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THIS COMPREHENSIVE ARCHITECTURE SUPPORTS NESTED TRANSACTIONS,

TRANSACTIONAL HANDLERS, AND TWO-PHASE COMMIT. THE RESULT IS A SEAMLESS

INTEGRATION OF TRANSACTIONAL MEMORY WITH MODERN PROGRAMMING LANGUAGES

AND RUNTIME ENVIRONMENTS.

......As multicore chips become ubiq-
uitous, the need to provide architectural
support for practical parallel programming
is reaching critical. Conventional lock-based
concurrency control techniques are difficult
to use, requiring the programmer to
navigate through the minefield of coarse-
versus fine-grained locks, deadlock, livelock,
lock convoying, and priority inversion. This
explicit management of concurrency is
beyond the reach of the average program-
mer, threatening to waste the additional
parallelism available with multicore archi-
tectures.

A promising solution to this dilemma is
transactional memory (TM).1 With TM,
programmers declare code segments that
must execute atomically and in isolation
from all other code. Concurrency control
becomes largely the system’s responsibility,
with no additional programming burden.
The system monitors transactions that are
executing optimistically in parallel, detects
accesses to shared data that violate atom-
icity, and potentially aborts and reexecutes
some transactions to restore atomicity.

Several TM implementation proposals
advocate using hardware, software, or

hybrid techniques,2 and all propose imple-
menting two key mechanisms. The first,
data versioning, manages the new data
values that transactions produce until they
complete or abort. The second, conflict
detection, tracks the addresses each trans-
action reads and writes to identify concur-
rent accesses that violate atomicity. Initial
evaluations indicate that TM provides scal-
able performance with simple parallel code
and that, with some hardware support, its
bookkeeping overhead is low.

Nevertheless, for the programming com-
munity to broadly accept TM, it must work
with modern programming languages and
runtime systems. In current TM systems,
the hardware-software interface is just a few
instructions that define transaction bound-
aries. Although such limited semantics have
been sufficient for initial demonstrations
with simple benchmarks, they fall short of
supporting key aspects of a modern pro-
gramming environment. In real-world ap-
plications, transactions must work correctly
with library calls, system calls, runtime
exceptions, and even distributed application
frameworks. TM systems should also sup-
port novel languages that build on transac-
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tions using conditional synchronization and
contention management.

To address these shortcomings, we de-
fined a comprehensive TM architecture that

includes expressive and clean interfaces
between transactional hardware and soft-
ware.3 The architecture introduces three

basic mechanisms:

N nested transactions with independent
rollback;

N transactional handlers that support
transaction commit, violation, and

abort; and

N two-phase transaction commit.

These mechanisms require only a few

registers and instructions, since their sup-
port is mostly through software conven-
tions. This reduction of hardware resources

and reliance on software is similar to the
way modern architectures support function

calls and interrupt handling: a few special
instructions and heavy reliance on well-
defined software conventions.

The three proposed mechanisms can

support a rich set of functions in pro-
gramming languages and runtime systems,
including composable library calls, condi-

tional synchronization, system calls, I/O,
and runtime exceptions within transactions.

To demonstrate their effectiveness, we
added them to the Transactional Coherence
and Consistency (TCC) TM system4 and

used them to implement the Atomos pro-
gramming language.5 TCC is a lazy version-

ing, optimistically concurrent TM system
that we and colleagues at Stanford designed
to explore the concept of ‘‘all transactions

all the time,’’ but these mechanisms are
equally applicable to all proposed TM

implementations. Atomos is a full-featured
transactional programming language de-
rived from Java that combines easy parallel

programming with scalable performance.5

This implementation demonstrated that

introducing the three mechanisms—nest-
ing, transactional handlers, and two-phase
commit—does not introduce significant

overhead. We also used nested transactions
to improve performance by reducing the
cost or frequency of conflicts.

We believe that the semantics of the three
mechanisms will provide a solid substrate
for future developments in TM software
research. Perhaps more important, clean
TM interfaces enhance hardware and soft-
ware interoperability and allow researchers
to pursue more cost-effective hardware
support and practical programming envi-
ronments apart from one another.

Addressing current challenges
Each of the three proposed mechanisms

addresses the challenges in existing TM
systems, including support for nested trans-
actions, input/output (I/O) handling, sys-
tem calls within transactions, error recovery
and contention management, conditional
synchronization, and system-level and dis-
tributed transactions.

Nested transactions
Modern programs rely on extensive

hierarchies of libraries. Such libraries have
well-defined interfaces, but their implemen-
tations are not transparent to users. Since
libraries called within transactions can
include atomic blocks, transactions will
often be nested. Current TM systems deal
with nested transactions by subsuming (or
flattening) all inner transactions within the
outermost transaction.4,6 Flattening nested
transactions poses both functionality and
performance challenges. Several TM lan-
guages include constructs such as orElse that
specify alternative control-flow paths if
a transaction aborts.7 It is impossible to
support such functionality for a nested
transaction if, when it aborts, the system
always rolls back to the outermost trans-
action. Flattening can significantly degrade
performance, since a conflict in a small,
inner transaction can cause a large, outer
transaction to reexecute. It then becomes
impossible to use separate contention man-
agement policies for the inner and the outer
transaction—a requirement for properly
dealing with nested transactions.

In our proposed architecture, TM sys-
tems follow the closed nesting model in
Figure 1a to support independent abort for
nested transactions. The system tracks reads
and writes in the inner transaction sepa-
rately from those in the outer transaction.
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Thus, if a conflict occurs, the nested
transaction (child) can roll back to its
beginning without aborting the outer one
(the parent). At commit, the nested transac-
tion’s reads and writes are merged with the
parent’s (A and B). However, no value that
a child transaction produces becomes visible
to the shared memory until the parent
transaction commits (C and D).

System calls
Current TM systems prohibit system

calls within transactions6 or handle them
by reverting to sequential execution.4 Both
approaches are unacceptable, since real
programs include system calls that are often
hidden in library calls. Simply nesting
system call code within a user transaction
can lead to undesirable effects, both for the
user application and the operating system
(OS). A closed-nested call to gettimeof-
day(), for example, would generate a de-
pendency between the user transaction and
the OS’s clock. As the system periodically
updates the clock, the user code will
experience unnecessary and repeated con-
flicts that might even prevent forward
progress.

Similarly, simultaneous calls to mmap()
for memory allocation by two transactions
will allocate the same chunk to both
transactions, causing wasted work when

one rolls back. If a transaction aborts after
making a system call, such an approach
could also (unintentionally) undo impor-
tant OS bookkeeping and logging per-
formed during the system call.

To support system calls, the system code
should be able to read and update its data
structures independently of the user trans-
action that triggered it. Our architecture
meets this requirement by allocating a dif-
ferent memory chunk to each transaction
and by avoiding unnecessary dependencies
through OS data structures. The open-
nesting model in Figure 1b illustrates how
this works. Open nesting differs from closed
nesting only in commit semantics. In an
open-nested commit, the child transaction
immediately updates the shared memory
with its writes (C and D), as if it were
a parent transaction. If the parent and child
transactions overlap because of writes from
the child, the parent transaction simply
updates its read or write data—it does not
generate a conflict. In practice, these
differences imply that the atomicity and
isolation of a child open-nested transaction
are independent of those of its parent.

Thus, a transaction that makes an open-
nested call to gettimeofday() will not
experience conflicts because of clock up-
dates after the child transaction returns.
Similarly, two concurrent transactions that

Figure 1. Timeline of nested transactions under the closed-nesting (a) and open-nesting

(b) models.
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make an open-nested call to mmap() will
allocate different chunks. If the two mmap()
calls overlap, the system can handle conflicts
by aborting and reexecuting one of the calls
as if it were a parent transaction. The
dependencies through OS structures do not
propagate to the user code when the call
returns, regardless of how long the user
transaction takes.

Because our architecture lets open-nested
code update memory immediately, the
effects of the child transaction become visible
even if the parent transaction aborts. To
undo these effects when the parent trans-
action fails, the system must take some
compensating action. In our architecture, the
system executes violation and abort handlers
when their effects must be rolled back
because of a conflict or an explicit abort.
Thus, the open-nested call to mmap() will
register a violation handler that calls mun-
map(). The system will invoke the handler if
the parent transaction must be aborted after
mmap() returns. A handler can have an
arbitrary number of parameters and can
define arbitrary code, including nested
transactions. At any point, multiple handlers
might be associated with a single transaction.

Open nesting can also be a way to
enhance user code performance. In the
server benchmark SPECjbb2000, processing
an order requires first acquiring a unique
order ID from a globally shared counter.
Without open nesting, all transactions that
process new orders experience frequent
conflicts on the shared counter. By sur-
rounding the acquisition of the order ID
with an open-nested transaction, we atom-
ically acquire a unique ID and are free to
discard the dependence before moving on
with order processing. In general, open
nesting can be useful in eliminating con-
flicts when some nested code handles
separate data from the parent transaction.
However, programmers must use it with
caution, since it could lead to violations of
transactional properties if the open-nested
transaction writes to the same shared
variables as its parent.

Input/output
I/O calls, such as read() and write(),

constitute an important class of system calls.

Current TM systems handle I/O within
transactions as they do other system calls,
either disallowing it or reverting to sequen-
tial execution before executing I/O calls to
avoid rolling back I/O actions. A better
approach is to combine open nesting and
transactional handlers to support the trans-
actional execution of I/O calls. It’s possible
to implement an input call, for example, by
using an open-nested transaction to remove
data from OS buffers. If the transaction or
one of its parents later aborts, the system
can register a violation handler to restore the
input data. This approach works well even if
the input call happens within a deeply
nested transaction.

Implementing output calls requires sup-
port for commit handlers. Just as violation
handlers implement compensating actions,
commit handlers provide finalizing actions
that complete the I/O call when the parent
transaction completes. When the program
executes an output call, it places the output
data in a temporary buffer and registers
a commit handler. When the outermost
transaction commits, the commit handler
will copy the data to the OS output buffers.
Like violation handlers, commit handlers
can have an arbitrary number of parameters
and can include nested transactions. The
system can register multiple commit hand-
lers at any point.

Error recovery and contention management
TM lets systems recover from software

errors efficiently. For example, when
a mechanism like Java’s try/catch discovers
an error, aborting the enclosing transaction
rolls back all the side effects from the
erroneous code. For debugging and moni-
toring, however, it is useful to expose some
information about the error, and violation
handlers can provide this function. A
registered handler triggered before the
transaction aborts can use open nesting to
preserve important debugging information
for later processing. Violation handlers can
also streamline contention management.
User code or the runtime environment can
register handlers that determine how best to
react to conflicts for each transaction. The
handler can retry the transaction immedi-
ately or use a back-off technique. The
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handler might even decide to ignore some
conflicts and resume the transaction if it has
application-level knowledge that it can do
so safely. Overall, violation handlers enable
application-, transaction-, and nesting-level-
specific contention management that pro-
vides the best possible guarantees of perfor-
mance and fairness. These handlers also
support programming constructs that define
alternative execution paths when a trans-
action aborts, such as tryatomic.8

Conditional synchronization
Locks not only provide mutual exclusion,

but can also implement conditional syn-
chronization primitives such as Java’s wait/
notify. TM can support conditional critical
regions, and therefore efficient conditional
synchronization that eliminates even the
need for explicit notify statements in the
user code.9 A transactional conflict can act
as a tripwire to detect when to reevaluate
a waiting condition. The conflict indicates
that another transaction has updated a value
that the waiting transaction has read.

Several proposed languages include sim-
ilar constructs for conditional synchroniza-
tion using transactions, such as conditional
atomic,9 retry and orElse,7 and when.10

Figure 2 gives an example that clarifies
the requirements for implementing condi-
tional synchronization.5

In Atomos, the consumer uses watch
statements to identify the addresses it must
wait for (watch set). When the consumer
cannot make further progress, it calls retry
to roll back the transaction and yield the
processor. The implementation of retry uses
open nesting to communicate the watch set
to a scheduler, which listens for updates to
these addresses on behalf of the now-yielded
consumer. The open-nested transaction
causes a conflict for the scheduler, and its
violation handler reads the watch set from
some mutually known location. When the
producer commits a new value in the watch
set, the scheduler receives a conflict. Instead
of aborting the scheduler transaction, the
violation handler will wake up (reschedule)
the consumer. The producer did not have
any knowledge about other threads waiting
for this data and did not have an explicit
notify.

System-level and distributed transactions
Thus far, we have assumed that conflicts

or explicit aborts are the only factors
determining whether a transaction com-
pletes or rolls back. However, real-world
programs can access additional transactional
resources within one atomic block, such as
a database or a log-based file system. Before
committing the transaction, the system
must coordinate across all resources to
ensure that there are no conflicts. Similarly,
in a distributed system, a transaction within
one process might communicate with
transactions in other processes. Again,
systemwide coordination is necessary before
a transaction is committed. Finally, the user
code might be running in parallel with
checker threads that validate its security and
integrity; hence, before committing any
transaction, the system must consult the
checkers.11

A two-phase commit makes it easier to
handle system-level and distributed transac-
tions. The first phase, validate, guarantees
no conflicts on previously accessed data.
The second phase, the actual commit,
commits the updates to shared memory.
Using open-nested transactions between the
two phases enables communication with
other system resources or processes. System-

Figure 2. Producer-consumer example in the Atomos

programming language.
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wide coordination can result in continuing
with the commit or aborting the trans-
action.

Complete architecture
To support real-world programming

environments, a TM system must accom-
modate nesting, transactional handling, and
two-phase commit. Our architecture com-
bines software and hardware to implement
these mechanisms in a way that balances
complexity and performance.3

Software conventions
The transaction stack is the key software

structure. As Figure 3 shows, the stack
tracks the information for all nesting levels
currently executing in a thread. When a new
transaction begins, a new transaction con-
trol block (TCB) is pushed onto the stack.
In this sense, the transaction stack is similar
to a traditional software stack, with trans-
action creation being analogous to a func-
tion call. Each TCB uses thread-local
storage to hold transaction metadata (status,
nesting level, and so on) and vital in-
formation for versioning and conflict de-
tection. Some TM implementations store
TCB fields such as the read-set and write-set
in hardware caches4,6 or hardware signa-
tures.12

The code pointers and arguments for
transactional handlers are in separate stacks
to enable a fixed-length TCB format while
supporting unlimited handlers with an
arbitrary number of arguments. The sepa-
rate stacks also simplify handler manage-
ment as nested transactions start, complete,
or abort. To preserve undo semantics, when
the system rolls back a transaction, violation
handlers must execute in reverse of the
order in which they were registered. Com-
mit handlers, in contrast, run in the same
order in which they were registered after
validation of a parent or an open-nested
transaction. When a child transaction
commits, its handlers merge with those of
its parent through a simple manipulation of
the pointers in the parent’s TCB.

All these rules are software conventions,
and programmers can adjust them to match
the requirements of a specific programming
environment without any hardware changes.

A violation, such as a conflict between
concurrent transactions, or an explicit abort
can disrupt a transaction. Our architecture
handles the two events in a way similar to
the handling of user-level interrupts. The
system automatically transfers control to
a prespecified software monitor that exam-
ines the source of the interruption and
determines a proper reaction (ignore con-
flict and resume, roll back, invoke conten-
tion-management code, and so on). If need
be, the monitor will also invoke the
violation and abort handlers registered in
the TCB. To avoid repeated monitor
invocations, the hardware detects additional
conflicts while the current one is processing
but does not immediately jump to the
monitor. The monitor can decide to handle
multiple conflicts with single or multiple
invocations.

Because many transactions will be only
hundreds of instructions long, the code that
manipulates TCB entries as well as the
violation and abort monitor should be
highly tuned assembly code. This is analo-
gous to compilers using assembly templates
to generate function call prologues and
epilogues. The transactional handlers them-
selves, however, can be in a high-level
language.

Hardware support
For two-phase commit, the hardware

provides separate validate and commit
instructions. If the validate instruction
executes successfully, the transaction is
guaranteed not to roll back if a conflict
occurs. Until the transaction commits, the
conflict-detection logic gives it priority over
any other transactions. The commit in-
struction atomically changes the transaction
status to committed and makes its data
visible to shared memory. To differentiate
the beginning of open-nested transactions,
the hardware provides separate begin and
begin_open instructions.

A small set of instructions and registers
makes it easier to invoke the monitor on
violations and aborts,3 but we used software
for TCB manipulation and handler regis-
tration. To support nested transactions, the
hardware provides separate versioning and
conflict detection for each nesting level. In
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a multicore chip, implementing versioning
and conflict detection requires modifying
the caches and the coherence protocol.

Existing systems use a single read (R) or
write (W) bit per cache line to indicate

whether the line belongs to the read-set or
write-set of the flattened transaction. For
nested transactions, our architecture uses

multiple read and write bits, one for each
transaction level, as in Figure 4a. This

approach works well with TM systems that
use eager versioning.6 TM systems with lazy
versioning4 can use separate lines with

a nesting level (NL) identifier to track the
read-set and write-set of different transac-
tions, as in Figure 4b.

A challenge for both approaches is how to

merge overlapping read-sets and write-sets
when a child transaction commits. To avoid

complex hardware schemes, it is best to do
merging in the background.3 With either
scheme, hardware can support only a limited

number of nesting levels. After these are
expended, a virtualization technique is
required to extend the available levels.

An alternative approach is to use hard-

ware signatures12 to track the read-set and
write-set for nested transactions outside the

cache. A single set of hardware signatures is
sufficient. When a nested transaction begins
or aborts, it is possible to save or restore the

signature of its parent from its TCB entry.

Sample implementation
To illustrate the expressiveness and effi-

ciency of the proposed mechanisms for TM
systems, we added them to the TCC

architecture4 and used them to implement
Atomos.5 Atomos uses transactions to im-

Figure 3. A transaction stack containing three transaction control blocks, one per active

nested transaction, and the second entry (TCB2) in detail, complete with commit, violation,

and abort handler stacks.

Figure 4. The two cache line designs, single read and write bits per cache

line (a) and separate cache lines with a nesting level identifier (b). Both

designs support tracking the read-set and write-set for multiple

nested transactions.
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plement conditional synchronization with-
out the need for explicit notify statements. Its

runtime system uses open nesting and
violation handlers to support this function-
ality. It also provides transactional collection

classes that wrap existing data structure code
and allow their use in long transactions

without frequent conflicts from data struc-
ture bookkeeping and memory allocation.
Atomos implements collection classes using

open nesting, commit, and violation hand-

lers.13 In our sample implementation, it used
our architecture (the three mechanisms) to
implement its I/O library.

Figure 5a compares the scalability of the

Java and Atomos versions of the
SPECjbb2000 three-tier benchmark on
a simulated multicore system. The Atomos

version of this benchmark replaces synchro-
nized blocks with atomic blocks (transac-

tions) and converts wait and notify condi-
tional synchronization to Atomos’s watch
and retry. The two SPECjbb2000 versions

scale similarly for up to 32 cores, which
means that introducing the three mecha-
nisms does not incur significant overhead.

We also used nested transactions to improve
performance by reducing the cost or

frequency of conflicts.

Figure 5b compares the speedup over
a single-core system achieved with three
Atomos versions of SPECjbb2000. Unlike

the experiment in Figure 5a, in which we
made tasks parallel across multiple

SPECjbb2000 warehouses (trivial parallel-
ism), the experiment in Figure 5b exploits
parallelism within a single warehouse.

Conceptually, there is significant concur-
rency within a single warehouse, since
different customers place orders and make

payments mostly on different objects.
Nevertheless, conflicts are possible because

customer tasks manipulate shared data
structures (B-trees). These conflicts are hard
to predict statically and limit the speedup to

1.9 in the base case with flat transactions.
With nesting support, we developed two

additional versions of the Atomos code that
double the base speedup. Closed nesting
reduced the cost of rollbacks from B-tree

searches and updates within long transac-
tions. Open nesting reduced the frequency

of conflicts on globally shared data, such as
the order ID counter.

With the mechanisms we created, we

were able to seamlessly integrate TM
into modern programming and runtime

environments. We also developed full-
system TM prototypes that are practical
for real-world application development, in

which libraries, system calls, I/O and
runtime exceptions are essential. Such

Figure 5. The speedup, over a single-core system, for the Java and Atomos

versions of SPECjbb2000 using multiple warehouses and up to 32

processor cores (a) and the speedup of three Atomos versions of

SPECjbb2000 using a single warehouse on eight cores (b).
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prototypes are critically important in eval-
uating the ease of parallel programming and
the performance that TM can deliver.

Our work also opens new directions for
research on transactional systems. With
system-level transactions, programmers can
use multiple transactional resources in
a unified manner (memory, file systems,
and so on). Distributed transactions can
extend the transactional model to client-
server applications without requiring
a heavyweight database system to imple-
ment transactional semantics. An efficient
TM architecture that supports rich software
functionality is a requirement in both
cases. MICRO
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