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Why Hybrid Transactional Memory?


• Transactional Memory (TM) systems are promising 
• Large atomic blocks simplify parallel programming 
• Speed of fine-grain locks with simplicity of coarse-grain locks 

• TM can be implemented in either hardware or software 
• Hardware TM (HTM) is fast but inflexible & costly 
• Software TM (STM) is flexible but slow 

• Signature-Accelerated TM (SigTM) is a new hybrid TM 
• Uses hardware signatures to accelerate software transactions 

• Fast, flexible, & cost-effective 
• Implements strong isolation of transactional code 

• Correct & predictable execution of software transactions 
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What Can We Accelerate?


Compiler 
High-level Low-level 

ListNode n; ListNode n;

atomic { STMstart();

n = head; n = STMread(&head);

if (n != null) { if (n != null) {


ListNode t;

head = head.next; t = STMread(&head.next);


STMwrite(&head, t);

} }


} STMcommit();


• What do these STM functions do? 
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STMstart


• Called at transaction start → init transaction meta data 

STMstart() {

checkpoint(); // used to rollback

other_initialization();


}


• Constant overhead cost per transaction 
• Expensive only for short transactions 
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STMread


• Called to read shared data → add to read-set 

STMread(addr) {


if (addr in WriteSet) // get latest value

return WriteBuffer.getValue(addr);


val = *addr;

if (!isVersionValid(addr)) // someone wrote?

conflict_handler();


ReadSet.insert(addr);

return val;


}


• Building the read-set is expensive 
• Overhead cost per transaction varies 

• Locality of read accesses, size of read-set, transaction length 
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STMwrite


• Called to write shared data → add to write-set 

STMwrite(addr, val) {

WriteBuffer.insert(addr, val);


}


• Overhead cost per transaction varies 
• Locality of write accesses, size of write-set, transaction length 

• Significantly less expensive than STMread (reads ≥ writes) 
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STMcommit


• Called at transaction end → atomically commit changes

STMcommit() { 

foreach (addr in WriteSet) // lock write-set 
if (!lock(addr)) 
conflict_handler(); 

foreach (addr in ReadSet) // validate read-set 
if (!isVersionValid(addr)) 
conflict_handler(); 

foreach (addr in WriteSet) // commit write-buffer 
*addr = WriteBuffer.getValue(addr); 

foreach (addr in WriteSet) // unlock write-set 
unlock(addr); 

} 

• Expensive: scan read-set (1x); scan write-set (3x), locks 
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How Slow Can STM Be? 

 1.5x - 7x slowdown over sequential 
 Hybrid TM should focus on STMread and STMcommit 

1.0

1.0
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SigTM 

 SigTM simplifies STM by using simple hardware 

SW SW Write-set 
versioning 

HW (write-set signature) SW (locks) Write-set conflict 
detection 

HW (read-set signature) SW (version #) Read-set conflict 
detection 

SigTM STM 
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SigTM Hardware


• SigTM adds a little HW (signatures) to accelerate STM 
• Each HW thread has 2 HW signatures: read-set, write-set 
• No other HW modifications (e.g., no extra cache states) 

• SigTMread and SigTMwrite populate signatures 

... 

SigTMread(addr1); 

... 

SigTMread(addr2); 

T
im

e 

Read-Set Signature 

0 1 2 4 6 7 

hash(addr1) -> 3, 5 

3 5 

hash(addr2) -> 3, 6 

0 1 2 4 5 6 73 
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SigTM Hardware (cont)


 Signatures watch coherence messages 
 SW enables/disables 

... 

*addr1 = val 

Read-Set Signature 

0 1 2 4 6 7 

hash(addr1) -> 3, 5 

53 

• On hit in signature, either: 
• Trigger SW abort handler (conflict detection) 
• NACK remote request (isolation enforcement) 

• Signatures may generate false conflicts 
• Performance but not correctness issue 
• Reduce with longer signatures & better hash functions 
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SigTMstart


SigTMstart() {

checkpoint(); // used to rollback

other_initialization();

enable_read_sig_lookup();


}


• Read-set signature starts monitoring coherence messages 
• If hit, signature invokes conflict_handler() 
• Continuous validation of read-set 
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SigTMread


SigTMread(addr) {


if (addr in WriteSet) // get latest value


return WriteBuffer.getValue(addr);


// No need to validate addr here


read_sig_insert(addr);

return *addr;


}


• SigTMread does not need to: 
• Validate read address → continuous validation by HW signature 
• Build software read-set → just add to read-set signature 
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SigTMwrite 

 SigTMwrite populates write-set signature 
 Used during SigTMcommit 

 Write-set versioning still in SW 

SigTMwrite(addr, val) { 
write_sig_insert(addr); 
WriteBuffer.insert(addr, val); 

} 



SigTMcommit


SigTMcommit() { 

enable_write_sig_lookup(); 
foreach (addr in WriteSet) // remove from... 
fetch_exclusive(addr); // ...other caches 

enable_write_sig_nack(); // ensure atomic commit 
disable_read_sig_lookup(); 
foreach (addr in WriteSet) // commit write-buffer 

*addr = WriteBuffer.getValue(addr); 

disable_write_sig_lookup(); 
} 

• Read-set signature eliminates scan of read-set to validate 
• Write-set signature eliminates locks 
• Two write-set scans instead of three 
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How Much Smaller is the Overhead? 

 Measured dynamic instruction counts 
 R = # words in read-set; W = # words in write-set 

 Measured single-thread performance relative to sequential 

41 + 12W 44 + 16R + 31W Commit 

819 Read Barrier 

SigTM STM 

2.93x 

1.25x 

Improvement 

0.41 0.14 vacation-high 

0.81 0.65 genome 

SigTM STM 



Experimental Setup


• Execution-driven simulation to compare: SigTM, STM, HTM 

• STAMP: Stanford Transactional Apps for Multiprocessing 

• 4 benchmarks for TM research written in C 
• delaunay: Delaunay mesh generation 
• genome: gene sequencing 
• kmeans: K-means clustering 
• vacation: travel reservation system (similar to SPECjbb2000) 

• Parallelized from sequential code 
• Coarse-grain transactions (intuitive parallel programming) 
• Over 95% of time is spent in transactions 

• STM code is manually optimized (same code for SigTM) 
• HTM code has no instrumentation on reads/writes 
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How Fast is SigTM?


• SigTM faster than STM but slower than HTM 

• Genome: SigTM 30% faster than STM; within 10% of HTM 

• Vacation: SigTM 2.8x faster than STM; 2x slower than HTM 
• Many non-redundant read barriers → large performance difference 
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How Much Hardware Does it Cost? 

 Decreased signature size to increase false conflicts 

 Performance sensitive to read-set signature length 
 1024 bits is recommended 

 Performance insensitive to write-set signature length 
 128 bits is recommended 

1024 128



20 

Outline 

 Introduction 

 SigTM Performance 

 SigTM Strong Isolation 

 Related Work 

 Conclusion 



21

Example Program: Privatization

 Two acceptable outcomes:
 T1 commits first; T1 privatizes & uses non-incremented n.val
 T2 commits first; T1 privatizes & uses incremented n.val

 Works correctly with lock-based synchronization
 Race-free program  

ListNode n;
atomic {
  n = head;
  if (n != null)
    head = head.next;
}
// use n.val many times

Thread 1
atomic {
  ListNode n = head;
  while (n != null) {
    n.val++;
    n = n.next;
  }
}

Thread 2
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ListNode n;
atomic {
  n = head;
  if (n != null)
    head = head.next;
}
// use n.val many times

Thread 1
atomic {
  ListNode n = head;
  while (n != null) {
    n.val++;
    n = n.next;
  }
}

Thread 2

Unpredictable Results with STM?

 All STMs may lead to unexpected results with this code
 T1 may use both old & new value after privatization

 Cause: non-transactional accesses are not instrumented
 Non-Tx writes do not cause Tx to abort
 Tx commit not isolated with respect to non-TX accesses 



Strong Isolation


• Definition: transactions are isolated from non-Tx accesses 

• HTM → inherent strong isolation 
• Non-Tx cause coherence messages 
• Conflict detection mechanism enforces strong isolation 

• STM → supplemented strong isolation 
• Additional barriers needed in non-Tx accesses 
• Some can be optimized but still a source of overhead 

• SigTM → inherent strong isolation 
• Without additional instrumentation or overhead 
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How SigTM Provides Strong Isolation


Initially: x=0


// T1 // T2 
atomic { ... 
t=x; ... 
... x=10; 
x=t+1; ... 

} ... 

• Non-Tx write to read-set? 
• Hits in read-set signature → transaction aborts 
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SigTM and Other Hybrid TMs


• Kumar (PPoPP’06) and HyTM (ASPLOS’06) 
• Require significant cache modifications for HTM 
• Need 2 versions of transaction code 

• HASTM (MICRO’06) 
• Requires cache modifications (expensive for nesting) 
• Cache updates from prefetching / speculation problematic 

• RTM (ISCA’07 – later today) 
• Requires significant cache modifications (TMESI) 

• Cache handles common case conflict detection and buffering 
• Poor performance (slower than sequential…) 

• None has strong isolation without barriers in non-Tx 
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SigTM and Signature-based HTMs


• Bulk (ISCA’06) 
• First use of signatures for TM 
• Requires additional HW for write versioning 

• LogTM-SE (HPCA’07) 
• Additional HW to implement undo log 
• Additional HW to remember recently logged lines 
• Recommended smaller signatures (32–64 bits) 
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Conclusions


• SigTM is a hybrid TM that: 

• Uses minimal additional hardware 
• 1K bits for read-set signature; 128 bits for write-set signature 
• No modification to caches 

• Reduces the runtime overhead of SW transactions 
• Eliminates SW read-set, locks, and time stamps 
• Continuous validation of read-set by HW signatures 

• Leads to good performance 
• Outperforms STM by 30% – 280% 
• Slowdown compared to HTM is 10% – 100% 

• Delivers strong isolation for predictable behavior 
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Questions? 

STAMP
Stanford Transactional Applications for Multiprocessing 

A new benchmark suite designed for TM research 

http://stamp.stanford.edu 


