
An Effective Hybrid

Transactional Memory System

with Strong Isolation Guarantees

Chi Cao Minh, Martin Trautmann, JaeWoong Chung,

Austen McDonald, Nathan Bronson, Jared Casper,

Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

Why Hybrid Transactional Memory?

• Transactional Memory (TM) systems are promising
• Large atomic blocks simplify parallel programming
• Speed of fine-grain locks with simplicity of coarse-grain locks

• TM can be implemented in either hardware or software
• Hardware TM (HTM) is fast but inflexible & costly
• Software TM (STM) is flexible but slow

• Signature-Accelerated TM (SigTM) is a new hybrid TM
• Uses hardware signatures to accelerate software transactions

• Fast, flexible, & cost-effective
• Implements strong isolation of transactional code

• Correct & predictable execution of software transactions

1

2

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

What Can We Accelerate?

Compiler
High-level Low-level

ListNode n; ListNode n;

atomic { STMstart();

n = head; n = STMread(&head);

if (n != null) { if (n != null) {

ListNode t;

head = head.next; t = STMread(&head.next);

STMwrite(&head, t);

} }

} STMcommit();

• What do these STM functions do?

3

STMstart

• Called at transaction start → init transaction meta data

STMstart() {

checkpoint(); // used to rollback

other_initialization();

}

• Constant overhead cost per transaction
• Expensive only for short transactions

4

STMread

• Called to read shared data → add to read-set

STMread(addr) {

if (addr in WriteSet) // get latest value

return WriteBuffer.getValue(addr);

val = *addr;

if (!isVersionValid(addr)) // someone wrote?

conflict_handler();

ReadSet.insert(addr);

return val;

}

• Building the read-set is expensive
• Overhead cost per transaction varies

• Locality of read accesses, size of read-set, transaction length
5

STMwrite

• Called to write shared data → add to write-set

STMwrite(addr, val) {

WriteBuffer.insert(addr, val);

}

• Overhead cost per transaction varies
• Locality of write accesses, size of write-set, transaction length

• Significantly less expensive than STMread (reads ≥ writes)

6

STMcommit

• Called at transaction end → atomically commit changes

STMcommit() {

foreach (addr in WriteSet) // lock write-set
if (!lock(addr))
conflict_handler();

foreach (addr in ReadSet) // validate read-set
if (!isVersionValid(addr))
conflict_handler();

foreach (addr in WriteSet) // commit write-buffer
*addr = WriteBuffer.getValue(addr);

foreach (addr in WriteSet) // unlock write-set
unlock(addr);

}

• Expensive: scan read-set (1x); scan write-set (3x), locks
7

8

How Slow Can STM Be?

 1.5x - 7x slowdown over sequential
 Hybrid TM should focus on STMread and STMcommit

1.0

1.0

9

SigTM

 SigTM simplifies STM by using simple hardware

SW SW Write-set
versioning

HW (write-set signature) SW (locks) Write-set conflict
detection

HW (read-set signature) SW (version #) Read-set conflict
detection

SigTM STM

53

SigTM Hardware

• SigTM adds a little HW (signatures) to accelerate STM
• Each HW thread has 2 HW signatures: read-set, write-set
• No other HW modifications (e.g., no extra cache states)

• SigTMread and SigTMwrite populate signatures

...

SigTMread(addr1);

...

SigTMread(addr2);

T
im

e

Read-Set Signature

0 1 2 4 6 7

hash(addr1) -> 3, 5

3 5

hash(addr2) -> 3, 6

0 1 2 4 5 6 73
10

53

SigTM Hardware (cont)

 Signatures watch coherence messages
 SW enables/disables

...

*addr1 = val

Read-Set Signature

0 1 2 4 6 7

hash(addr1) -> 3, 5

53

• On hit in signature, either:
• Trigger SW abort handler (conflict detection)
• NACK remote request (isolation enforcement)

• Signatures may generate false conflicts
• Performance but not correctness issue
• Reduce with longer signatures & better hash functions

11

SigTMstart

SigTMstart() {

checkpoint(); // used to rollback

other_initialization();

enable_read_sig_lookup();

}

• Read-set signature starts monitoring coherence messages
• If hit, signature invokes conflict_handler()
• Continuous validation of read-set

12

SigTMread

SigTMread(addr) {

if (addr in WriteSet) // get latest value

return WriteBuffer.getValue(addr);

// No need to validate addr here

read_sig_insert(addr);

return *addr;

}

• SigTMread does not need to:
• Validate read address → continuous validation by HW signature
• Build software read-set → just add to read-set signature

13

14

SigTMwrite

 SigTMwrite populates write-set signature
 Used during SigTMcommit

 Write-set versioning still in SW

SigTMwrite(addr, val) {
write_sig_insert(addr);
WriteBuffer.insert(addr, val);

}

SigTMcommit

SigTMcommit() {

enable_write_sig_lookup();
foreach (addr in WriteSet) // remove from...
fetch_exclusive(addr); // ...other caches

enable_write_sig_nack(); // ensure atomic commit
disable_read_sig_lookup();
foreach (addr in WriteSet) // commit write-buffer

*addr = WriteBuffer.getValue(addr);

disable_write_sig_lookup();
}

• Read-set signature eliminates scan of read-set to validate
• Write-set signature eliminates locks
• Two write-set scans instead of three

15

16

How Much Smaller is the Overhead?

 Measured dynamic instruction counts
 R = # words in read-set; W = # words in write-set

 Measured single-thread performance relative to sequential

41 + 12W 44 + 16R + 31W Commit

819 Read Barrier

SigTM STM

2.93x

1.25x

Improvement

0.41 0.14 vacation-high

0.81 0.65 genome

SigTM STM

Experimental Setup

• Execution-driven simulation to compare: SigTM, STM, HTM

• STAMP: Stanford Transactional Apps for Multiprocessing

• 4 benchmarks for TM research written in C
• delaunay: Delaunay mesh generation
• genome: gene sequencing
• kmeans: K-means clustering
• vacation: travel reservation system (similar to SPECjbb2000)

• Parallelized from sequential code
• Coarse-grain transactions (intuitive parallel programming)
• Over 95% of time is spent in transactions

• STM code is manually optimized (same code for SigTM)
• HTM code has no instrumentation on reads/writes

17

How Fast is SigTM?

• SigTM faster than STM but slower than HTM

• Genome: SigTM 30% faster than STM; within 10% of HTM

• Vacation: SigTM 2.8x faster than STM; 2x slower than HTM
• Many non-redundant read barriers → large performance difference

18

19

How Much Hardware Does it Cost?

 Decreased signature size to increase false conflicts

 Performance sensitive to read-set signature length
 1024 bits is recommended

 Performance insensitive to write-set signature length
 128 bits is recommended

1024 128

20

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

21

Example Program: Privatization

 Two acceptable outcomes:
 T1 commits first; T1 privatizes & uses non-incremented n.val
 T2 commits first; T1 privatizes & uses incremented n.val

 Works correctly with lock-based synchronization
 Race-free program

ListNode n;
atomic {
 n = head;
 if (n != null)
 head = head.next;
}
// use n.val many times

Thread 1
atomic {
 ListNode n = head;
 while (n != null) {
 n.val++;
 n = n.next;
 }
}

Thread 2

22

ListNode n;
atomic {
 n = head;
 if (n != null)
 head = head.next;
}
// use n.val many times

Thread 1
atomic {
 ListNode n = head;
 while (n != null) {
 n.val++;
 n = n.next;
 }
}

Thread 2

Unpredictable Results with STM?

 All STMs may lead to unexpected results with this code
 T1 may use both old & new value after privatization

 Cause: non-transactional accesses are not instrumented
 Non-Tx writes do not cause Tx to abort
 Tx commit not isolated with respect to non-TX accesses

Strong Isolation

• Definition: transactions are isolated from non-Tx accesses

• HTM → inherent strong isolation
• Non-Tx cause coherence messages
• Conflict detection mechanism enforces strong isolation

• STM → supplemented strong isolation
• Additional barriers needed in non-Tx accesses
• Some can be optimized but still a source of overhead

• SigTM → inherent strong isolation
• Without additional instrumentation or overhead

23

How SigTM Provides Strong Isolation

Initially: x=0

// T1 // T2
atomic { ...
t=x; ...
... x=10;
x=t+1; ...

} ...

• Non-Tx write to read-set?
• Hits in read-set signature → transaction aborts

24

25

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

SigTM and Other Hybrid TMs

• Kumar (PPoPP’06) and HyTM (ASPLOS’06)
• Require significant cache modifications for HTM
• Need 2 versions of transaction code

• HASTM (MICRO’06)
• Requires cache modifications (expensive for nesting)
• Cache updates from prefetching / speculation problematic

• RTM (ISCA’07 – later today)
• Requires significant cache modifications (TMESI)

• Cache handles common case conflict detection and buffering
• Poor performance (slower than sequential…)

• None has strong isolation without barriers in non-Tx

26

SigTM and Signature-based HTMs

• Bulk (ISCA’06)
• First use of signatures for TM
• Requires additional HW for write versioning

• LogTM-SE (HPCA’07)
• Additional HW to implement undo log
• Additional HW to remember recently logged lines
• Recommended smaller signatures (32–64 bits)

27

Conclusions

• SigTM is a hybrid TM that:

• Uses minimal additional hardware
• 1K bits for read-set signature; 128 bits for write-set signature
• No modification to caches

• Reduces the runtime overhead of SW transactions
• Eliminates SW read-set, locks, and time stamps
• Continuous validation of read-set by HW signatures

• Leads to good performance
• Outperforms STM by 30% – 280%
• Slowdown compared to HTM is 10% – 100%

• Delivers strong isolation for predictable behavior

28

29

Questions?

STAMP
Stanford Transactional Applications for Multiprocessing

A new benchmark suite designed for TM research

http://stamp.stanford.edu

