(TM system specific

e.g., HTM, Lazy-STM, etc.)

Evaluation Methodology
Three TM systems on top of simulated x86-based CMP

Hardware TM (similar to Stanford’s TCC)
Software TM system (Sun’s TL2)
Hybrid TM system (similar to Stanford’s SigTM)

Applications
Four applications: delaunay, genome, kmeans, vacation
One microbenchmark: histogram

Code versions
OpenTM code (OTM)

Automatic generation of binaries for HTM, STM, and hybrid TM
Low-level code that uses directly the TM API (LTM)
Parallel code with coarse-grain (CGL) and fine-grain (FGL) locks

17

18

Programmability

vs. FGL
Manual orchestration to shared states

vs. LTM-STM
Manual instrumentation for all load/store within xactions
Highly error-prone (missing barrier) or low-performance (redundant barrier)

vs. LTM-HTM
Significant code transformation for parallelization & loop scheduling

0105011rbtree.cvacation

11583225sequencer.cgenome

00043cavity.cdelaunay

OTMLTM-STMLTM-HTMFGL

of extra C lines
FileApp.

19

Performance Comparison

vs. FGL
Compares favorably
delaunay: FGL code is marginally faster by avoiding overhead of aborted Tx’s

vs. LTM
Compares favorably
genome: OpenTM code is faster with easy tuning (scheduling policy/Tx’s size)

0.00
0.05
0.10
0.15
0.20

FGL LTM OTM FGL LTM OTM

delaunay genome

N
or

m
. E

xe
c.

 T
im

e Useful Cache Miss Idle/Sync Commit Violation

20

Runtime System

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

M
R

=5

M
R

=1
0

M
R

=2
0

M
R

=3
0

M
R

=4
0

M
R

=5
0

M
R

=1
00

No
CM

Priority Mechanism

N
or

m
. E

xe
c.

 T
im

e

Contention management
Handle Starving Elder (SE) pathology using a simple priority mechanism
After MR (max. retry) aborts, give high priority to the aborted xaction
Tradeoff: starvation vs. serialization

21

Related Work
TM programming for unmanaged code (C/C++)

[Wang’07]: no work sharing constructs; targets STM only
[von Praun’07]: supports only ordered xactions
[Milovanonic’07]: defines transaction construct for OpenMP

Lacks several advanced features & compiler-based implementation

[Felber’07]: no work sharing constructs; targets STM only

TM programming for managed code (Java/C#)
[Ald-Tabatabai’06]: compiler optimizations for STM
[Haris’06]: compiler optimizations for STM
[Carlstrom’06]: conditional synchronization using TM

22

Conclusions
OpenTM = OpenMP + TM

Unified model for expressing parallelism & memory transactions
Compiler-based system for optimizations and portability
Runtime system for dynamic scheduling and contention management
Good performance with simple and portable high-level code

Future work
Open-source our OpenTM environment

Compiler and runtime

Compiler optimizations
Primarily for software and hybrid TM systems

Further language and runtime features

Thanks & Questions?
Woongki Baek wkbaek@stanford.edu

Backup Slides

24

25

Runtime System

0

5

10

15

2 4 8 16

Processor Cores

Sp
ee

du
p

S, C=1 D, C=1 D, C=8 D, C=64

Dynamic scheduling
Smaller vs. larger chunk size
Less imbalance & violations vs. more scheduling overhead

26

Code Generation

0
2
4
6
8

10

1 2 4 8 16

Processor Cores

Sp
ee

du
p

HTM STM SigTM

OpenTM code: retargetable to hardware, software, and hybrid TM system
Performance comparison

HTM: fastest, SigTM: 2x faster than STM (see our ISCA’07 paper for details)

More aggressive compiler optimizations: in progress

