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  Multi-core chips are here

  But writing parallel SW is hard


  Transactional Memory (TM) is a promising solution

  Large atomic blocks simplify synchronization

  Speed of fine-grain locks with simplicity of coarse-grain locks

  But where are the benchmarks?


  STAMP: A new benchmark suite for TM

  8 applications specifically for evaluating TM

  Comprehensive breadth and depth analysis

  Portable to many kinds of TMs (HW, SW, hybrid)

  Publicly available: http://stamp.stanford.edu 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  Commonly achieved via:

  Threads for parallelism

  Locks for synchronization


  Unfortunately, synchronization with locks is hard


  Option 1: Coarse-grain locks

▪  Simplicity 


▪  Decreased concurrency 


  Option 2: Fine-grain locks

▪  Better performance  (maybe)

▪  Increased complexity  (bugs)

▪  Deadlock, priority inversion, convoying, …
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  What is a transaction?

  Group of instructions in computer program:

  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }


  Required properties:  Atomicity, Isolation, Serializability


  Key idea:  Use transactions to ease parallel programming

  Locks → programmers define & implement synchronization

  TM → programmers declares & system implements

▪  Simple like coarse-grain locks & fast like fine-grain locks
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  Each core optimistically executes a transaction


  Life cycle of a transaction:


  Start


  Speculative execution (optimistic)


  Build read-set and write-set


  Commit

▪  Fine-grain R-W & W-W conflict detection


  Abort & rollback
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  Benchmarks for multiprocessors

  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008) 

  Not well-suited for evaluating TM

▪  Regular algorithms without synchronization problems

▪  No annotations for TM


  Benchmarks for TM systems

  Microbenchmarks from RSTMv3 (2006)


  STMBench7 (2007)

  Haskell applications by Perfumo et. al (2007)
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  Breadth: variety of algorithms & app domains


  Depth: wide range of transactional behaviors


  Portability: runs on many classes of TM systems
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  Breadth

  8 applications covering different domains & algorithms

  TM simplified development of each

▪  Most not trivially parallelizable

▪  Many benefit from optimistic concurrency


  Depth

  Wide range of important transactional behaviors

▪  Transaction length, read & write set size, contention amount

▪  Facilitated by multiple input data sets & configurations per app


  Most spend significant execution time in transactions


  Portability

  Written in C with macro-based transaction annotations

  Works with Hardware TM (HTM), Software TM (STM), and hybrid TM
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bayes
 Machine learning
 Learns structure of a Bayesian 
network


genome
 Bioinformatics
 Performs gene sequencing


intruder
 Security
 Detects network intrusions


kmeans
 Data mining
 Implements K-means clustering


labyrinth
 Engineering
 Routes paths in maze


ssca2
 Scientific
 Creates efficient graph representation


vacation
 Online transaction 
processing


Emulates travel reservation system


yada
 Scientific
 Refines a Delaunay mesh




  Learns relationships among variables from observed data


  Relationships are edges in directed acyclic graph:
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  Emulates travel reservation system

  Similar to 3-tier design in SPECjbb2000
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  Execution-driven simulation

  1–16 core x86 chip-multiprocessor with MESI coherence

  Supports various TM implementations:

▪  Hardware TMs (HTMs)

▪  Software TMs (STMs)


▪  Hybrid TMs


  Ran STAMP on simulated TM systems


  Two experiments:

  What transactional characteristics are covered in STAMP?


  Can STAMP help us compare TM systems?
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bayes
 60584
 24
 9
 0.59
 83%


genome
 1717
 32
 2
 0.14
 97%


intruder
 330
 71
 16
 3.54
 33%


kmeans
 153
 25
 25
 0.81
 3%


labyrinth
 219571
 35
 36
 0.94
 100%


ssca2
 50
 1
 2
 0.00
 17%


vacation
 3161
 401
 8
 0.02
 92%


yada
 9795
 256
 108
 2.51
 100%
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  Measured speedup on 1–16 cores for various TMs


  In general, hybrid faster than STM but slower than HTM
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  Sometimes the behavior is different from anticipated


  Lesson: Importance of conflict detection granularity
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  Some other lessons we learned:

  Importance of handling very large read & write sets (labyrinth)

  Optimistic conflict detection helps forward progress (intruder)


  Diversity in STAMP allows thorough TM analysis

  Helps identify (sometimes unexpected) TM design shortcomings

  Motivates directions for further improvements


  STAMP can be a valuable tool for future TM research
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  STAMP is a comprehensive benchmark suite for TM

  Meets breadth, depth, and portability requirements

  Useful tool for analyzing TM systems


  Public release:  http://stamp.stanford.edu 
  Early adopters:

▪  Industry:  Microsoft, Intel, Sun, & more


▪  Academia:  U. Wisconsin, U. Illinois, & more


  TL2-x86 STM
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http://stamp.stanford.edu 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