
Chí Cao Minh, JaeWoong Chung,

Christos Kozyrakis, Kunle Olukotun

http://stamp.stanford.edu

15 September 2008

  Multi-core chips are here

  But writing parallel SW is hard

  Transactional Memory (TM) is a promising solution

  Large atomic blocks simplify synchronization

  Speed of fine-grain locks with simplicity of coarse-grain locks

  But where are the benchmarks?

  STAMP: A new benchmark suite for TM

  8 applications specifically for evaluating TM

  Comprehensive breadth and depth analysis

  Portable to many kinds of TMs (HW, SW, hybrid)

  Publicly available: http://stamp.stanford.edu 

1

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

2

  Commonly achieved via:

  Threads for parallelism

  Locks for synchronization

  Unfortunately, synchronization with locks is hard

  Option 1: Coarse-grain locks

▪  Simplicity 

▪  Decreased concurrency 

  Option 2: Fine-grain locks

▪  Better performance  (maybe)

▪  Increased complexity  (bugs)

▪  Deadlock, priority inversion, convoying, …

3

  What is a transaction?

  Group of instructions in computer program:

  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }

  Required properties: Atomicity, Isolation, Serializability

  Key idea: Use transactions to ease parallel programming

  Locks → programmers define & implement synchronization

  TM → programmers declares & system implements

▪  Simple like coarse-grain locks & fast like fine-grain locks

4

  Each core optimistically executes a transaction

  Life cycle of a transaction:

  Start

  Speculative execution (optimistic)

  Build read-set and write-set

  Commit

▪  Fine-grain R-W & W-W conflict detection

  Abort & rollback

5

Start

Commit

Failure

…

Read

…

Write

…

Success

Transaction

6

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 5

Read-set:
 Read-set:

Write-set:
 Write-set:
1

6, 3, 1
 6, 3, 4

4

7

6

1
 4

3

9

8

7

Thread 1: insert 2
 Thread 2: insert 0

Read-set:
 Read-set:

Write-set:
 Write-set:
1

6, 3, 1
 6, 3, 1

1

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

8

  Benchmarks for multiprocessors

  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008)

  Not well-suited for evaluating TM

▪  Regular algorithms without synchronization problems

▪  No annotations for TM

  Benchmarks for TM systems

  Microbenchmarks from RSTMv3 (2006)

  STMBench7 (2007)

  Haskell applications by Perfumo et. al (2007)

9

  Breadth: variety of algorithms & app domains

  Depth: wide range of transactional behaviors

  Portability: runs on many classes of TM systems

10

RSTMv3
 no
 yes
 yes
 Microbenchmarks

STMbench7
 no
 yes
 yes
 Single program

Perfumo et al.
 no
 yes
 no
 Microbenchmarks;

Written in Haskell

  Breadth

  8 applications covering different domains & algorithms

  TM simplified development of each

▪  Most not trivially parallelizable

▪  Many benefit from optimistic concurrency

  Depth

  Wide range of important transactional behaviors

▪  Transaction length, read & write set size, contention amount

▪  Facilitated by multiple input data sets & configurations per app

  Most spend significant execution time in transactions

  Portability

  Written in C with macro-based transaction annotations

  Works with Hardware TM (HTM), Software TM (STM), and hybrid TM

11

12

bayes
 Machine learning
 Learns structure of a Bayesian
network

genome
 Bioinformatics
 Performs gene sequencing

intruder
 Security
 Detects network intrusions

kmeans
 Data mining
 Implements K-means clustering

labyrinth
 Engineering
 Routes paths in maze

ssca2
 Scientific
 Creates efficient graph representation

vacation
 Online transaction
processing

Emulates travel reservation system

yada
 Scientific
 Refines a Delaunay mesh

  Learns relationships among variables from observed data

  Relationships are edges in directed acyclic graph:

13

Sprinkler
 On

Grass Wet

Rain

14

Analyze data

Pick best

potential edge

Will create

cycle?

yes

no

Transaction

Get variable?

Insert edge

yes

no

Done

  Emulates travel reservation system

  Similar to 3-tier design in SPECjbb2000

15

Chí

JaeWoong

Manager

Reserve

Cancel

Update

Customers

Hotels

Flights

Cars

Client Tier
 Manager Tier
 Database Tier

Christos

Kunle

16

Manager does
 cancelation

Get task?

reserve

Task kind?

Manager does
 reservation

Manager does
 update

cancel
 update

Done

no

yes

Transaction
 Transaction
 Transaction

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

17

  Execution-driven simulation

  1–16 core x86 chip-multiprocessor with MESI coherence

  Supports various TM implementations:

▪  Hardware TMs (HTMs)

▪  Software TMs (STMs)

▪  Hybrid TMs

  Ran STAMP on simulated TM systems

  Two experiments:

  What transactional characteristics are covered in STAMP?

  Can STAMP help us compare TM systems?

18

bayes
 60584
 24
 9
 0.59
 83%

genome
 1717
 32
 2
 0.14
 97%

intruder
 330
 71
 16
 3.54
 33%

kmeans
 153
 25
 25
 0.81
 3%

labyrinth
 219571
 35
 36
 0.94
 100%

ssca2
 50
 1
 2
 0.00
 17%

vacation
 3161
 401
 8
 0.02
 92%

yada
 9795
 256
 108
 2.51
 100%

19

  Measured speedup on 1–16 cores for various TMs

  In general, hybrid faster than STM but slower than HTM

20

0

2

4

6

8

10

12

14

0
 5
 10
 15

Sp
ee

du
p

Processor Cores

vacation

HTM

Hybrid TM

STM

  Sometimes the behavior is different from anticipated

  Lesson: Importance of conflict detection granularity

21

0

1

2

3

4

5

0
 5
 10
 15

Sp
ee

du
p

Processor Cores

bayes

HTM

Hybrid TM

STM

  Some other lessons we learned:

  Importance of handling very large read & write sets (labyrinth)

  Optimistic conflict detection helps forward progress (intruder)

  Diversity in STAMP allows thorough TM analysis

  Helps identify (sometimes unexpected) TM design shortcomings

  Motivates directions for further improvements

  STAMP can be a valuable tool for future TM research

22

  STAMP is a comprehensive benchmark suite for TM

  Meets breadth, depth, and portability requirements

  Useful tool for analyzing TM systems

  Public release: http://stamp.stanford.edu 
  Early adopters:

▪  Industry: Microsoft, Intel, Sun, & more

▪  Academia: U. Wisconsin, U. Illinois, & more

  TL2-x86 STM

23

http://stamp.stanford.edu 

24

