
An Effective Hybrid
Transactional Memory System

with Strong Isolation Guarantees

Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper,

Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

http://tcc.stanford.edu

Why Hybrid Transactional Memory?

 Transactional Memory (TM) systems are promising
 Large atomic blocks simplify parallel programming
 Speed of fine-grain locks with simplicity of coarse-grain locks

 TM can be implemented in either hardware or software
 Hardware TM (HTM) is fast but inflexible & costly
 Software TM (STM) is flexible but slow

 Signature-Accelerated TM (SigTM) is a new hybrid TM
 Uses hardware signatures to accelerate software transactions

 Fast, flexible, & cost-effective
 Implements strong isolation of transactional code

 Correct & predictable execution of software transactions

1

2

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

What Can We Accelerate?

Compiler
High-level Low-level

ListNode n; ListNode n;
atomic { STMstart();
n = head; n = STMread(&head);
if (n != null) { if (n != null) {

ListNode t;
head = head.next; t = STMread(&head.next);

STMwrite(&head, t);
} }

} STMcommit();

 What do these STM functions do?

3

STMstart

 Called at transaction start → init transaction meta data

STMstart() {
checkpoint(); // used to rollback
other_initialization();

}

 Constant overhead cost per transaction
 Expensive only for short transactions

4

STMread

 Called to read shared data → add to read-set

STMread(addr) {

if (addr in WriteSet) // get latest value
return WriteBuffer.getValue(addr);

val = *addr;
if (!isVersionValid(addr)) // someone wrote?
conflict_handler();

ReadSet.insert(addr);
return val;

}

 Building the read-set is expensive
 Overhead cost per transaction varies

 Locality of read accesses, size of read-set, transaction length
5

STMwrite

 Called to write shared data → add to write-set

STMwrite(addr, val) {
WriteBuffer.insert(addr, val);

}

 Overhead cost per transaction varies
 Locality of write accesses, size of write-set, transaction length

 Significantly less expensive than STMread (reads ≥ writes)

6

STMcommit

 Called at transaction end → atomically commit changes
STMcommit() {

foreach (addr in WriteSet) // lock write-set
if (!lock(addr))
conflict_handler();

foreach (addr in ReadSet) // validate read-set
if (!isVersionValid(addr))
conflict_handler();

foreach (addr in WriteSet) // commit write-buffer
*addr = WriteBuffer.getValue(addr);

foreach (addr in WriteSet) // unlock write-set
unlock(addr);

}

 Expensive: scan read-set (1x); scan write-set (3x), locks
7

8

How Slow Can STM Be?

 1.5x - 7x slowdown over sequential
 Hybrid TM should focus on STMread and STMcommit

1.0

1.0

9

SigTM

 SigTM simplifies STM by using simple hardware

SW SW Write-set
versioning

HW (write-set signature) SW (locks) Write-set conflict
detection

HW (read-set signature) SW (version #) Read-set conflict
detection

SigTM STM

53

SigTM Hardware

 SigTM adds a little HW (signatures) to accelerate STM
 Each HW thread has 2 HW signatures: read-set, write-set
 No other HW modifications (e.g., no extra cache states)

 SigTMread and SigTMwrite populate signatures

...

SigTMread(addr1);

...

SigTMread(addr2);

T
im

e

Read-Set Signature

0 1 2 4 6 7

hash(addr1) -> 3, 5

3 5

hash(addr2) -> 3, 6

0 1 2 4 5 6 73
10

53

SigTM Hardware (cont)

 Signatures watch coherence messages
 SW enables/disables

...

*addr1 = val

Read-Set Signature

0 1 2 4 6 7

hash(addr1) -> 3, 5

53

 On hit in signature, either:
 Trigger SW abort handler (conflict detection)
 NACK remote request (isolation enforcement)

 Signatures may generate false conflicts
 Performance but not correctness issue
 Reduce with longer signatures & better hash functions

11

SigTMstart

SigTMstart() {
checkpoint(); // used to rollback
other_initialization();
enable_read_sig_lookup();

}

 Read-set signature starts monitoring coherence messages
 If hit, signature invokes conflict_handler()
 Continuous validation of read-set

12

SigTMread

SigTMread(addr) {

if (addr in WriteSet) // get latest value

return WriteBuffer.getValue(addr);

// No need to validate addr here

read_sig_insert(addr);
return *addr;

}

 SigTMread does not need to:
 Validate read address → continuous validation by HW signature
 Build software read-set → just add to read-set signature

13

14

SigTMwrite

 SigTMwrite populates write-set signature
 Used during SigTMcommit

 Write-set versioning still in SW

SigTMwrite(addr, val) {
write_sig_insert(addr);
WriteBuffer.insert(addr, val);

}

SigTMcommit

SigTMcommit() {

enable_write_sig_lookup();
foreach (addr in WriteSet) // remove from...
fetch_exclusive(addr); // ...other caches

enable_write_sig_nack(); // ensure atomic commit
disable_read_sig_lookup();
foreach (addr in WriteSet) // commit write-buffer

*addr = WriteBuffer.getValue(addr);

disable_write_sig_lookup();
}

 Read-set signature eliminates scan of read-set to validate
 Write-set signature eliminates locks
 Two write-set scans instead of three

15

16

How Much Smaller is the Overhead?

 Measured dynamic instruction counts
 R = # words in read-set; W = # words in write-set

 Measured single-thread performance relative to sequential

41 + 12W 44 + 16R + 31W Commit

819 Read Barrier

SigTM STM

2.93x

1.25x

Improvement

0.41 0.14 vacation-high

0.81 0.65 genome

SigTM STM

Experimental Setup

 Execution-driven simulation to compare: SigTM, STM, HTM

 STAMP: Stanford Transactional Apps for Multiprocessing

 4 benchmarks for TM research written in C
 delaunay: Delaunay mesh generation
 genome: gene sequencing
 kmeans: K-means clustering
 vacation: travel reservation system (similar to SPECjbb2000)

 Parallelized from sequential code
 Coarse-grain transactions (intuitive parallel programming)
 Over 95% of time is spent in transactions

 STM code is manually optimized (same code for SigTM)
 HTM code has no instrumentation on reads/writes

17

How Fast is SigTM?

 SigTM faster than STM but slower than HTM

 Genome: SigTM 30% faster than STM; within 10% of HTM

 Vacation: SigTM 2.8x faster than STM; 2x slower than HTM
 Many non-redundant read barriers → large performance difference

18

19

How Much Hardware Does it Cost?

 Decreased signature size to increase false conflicts

 Performance sensitive to read-set signature length
 1024 bits is recommended

 Performance insensitive to write-set signature length
 128 bits is recommended

1024 128

20

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

21

Example Program: Privatization

 Two acceptable outcomes:
 T1 commits first; T1 privatizes & uses non-incremented n.val
 T2 commits first; T1 privatizes & uses incremented n.val

 Works correctly with lock-based synchronization
 Race-free program

ListNode n;
atomic {
 n = head;
 if (n != null)
 head = head.next;
}
// use n.val many times

Thread 1
atomic {
 ListNode n = head;
 while (n != null) {
 n.val++;
 n = n.next;
 }
}

Thread 2

22

ListNode n;
atomic {
 n = head;
 if (n != null)
 head = head.next;
}
// use n.val many times

Thread 1
atomic {
 ListNode n = head;
 while (n != null) {
 n.val++;
 n = n.next;
 }
}

Thread 2

Unpredictable Results with STM?

 All STMs may lead to unexpected results with this code
 T1 may use both old & new value after privatization

 Cause: non-transactional accesses are not instrumented
 Non-Tx writes do not cause Tx to abort
 Tx commit not isolated with respect to non-TX accesses

Strong Isolation

 Definition: transactions are isolated from non-Tx accesses

 HTM → inherent strong isolation
 Non-Tx cause coherence messages
 Conflict detection mechanism enforces strong isolation

 STM → supplemented strong isolation
 Additional barriers needed in non-Tx accesses
 Some can be optimized but still a source of overhead

 SigTM → inherent strong isolation
 Without additional instrumentation or overhead

23

How SigTM Provides Strong Isolation

Initially: x=0

// T1 // T2
atomic { ...
t=x; ...
... x=10;
x=t+1; ...

} ...

 Non-Tx write to read-set?
 Hits in read-set signature → transaction aborts

24

25

Outline

 Introduction

 SigTM Performance

 SigTM Strong Isolation

 Related Work

 Conclusion

SigTM and Other Hybrid TMs

 Kumar (PPoPP’06) and HyTM (ASPLOS’06)
 Require significant cache modifications for HTM
 Need 2 versions of transaction code

 HASTM (MICRO’06)
 Requires cache modifications (expensive for nesting)
 Cache updates from prefetching / speculation problematic

 RTM (ISCA’07 – later today)
 Requires significant cache modifications (TMESI)

 Cache handles common case conflict detection and buffering
 Poor performance (slower than sequential…)

 None has strong isolation without barriers in non-Tx

26

SigTM and Signature-based HTMs

 Bulk (ISCA’06)
 First use of signatures for TM
 Requires additional HW for write versioning

 LogTM-SE (HPCA’07)
 Additional HW to implement undo log
 Additional HW to remember recently logged lines
 Recommended smaller signatures (32–64 bits)

27

Conclusions

 SigTM is a hybrid TM that:

 Uses minimal additional hardware
 1K bits for read-set signature; 128 bits for write-set signature
 No modification to caches

 Reduces the runtime overhead of SW transactions
 Eliminates SW read-set, locks, and time stamps
 Continuous validation of read-set by HW signatures

 Leads to good performance
 Outperforms STM by 30% – 280%
 Slowdown compared to HTM is 10% – 100%

 Delivers strong isolation for predictable behavior

28

29

Questions?

STAMP
Stanford Transactional Applications for Multiprocessing

A new benchmark suite designed for TM research

http://stamp.stanford.edu

