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Tutorial Motivation & Goals

� Motivation

� Transactions are a good synchronization abstraction

� How can transactions be implemented and used ?

� Goals

1. Introduction to transactional memory

• A research technology for easier parallel programming

• Overview, uses,  and implementation 
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Agenda

� Transactional Memory (TM)

� TM Introduction

� TM Implementation Overview

� Hardware TM Techniques

� Software TM Techniques

� Q&A 
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Tutorial Slides

� Available on-line at

http://csl.stanford.edu/~christos/ppopp07_tm.pdf
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� Active, online bibliography at 
http://www.cs.wisc.edu/trans-memory

� “Transactional Memory” textbook by Jim Larus and 

Ravi Rajwar

� A select list of key papers provided in the following 

slides 

TM Bibliography
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Agenda

Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

Q&A 



Ali-Reza Adl-Tabatabai
Programming Systems Lab

Intel Corporation

Transactional Memory Introduction 
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Multi-core: An inflection point in SW

Multi-core architectures: an inflection point in 
mainstream SW development

Writing parallel SW is hard

– Mainstream developers not used to thinking in parallel

– Mainstream languages force the use of low-level 
concurrency features

Navigating through this inflection point requires 
better concurrency abstractions

Transactional memory: an alternative to locks for 
concurrency control
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Transactional memory definition

Memory transaction: A sequence of memory operations that 
execute atomically and in isolation

Atomic: An “all or nothing” sequence of operations

• On commit, all memory operations appear to take effect as a 
unit (all at once)

• On abort, none of the stores appear to take effect

Transactions run in isolation

• Effects of stores are not visible until transaction commits

• No concurrent conflicting accesses by other transactions

Execute as if in a single step with respect to other threads
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Transactional memory language construct

The basic atomic construct:

lock(L); x++; unlock(L); � atomic {x++;}

Declarative – user simply specifies, system implements “under the 
hood”

Basic atomic construct universally proposed

– HPCS languages (Fortress, X10, Chapel) provide atomic in lieu of locks

– Research extensions to languages – Java, C#, Atomos, CaML, Haskell, …

Lots of recent research activity

– Transactional memory language constructs

– Compiling & optimizing atomic

– Hardware and software implementations of transactional memory
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Example: Java 1.4 HashMap

Fundamental data structure

• Map: Key Value

public Object get(Object key)  {

int idx = hash(key); // Compute hash

HashEntry e = buckets[idx]; // to find bucket

while (e != null)  { // Find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

Not thread safe: don’t pay lock overhead if you don’t need it
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Synchronized HashMap

Java 1.4 solution: Synchronized layer
• Convert any map to thread-safe variant

• Explicit locking – user specifies concurrency

public Object get(Object key)
{
synchronized (mutex) // mutex guards all accesses to map m
{
return m.get(key);

}
}

Coarse-grain synchronized HashMap:
• Thread-safe, easy to program

• Limits concurrency � poor scalability
– E.g., 2 threads can’t access disjoint hashtable elements
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Transactional HashMap

Transactional layer via an ‘atomic’ construct
• Ensure all operations are atomic

• Implicit atomic directive – system discovers concurrency

public Object get(Object key)
{
atomic // System guarantees atomicity
{
return m.get(key);

}
}

Transactional HashMap:
• Thread-safe, easy to program

• Good scalability
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Transactions: Scalability

Concurrent read operations

– Basic locks do not permit multiple readers

• Reader-writer locks

– Transactions automatically allow multiple concurrent 
readers

Concurrent access to disjoint data

– Programmers have to manually perform fine-grain locking

• Difficult and error prone

• Not modular

– Transactions automatically provide fine-grain locking
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ConcurrentHashMap

public Object get(Object key) {

int hash = hash(key);     

// Try first without locking...

Entry[] tab = table;

int index = hash & (tab.length - 1);

Entry first = tab[index];

Entry e;

for (e = first; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key)) {

Object value = e.value;

if (value != null) 

return value;

else

break;

}

}

…

…

// Recheck under synch if key not there or interference

Segment seg = segments[hash & SEGMENT_MASK];

synchronized(seg) { 

tab = table;

index = hash & (tab.length - 1);

Entry newFirst = tab[index];

if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key)) 

return e.value;

}

}

return null;

}

}

Java 5 solution: Complete redesign

Fine-grain locking & concurrent reads: complicated & error prone
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HashMap performance

# Threads

T
im
e
 (
s
)

 Synch (coarse)  Synch (fine)  Atomic

Transactions scales as well as fine-grained locks
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AVL tree performance

# Threads

T
im
e
 (
s
)

Synch Atomic

Transactions don’t degrade as poorly as locks
Transactions have single-thread overhead
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Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Composition: 

• Safe & scalable composition of software modules
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Example: A bank application

Bank accounts with names and balances
• HashMap is natural fit as building block

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

…

}

Not thread-safe – Even with ConcurrentHashMap
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Thread safety

Suppose Fred has $100

T0: deposit(“Fred”, 10)

• bal = acc.get(“Fred”) <- 100

• bal = bal + 10

• acc.put(“Fred”, bal) -> 110

Fred has $120.  $10 lost.

T1: deposit(“Fred”, 20)

• bal = acc.get(“Fred”) <- 100

• bal = bal + 20

• acc.put(“Fred”, bal) -> 120
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Traditional solution: Locks

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

synchronized(accounts) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – but no scaling
• ConcurrentHashMap does not help

• Performance requires redesign from scratch & fine-grain locking

Fine-grain locking does not compose
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Transactional solution

class Bank {

HashMap accounts;

…

void deposit(String name, int amount) {

atomic {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – and it scales!

Safe composition + performance
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Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Safe and scalable composition

Failure atomicity:

• Automatic recovery on errors
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Traditional exception handling

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

synchronized(accounts) {

try {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

catch (Exception1) {..}

catch (Exception2) {..}

}

…

}

Manually catch all exceptions and determine what needs 
to be undone 

Side effects may be visible to other threads before they 
are undone
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Failure recovery using transactions

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

atomic {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

}

…

}

System rolls back updates on an exception

Partial updates not visible to other threads 
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Condition synchronization using locks

Enqueue() must explicitly notify to wake up blocking thread

Forgetting the notify causes a lost wakeup bug

Recheck isEmpty() in a loop because of spurious wakeups

Object blockingDequeue(…) {

synchronized (this) {

// Block until queue has item

while (isEmpty()) {

try {

this.wait();

} catch(InterruptedException ie) { }

}

return dequeue();

}   }

Lock-based condition 
synchronization uses 

wait & notify
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Condition synchronization with transactions

Object blockingDequeue(…) {

// Block until queue has item

atomic {

if (isEmpty())

retry;

return dequeue();

}

}

retry

• Rolls back (nested) transaction

• Waits for change in memory state

• Store by another thread implicitly signals blocked thread

���� No lost wakeups

• See paper by Harris et al [PPoPP ’05] & Adl-Tabatabai et al [PLDI ‘06]
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Conditional atomic regions

Object blockingDequeue(…) {

// Block until queue has item

when (!isEmpty())

return dequeue();

}

when

• Blocks until condition holds

• See Harris & Fraser’s paper in [OOPSLA ’03] and IBM X10 paper in

[OOPSLA ’05]
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Composing alternatives

atomic {

q1.blockingDequeue();

} orelse {

q2.blockingDequeue();

} orelse {

q3.blockingDequeue();

}

orelse

• Execute exactly one clause atomically

• Left-bias: Try in order

• User retry: Try next alternative

���� Allows composition of alternatives

• See paper by Harris et al [PPoPP’05] & Adl-Tabatabai et al [PLDI‘06]
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Scalability of component-based software 
using TM

Mainstream software composed using modular SW components

– TM makes this easy for parallel apps

Component-based code can form long-running transactions

� large read & write sets + long execution time

Long-running transactions may not perform well

– More likely to conflict 

– More expensive to abort

– Higher STM overheads

– Won’t fit in cache

Many false data conflicts in components-based code

– 2 API calls that don’t conflict semantically but conflict at the memory level
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Nested transactions

class AtomicHashMap {

HashMap m;

Object get(Object key) {

atomic {return m.get(key);}

}

Object put(Object key,Object val) {

atomic {return m.put(key,val);}

}

. . .
}

T1: 

atomic { 

. . .

v2=m.get(k2); 

. . .

}

T2:

atomic { 

. . .

m.put(k3,v3);

. . .

}

Closed nesting: child transaction merged into parent on commit
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Example: HashMap

T1: 

atomic { 

. . .

v = m.get(k2); 

. . .

}

T2:

atomic { 

. . .

m.put(k3,v3); 

. . .

}

K1:v1 K2:v2

K3:v3

Conflict!

T1 & T2 conflict at the memory level but not at the semantic level
Semantically, conflict only if T2 updates the value that T1 gets

Solution: T1 should remember only that k2 was accessed
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Open nested transactions

Object get(Object key)  {

atomic

{return map.get(key);} }

Object put(Object key, Object value) {

atomic

{

Object oldValue = map.put(key, value);

return oldValue;

} 

onabort {

if (oldValue != null)

map.put(key,oldValue);

else map.remove(key);

}

[key:SHARED] [key:EXCLUSIVE]openatomic openatomic

Open atomic: 
• commit makes side effects 
visible independently of parent

Abstract locks: 
• avoids semantic level conflicts

Compensating actions: 
• rolls back side effects on parent 
abort

See paper by Ni et al [PPoPP’07] & Carlstrom et al [PPoPP’07]
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Summary

Multicore: an inflection point in mainstream SW development

Navigating inflection requires new language abstractions
– Safety

– Scalability & performance

– Modularity

Transactional memory enables safe & scalable composition of 
software modules
– Automatic fine-grained & read concurrency

– Avoids deadlock

– Automatic failure recovery

– Avoids lost wakeups, allows composition of alternatives

– Allows development of scalable libraries via open nesting

Many open research challenges
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Research challenges

Performance

– Compiler optimizations

– Right mix of hardware & software components

– Dealing with contention

Semantics

– Memory model

– Nested parallelism

– Integration with locks

Debugging & performance analysis tools

– Good diagnostics

System integration

– I/O

– Transactional OS

– Distributed transactions
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Questions?
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Agenda

� Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

� Q&A 



Transactional Memory 

Implementation Overview

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos
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TM Implementation Requirements

� TM implementation must provide atomicity and isolation

• Without sacrificing concurrency  

� Basic implementation requirements

• Data versioning

• Conflict detection & resolution

� Implementation options

• Hardware transactional memory (HTM)

• Software transactional memory (STM)

• Hybrid transactional memory
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Data Versioning

� Manage uncommited (new) and commited (old) versions of 

data for concurrent transactions

1. Eager (undo-log based)

• Update memory location directly; maintain undo info in a log

+ Faster commit, direct reads (SW) 

– Slower aborts, no fault tolerance

2. Lazy (write-buffer based)

• Buffer writes until commit; update memory location on commit 

+ Faster abort, fault tolerance

– Slower commits, indirect reads (SW) 
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Eager Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Undo 

Log

Write X←15

Thread

X: 15 Memory

Undo 

LogX: 10

Commit Xaction

Thread

X: 15 Memory

Undo 

LogX: 10

Abort Xaction

Thread

X: 10 Memory

Undo 

LogX: 10
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Lazy Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Write 

Buffer

Write X←15

Thread

X: 10 Memory

Write 

BufferX: 15

Abort Xaction

Thread

X: 10 Memory

Write 

BufferX: 15

Commit Xaction

Thread

X: 15 Memory

Write 

BufferX: 15
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Conflict Detection

� Detect and handle conflicts between transaction
• Read-Write and (often) Write-Write conflicts

• For detection, a transactions tracks its read-set and write-set 

1. Pessimistic detection 
• Check for conflicts during loads or stores

� HW: check through coherence lookups

� SW: checks through locks and/or version numbers

• Use contention manager to decide to stall or abort

� Various priority policies to handle common case fast 

2. Optimistic detection
• Detect conflicts when a transaction attempts to commit

� HW: write-set of committing transaction compared to read-set of others
– Committing transaction succeeds; others may abort

� SW: validate write-set and read-set using locks and version numbers

� Can use separate mechanism for loads & stores (SW)
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Pessimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4
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Abort

restart

rd A

check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM
E



© Christos Kozyrakis 9PPoPP 2007, Transactional Memory Tutorial

Optimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1
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wr C

commit

commit

Success

X0 X1
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commit

Abort
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Conflict Detection Tradeoffs

1. Pessimistic conflict detection (aka encounter or eager)

+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases 

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka commit or lazy)

+ Forward progress guarantees

+ Potentially less conflicts, no locking (SW), bulk 

communication (HW)

– Detects conflicts late, still has fairness problems

� Contention management important with both approaches

• E.g., backoff to avoid convoying 
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Implementation Space

� No convergence yet

� Decision will depend on

• Application characteristics

• Importance of fault tolerance, complexity

• Success of contention managers

� May have different approaches for HW, SW, and hybrid

• It may not even matter… 

HW: Stanford TCC

SW: Sun TL/2Optimistic

HW: MIT LTM, Intel VTM

SW: MS-OSTM

HW: UW LogTM

SW: Intel McRT, MS-STMPessimistic

C
o
n
flic

t 

D
e
te
c
tio

n

LazyEager

Version Management

[This is just a subset of proposed implementations]
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Conflict Detection Granularity

� Object granularity (SW/hybrid)

+ Reduced overhead (time/space)

+ Close to programmer’s reasoning

– False sharing on large objects (e.g. arrays)

– Unnecessary aborts

� Word granularity 

+ Minimize false sharing

– Increased overhead (time/space)

� Cache line granularity

+ Compromise between object & word

+ Works for both HW/SW

� Mix & match � best of both words

• Word-level for arrays, object-level for other data, … 
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Atomicity to Non-Transactional Code

� Are transactional blocks atomic with respect to non-transactional 

accesses

• Yes � strong atomicity; No � weak atomicity

� More complicated in practice (see [PLDI’07])

• Non-repeatable reads, lost updates, dirty reads, speculative lost 
updates, speculative dirty reads, overlapped writes, …

� Strong atomicity is generally preferred 

• Otherwise there can be consistency and correctness issues 

• HTMs naturally build strong atomicity on top of coherence events

• STMs require additional barriers [PLDI’07] or HW filters [ISCA’07]

. . .

atomic {

write X’;

. . . 

write X’’; 

}

P1 . . . 

. . . 

. . . 

read X;

. . . 

. . . 

P2
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Interactions with PL & OS

� Challenging issues 

• Interaction with library-based software,  I/O, exceptions, & system 

calls within transactions, error handling, schedulers, conditional 

synchronization, memory allocators, new language features,  … 

� Necessary TM semantics

1. Two-phase commit 
� Separate validation from commit 

2. Transactional handlers for commit/abort/conflict
� All interesting events switch to software handlers

� Mechanisms for registering software handlers 

3. Support for nested transactions
� Closed: independent rollback & restart for nested transactions

� Open: independent atomicity and isolation for nested transactions

� See McDonald’s paper in [ISCA’06]
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Closed Nested Transactions

X
1

�
T
im
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin

ld D

st B

st E

. . .

X
2

xvalidate

xcommit

ld F

xvalidate

xcommit

DC E

Value

FBAAddress

Shared Memory

Write-Set

Read-set

X1 State

Write-Set

Read-set

X2 State

A

B1, C1

D

B2, E2

A, D

B2, C1 , E2

A, D, F

B2 C1 E2A0 B0 C0 D0 E0 F0
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Open Nested Transactions

X
1

�
T
im
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin_open

ld D

st B

st E

. . .

X
2

xvalidate

xcommit

ld F

xvalidate

xcommit

DC E

Value

FBAAddress

Shared Memory

Write-Set

Read-set

X1 State

Write-Set

Read-set

X2 State

A

B1, C1

D

B2, E2

B2, C1

A, F

B2 C1 E2A0 B0 C0 D0 E0 F0
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Nested Transactions Summary

� Closed nesting

• Independent rollback and restart 

� Read-set and write-set tracked independently from parent

� On inner conflict, abort inner transaction but not outer

� On inner commit, merge with parent’s read-set and write-set

• Uses: reduce cost of conflict, allow alternate execution paths

� Open nesting

• Independent atomicity and isolation for nested transactions

� On inner commit, shared memory is updated immediately

� Independent rollback similar to closed nesting

• Uses: reduce frequency of conflicts, scalable & composable

libraries, system and runtime code

� See [ISCA’06], [PLDI’06], and two papers in [PPoPP’07]

� But, may be too tricky for end programmers
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Questions? 
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Agenda

� Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

� Q&A 



HTM: Hardware Transactional 

Memory Implementations

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos
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Why Hardware Support for TM

� Performance

• Software TM starts with a 40% to 2x overhead handicap 

� Features

• Strong atomicity is there by default

• Works for all binaries and libraries wo/ need to recompile

• Depending on the implementation

� Word-level conflict detection, forward progress guarantees, … 

� How much HW support is needed?

• This is the topic of ongoing research 

• All proposed HTMs are essentially hybrid

� Add flexibility by switching to software on all interesting events 
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HTM Mechanisms Summary

� Data versioning in caches

• Cache the write-buffer or the undo-log

• Zero overhead for both loads and stores

� The cache HW handles versioning and detection transparently

• Can do with private, shared, and multi-level caches

� Conflict detection through some cache coherence protocol

• Coherence lookups detect conflicts between transactions

• Works with snooping & directory coherence

� Notes

• Register checkpoint must be taken at transaction begin

• Virtualization of hardware resources discussed later 

• HTM support similar to that for thread-level speculation (TLS)

� Some HTMs support both TM and TLS 
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HTM Design

� Cache lines annotated to track read-set & write set

• R bit: indicates data read by transaction; set on loads

• W bit: indicates data written by transaction; set on stores

� R/W bits can be at word or cache-line granularity

• R/W bits gang-cleared on transaction commit or abort

• For eager versioning, need a 2nd cache write for undo log

� Coherence requests check R/W bits to detect conflicts 

• Shared request to W-word is a read-write conflict

• Exclusive request to R-word is a write-read conflict

• Exclusive request to W-word is a write-write conflict (may be OK)

V D E Tag R W Word 1 R W Word N. . .
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HTM Example (Lazy, Optimistic)

� T1 copies foo into bar

� T2 should read [0, 0] or should read [9,7]

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

0 0

0 0

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2
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HTM Example (1)

� Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x
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HTM Example (2)

� Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1
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HTM Example (3)

� Transaction T1 is now ready to commit

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

1 0 9

0 1 9

1 0 7

0 1 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 1

foo.x

bar.x

bar.x

t1

foo.y

bar.y
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HTM Example (3)

� T1 updates shared memory

• R/W bits are cleared 

• This is a logical update, data may stay in caches as dirty

� Exclusive request for bar.x reveals conflict with T2

• T2 is aborted & restarted; all R/W cache lines are invalidated

• When it reexecutes, it will read [9,7] without a conflict

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

0 0 9

0 0 9

0 0 7

0 0 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=9, y=7

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1

foo.y

bar.y

Excl bar.x
Excl bar.y

Conflict
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Support for Nested Transactions

� Caches track read-sets & write-sets multiple transactions
• Multi-tracking for eager versioning, associativity best for lazy

• Gange-merge or lazy merge at inner commit

� See paper by McDonald at [ISCA’06] for details
• Including HW and SW interactions around nesting

Multi-tracking

Associativity-based NL1:0V

MOESI

D E Tag

=

Lookup 

Address

Match?
Match

Level

Data
...
...R W
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HTM Virtualization

� Space virtualization � What if caches overflow? 

• Where is the write-buffer or log stored?

• How are R & W bits stored and checked? 

� Time virtualization � What if time quanta expires? 

• Interrupts, paging, and thread migrations half-way through 

transactions

� Nesting virtualization � What if nesting level exhausted?

� Observations: most transactions are currently small

• Small read-sets & write-sets, short in terms of instructions, 

nesting is uncommon

• See paper by Chung at [HPCA’06]
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Time Virtualization

� Three-tier interrupt handling for low overhead

1. Defer interrupt until next short transaction commits

• Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction

� Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts

• Use space virtualization to swap out (typically higher overhead)

• Only needed when most threads run very long transactions

� Key assumption

• Rolling back a short transaction is cheaper than virtualizing it 

� See paper by Chung at [ASPLOS’06]
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Space Virtualization

� Virtualized TM (Rajwar @ [ISCA’05])

• Map the write-buffer & read/write-set in virtual memory

� They become unbounded; they can be at any physical location

• Caches capture working set of write-buffer/undo-log

� Hardware and firmware handle misses, relocation, etc

� Bloom filters used to reduce lookups in virtual memory

� eXtended TM (Chung @ [ASPLOS’06])

• Use OS virtualization capabilities (virtual memory)

� On overflow, use page-based TM � no HW/firmware needed

� Similar to page-based DSM, but used only as a back up

� Overflow either all transaction state or just a part of it

• Works well when most transactions are small

� Page-based TM (Chuang @ [ASPLOS’06]

• Similar to XTM but hardware manages overflow metadata

• Requires new HW caches at the memory controller level
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Hybrid TM Implementations

� Combine the best of both worlds

• Performance of HTM; virtualization, cost, and flexibility of STM

� Dual TM implementations [PPoPP’06, ASPLOS’06]

• Start transaction in HTM; switch to STM on overflow, abort, …

• Typically requires 2 versions of the code

• Carefully handle interactions between HTM & STM transactions

� HW accelerated STM (HASTM [Micro’06])

• Provide key primitives for STM code to use

� Add SW controlled mark bits to cache lines (private, non-persistent)

� Focusing mostly on read/write-set tracking, not version management

• Enables SW to build powerful filters for read/write barriers

� Have I accessed this address before? Has anyone modified it?

� If transaction fits in cache, this is close to HTM speed

• There is still a SW path to guarantee correct operation in all cases
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Bulk Disambiguation (Ceze @ [ISCA’06])

� HTM that tracks read-sets and write-sets using signatures

• HW bloom filters replace R and W bits in caches

� One filter for read-set, one for write-set, etc 

� Filters are updated on loads/stores, checked on coherence traffic

• Filters can be swapped to memory, transmitted to other processors, …

� Simple compression can reduce filter size significantly

� Tradeoffs

+ Decouples cache from read-set/write-set tracking

� Same cache design, non overflow for R and W bits 

– Inexact operations can lead to false conflicts

� May lead to degradation, depending on application behavior and HW details

– Still, there are virtualization challenges

� Coherence messages must reach filter even if cache does not hold the line

� Challenge for non-broadcast coherence schemes
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Signature-based STM (Cao Minh @ [ISCA’07])

� Combines Bulk disambiguation + HASTM approaches

• Based on an STM system with HW acceleration

• HW filters to track read-set & write-set

� No other changes to caches (write-buffer or log in SW)

• Single code path (no fast path and slow path)

� SigTM benefits

• Performance similar to HTM 

� 2x over STM, within 10% to 40% of HTM

• Strong atomicity 

� Coherence requests are looked up in hardware filters

� No modifications to non-transactions code

• Simplified nesting support

� Through saving/restoring the filters on nested begin and abort



© Christos Kozyrakis 18PPoPP 2007, Transactional Memory Tutorial

Transactional Coherence

� Key observation

• For well synchronized programs, coherence & 

consistency needed only at transaction boundaries

� Transactional Coherence & Consistency (TCC)

• Eliminate MESI coherence protocol

• Coherence using the R/W bits only

� Fewer/simpler states; multiple writers are allowed

• Communication logically only at commit points

� Characteristics

• Sequential consistency at transaction boundaries

• Coarser-grain communication 

• Bulk coherence creates hybrid between shared-

memory and message passing

� See TCC papers at [ISCA’04], [ASPLOS’04], & [PACT’05]

foo() {

work1();

atomic {

a.x = b.x;

a.y = b.y;

}

work2();

}
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Warehouse

stockTable

(B-Tree)

itemTable

(B-Tree)

Performance Example: SpecJBB2000

� 3-tier Java benchmark

� Shared data within and across warehouses

• B-trees for database tier

� Can we parallelize the actions within a warehouse?

• Orders, payments, delivery updates, etc

orderTable

(B-Tree)
District

Warehouse

newIDTransaction

Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable

(B-Tree)

itemTable

(B-Tree)
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Sequential Code for NewOrder

TransactionManager::go() {

// 1. initialize a new order transaction

newOrderTx.init();

// 2. create unique order ID

orderId = district.nextOrderId(); // newID++

order = createOrder(orderId);

// 3. retrieve items and stocks from warehouse

warehouse = order.getSupplyWarehouse();

item = warehouse.retrieveItem();   // B-tree search

stock = warehouse.retrieveStock(); // B-tree search

// 4. calculate cost and update node in stockTable

process(item, stock);

// 5. record the order for delivery

district.addOrder(order); // B-tree update

// 6. print the result of the process

newOrderTx.display();

} 

� Non-trivial code with complex data-structures

• Fine-grain locking � difficult to get right

• Coarse-grain locking � no concurrency
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Transactional Code for NewOrder

TransactionManager::go() {

atomic { // begin transaction

// 1. initialize a new order transaction

// 2. create a new order with unique order ID

// 3. retrieve items and stocks from warehouse

// 4. calculate cost and update warehouse

// 5. record the order for delivery

// 6. print the result of the process

} // commit transaction

}

� Whole NewOrder as one atomic transaction

• 2 lines of code changed

� Also tried nested transactional versions

• To reduce frequency & cost of violations
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HTM Performance 

� Simulated 8-way CMP with TM support

• Stanford’s TCC architecture

• Lazy versioning and optimistic conflict 

detection

� Speedup over sequential

• Flat transactions: 1.9x

� Code similar to coarse-grain locks

� Frequent aborted transactions due to 

dependencies

• Nested transactions: 3.9x to 4.2x 

� Reduced abort cost OR

� Reduced abort frequency

� See paper in [WTW’06] for details

• http://tcc.stanford.edu
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Hardware TM Summary

� High performance + compatibility with binary code

� Common characteristics

• Data versioning in caches

• Conflict detection through the coherence protocol 

� Active research area; current research topics 

• Support for PL and OS development (see paper [ISCA’06])

� Two-phase commit, transactional handlers, nested transactions

• Development and comparison of various implementations

� HTM vs STM vs Hybrid TMs

• Long transactions & pervasive transactions

• Scalability issues
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Agenda

Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

Q&A 



Bratin Saha
Programming Systems Lab

Intel Corporation

Software Transactional Memory
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Outline

Software Transactional Memory

• Translating a language construct

• Runtime support 

• Compiler support

Consistency Issues

Open issues & conclusions
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Compiling Atomic

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

…

stmWr(&a.x, t1)

stmWr(&a.y, t2)

if(stmRd(&a.z) != 0) {

stmWr(&a.x, 0);

stmWr(&a.z, t3)

}

Compiler inserted instrumentation inside atomic blocks
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Runtime Data Structures

Per-data

• Transaction Record (TxR)
– Pointer-sized field guarding shared data

– Track transactional state of data

• Shared: Read-only access by multiple readers

• Exclusive: write-only access by single owner

Per-thread

• Transaction Descriptor
– Read set, write set, & log

– For validation, commit, & rollback

• Transaction Memento
– Checkpoint of transaction descriptor

– For nesting & partial rollback
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Mapping Data to Transaction Records

Every data item has an associated transaction record

class Foo {

int x;

int y;

}

TxR
x
y

vtbl

TxR embedded in object
Object

granularity
(Java/C#)

Cache line
or word

granularity
(C/C++)

TxR1

TxR2

TxR3

…
TxRn

Address-based hash

into global TxR table

struct Foo {

int x;

int y;

}

x
y
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struct STMDescriptor {

STMState state;                      /* state of transaction */

STMLog writeLock;                 /* write locks acq */

STMLog readLock;                 /* read versions acq */

STMLog writeLocations;         /* undo log */

/* other fields, for example, stats … */

};

Transaction descriptor stores transaction related info
– Usually a thread local data structure

Transaction Descriptor
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Implementing Atomicity: Example

We will show one way to implement atomicity in a 
STM

Uses two phase locking for writes

Uses optimisitic concurrency for reads

Illustrates how the different data structures are used
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Example

atomic {

t = foo.x;

bar.x = t;

t = foo.y;

bar.y = t; 

}

T1

atomic {

t1 = bar.x;

t2 = bar.y; 

}

T2

hdr
x = 0
y = 0

5
hdr
x = 9
y = 7

3foo bar

Reads <foo, 3>
Reads <bar, 5>

T1

x = 9

<foo, 3>

Writes <bar, 5>

Undo <bar.x, 0>

T2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

Abort

•T1 copies foo into bar

•T2 should read [0, 0] or should read [9,7]

Commit
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Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

Read lock on TxR
(reader-writer lock
or reader list)

Use versioning 
on TxR
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Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

- Caching effects
- Lock operations

+ Caching effects
+ Avoids lock 
operations
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Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

Write lock 
on TxR

Buffer writes &
acquire locks at 

commit
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Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

+ In place updates
+ Fast commits
+ Fast reads

- Slow commits
- Reads have to 

search for 
latest value
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Compiler Optimizations

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

…

stmWr(&a.x, t1)

stmWr(&a.y, t2)

if(stmRd(&a.z) != 0) {

stmWr(&a.x, 0);

stmWr(&a.z, t3)

}

Coarse-grain barriers hide redundant locking/logging
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An IR for Optimization

Redundancies exposed:

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}
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An IR for optimization

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

Exposes redundancies
• Open for write
• Open for read
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An IR for optimization

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

Exposes redundancies
• Open for write
• Open for read
• Undo logging
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Optimized Code

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnLogObjectInt(&a.y, a)

a.y = t2

if(a.z != 0) {

a.x = 0

txnLogObjectInt(&a.z, a)

a.y = t3

}

Fewer & cheaper STM operations
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Compiler Optimizations for Transactions

Standard optimizations

• CSE, Dead-code-elimination, …

• Careful IR representation exposes opportunities and enables optimizations 
with almost no modifications

• Subtle in presence of nesting

STM-specific optimizations

• Immutable field / class detection & barrier removal (vtable/String)

• Transaction-local object detection & barrier removal

• Partial inlining of STM fast paths to eliminate call overhead
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Outline

Software Transactional Memory

Consistency Issues

– Transaction consistency

– Privatization

Open issues & conclusions
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Transaction Consistency

In a STM with optimistic readers, a transaction may become 
inconsistent

• Assuming validation done lazily

In a managed environment, type safety and exception handling 
protects us

• Validate the transaction when an exception is raised

• Type safety ensures we don’t do wild pointer writes

In an unmanaged environment, we can not leverage type-
safety and exception handling
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

globalArray[i] = null at this point
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

localArray[i] = null at this point
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Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

=  *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

Exception at this point
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Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

} 

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2) 

temp3 = temp2 / temp1;

} 
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Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

} 

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2) 

temp3 = temp2 / temp1;

} 
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Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

} 

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2) 

temp3 = temp2 / temp1;

} 
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Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

} 

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2) 

temp3 = temp2 / temp1;

} 
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Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

} 

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2) 

temp3 = temp2 / temp1;

} 

The divide by zero exception can happen even with a 
write buffering STM
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STM in Java

Transactional Java

atomic {

S;

}

Standard Java + STM API

while(true) {

TxnHandle th = txnStart();

try {

S’;

break;

} finally {

if(!txnCommit(th))

continue;

}

}

• An exception gets caught and the transaction validated
• Language safety prevents STM structures from being corrupted
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STM in C

We can not rely on signal handlers in C

• Application may override them

An inconsistent transaction may write into STM data 
structures

• Recovery becomes even more difficult

We need to make sure that a transaction does not 
compute with inconsistent values

• Get the effect of eager validation

See “Code Generation … Unmanaged Environment” 
CGO 2007



3/17/200737 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Privatization

Thread 1:

ListNode * elem;

atomic {

elem = head;

if (head != NULL)

head = head->next;

}

t1 = elem->val;

t2 = elem->val;

if (t1 == 1 && t2 == 0)

error();

Thread2:

atomic {

ListNode *n = head;

while (n != NULL) {

n->val ++;

n = n->next;

} 

}

Initially all elements are zero

Abort

head elem

In place Update STM

0 X001
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Privatization

Thread 1:

ListNode * elem;

atomic {

elem = head;

if (head != NULL)

head = head->next;

}

t1 = elem->val;

t2 = elem->val;

if (t1 == 0 && t2 == 1)

error();

Thread2:

atomic {

ListNode *n = head;

while (n != NULL) {

n->val ++;

n = n->next;

} 

}

Initially all elements are zero

head elem

Write-Buffering STM

0 X001

ValidateCommit …
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Privatization

Use a commit time fence to avoid privatization 
problems

See “Code Generation … Unmanaged Environment” 
CGO 2007

• Solves both privatization and consistency issues
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Non-Transactional Memory Accesses

A TM system may isolate transactions from non-transactional 
memory accesses to varying degrees

• Isolation from non-transactional writes

• Isolation from non-transactional reads

Requires instrumentation of non-transactional code in a STM

• Inserting barriers for accessing shared variables

See “Enforcing Isolation and Atomicity in STM”, PLDI 2007
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Transactional Memory: Research challenges

Performance

– Right mix of HW & SW components

– Good diagnostics & contention management

Semantics

– I/O & communication

– Nested parallelism

Memory Model

– Language level guarantees

Debugging & performance analysis tools

System integration
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Conclusions

Multi-core architectures: an inflection point in mainstream SW 
development

Navigating inflection requires new parallel programming 
abstractions

Transactions are a better synchronization abstraction than locks

– Software engineering and performance benefits

Lots of research on implementation and semantics issues

– Great progress, but there are still open problems
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