
@ Christos Kozyrakis 1PACT 2006, Transactional Memory Tutorial

Agenda

Transactional Memory (TM)
• TM Introduction
• TM Implementation Overview
• Hardware TM Techniques
• Software TM Techniques

Q&A 



Transactional Memory 
Implementation Overview

Christos Kozyrakis

Computer Systems Laboratory
Stanford University

http://csl.stanford.edu/~christos



@ Christos Kozyrakis 3PACT 2006, Transactional Memory Tutorial

TM Implementation Requirements

TM implementation must provide atomicity and isolation
• Without sacrificing concurrency  

Basic implementation requirements
• Data versioning
• Conflict detection & resolution

Implementation options
• Hardware transactional memory (HTM)
• Software transactional memory (STM)
• Hybrid transactional memory



@ Christos Kozyrakis 4PACT 2006, Transactional Memory Tutorial

Data Versioning

Manage uncommited (new) and commited (old) versions of 
data for concurrent transactions

1. Eager (undo-log based)
• Update memory location directly; maintain undo info in a log
+ Faster commit, direct reads (SW) 
– Slower aborts, no fault tolerance, weak atomicity (SW)

2. Lazy (write-buffer based)
• Buffer writes until commit; update memory location on commit 
+ Faster abort, fault tolerance, strong atomicity (SW)
– Slower commits, indirect reads (SW) 



@ Christos Kozyrakis 5PACT 2006, Transactional Memory Tutorial

Eager Versioning Illustration
Begin Xaction

Thread

X: 10 Memory

Undo 
Log

Write X←15

Thread

X: 15 Memory

Undo 
LogX: 10

Commit Xaction

Thread

X: 15 Memory

Undo 
LogX: 10

Abort Xaction

Thread

X: 10 Memory

Undo 
LogX: 10



@ Christos Kozyrakis 6PACT 2006, Transactional Memory Tutorial

Lazy Versioning Illustration
Begin Xaction

Thread

X: 10 Memory

Write 
Buffer

Write X←15

Thread

X: 10 Memory

Write 
BufferX: 15

Abort Xaction

Thread

X: 10 Memory

Write 
BufferX: 15

Commit Xaction

Thread

X: 15 Memory

Write 
BufferX: 15



@ Christos Kozyrakis 7PACT 2006, Transactional Memory Tutorial

Conflict Detection

Detect and handle conflicts between transaction
• Read-Write and (often) Write-Write conflicts
• For detection, a transactions tracks its read-set and write-set 

1. Pessimistic detection 
• Check for conflicts during loads or stores

HW: check through coherence lookups
SW: checks through locks and/or version numbers

• Use contention manager to decide to stall or abort
Various priority policies to handle common case fast 

2. Optimistic detection
• Detect conflicts when a transaction attempts to commit

HW: write-set of committing transaction compared to read-set of others
– Committing transaction succeeds; others may abort

SW: validate write-set and read-set using locks and version numbers

Can use separate mechanism for loads & stores (SW)



@ Christos Kozyrakis 8PACT 2006, Transactional Memory Tutorial

Pessimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

wr A

No progress

rd A
wr A

check
restart

rd A

check

wr A

restart

rd A
wr A

check

restart

TIM
E



@ Christos Kozyrakis 9PACT 2006, Transactional Memory Tutorial

Optimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A
wr A

rd A
wr A

Forward 
progress

check

check

check

rd A

check

commit
check commit

check

restart

rd A
wr A

commit
check

TIM
E

commit
check



@ Christos Kozyrakis 10PACT 2006, Transactional Memory Tutorial

Conflict Detection Tradeoffs

1. Pessimistic conflict detection (aka encounter or eager)
+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases 
– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka commit or lazy)
+ Forward progress guarantees
+ Potentially less conflicts, no locking (SW), bulk 

communication (HW)
– Detects conflicts late



@ Christos Kozyrakis 11PACT 2006, Transactional Memory Tutorial

Implementation Space

No convergence yet
Decision will depend on
• Application characteristics
• Importance of fault tolerance, strong atomicity, complexity
• Success of contention managers

May have different approaches for HW, SW, and hybrid
• It may not even matter

Version Management
Eager Lazy

Pessimistic
HW: UW LogTM
SW: Intel McRT, MS-STM

HW: MIT LTM, Intel VTM
SW: MS-OSTM

Optimistic
HW: Stanford TCC
SW: Sun TL/2

C
onflict 

D
etection

[This is just a subset of proposed implementations]



@ Christos Kozyrakis 12PACT 2006, Transactional Memory Tutorial

Conflict Detection Granularity

Object granularity (SW/hybrid)
+ Reduced overhead (time/space)
+ Close to programmer’s reasoning
– False sharing on large objects (e.g. arrays)

– Unnecessary aborts

Word granularity 
+ Minimize false sharing
– Increased overhead (time/space)

Cache line granularity
+ Compromise between object & word
+ Works for both HW/SW

Mix & match best of both words
• Word-level for arrays, object-level for other data, …



@ Christos Kozyrakis 13PACT 2006, Transactional Memory Tutorial

Atomicity to Non-Transactional Code

Can non-transactional code read non-committed updates?
• Yes weak atomicity
• No strong atomicity

Strong atomicity is generally preferred 
• Otherwise there can be consistency and correctness issues 
• Difficult to provide in SW with eager version management 

But static or dynamic analysis may be able to help…

. . .
atomic {

write X;
. . . 
. . . 

}

T1 . . . 
. . . 
. . . 
read X;
. . . 
. . . 

T2



@ Christos Kozyrakis 14PACT 2006, Transactional Memory Tutorial

Interactions with PL & OS

Challenging issues 
• Interaction with library-based software,  I/O, exceptions, & system 

calls within transactions, error handling, schedulers, conditional 
synchronization, memory allocators, new language features,  …

Necessary TM semantics
1. Two-phase commit 

Separate validation from commit 
2. Transactional handlers for commit/abort/conflict

All interesting events switch to software handlers
Mechanisms for registering software handlers 

3. Support for nested transactions
Closed: independent rollback & restart for nested transactions
Open: independent atomicity and isolation for nested transactions

See McDonald’s paper in [ISCA’06]



@ Christos Kozyrakis 15PACT 2006, Transactional Memory Tutorial

Closed Nested Transactions
X1

Ti
m
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin

ld D

st B

st E

. . .

X2

xvalidate

xcommit

ld F

xvalidate

xcommit

Address A B C D E F
Value

Shared Memory

Read-set

Write-Set

X1 State

Read-set

Write-Set

X2 State

AA, DA, D, F
B1, C1

D
B2, E2

B2, C1 , E2

B2 C1 E2A0 B0 C0 D0 E0 F0



@ Christos Kozyrakis 16PACT 2006, Transactional Memory Tutorial

Open Nested Transactions
X1

Ti
m
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin_open

ld D

st B

st E

. . .

X2

xvalidate

xcommit

ld F

xvalidate

xcommit

Address A B C D E F
Value

Shared Memory

Read-set

Write-Set

X1 State

Read-set

Write-Set

X2 State

A
B1, C1

D
B2, E2

B2, C1

A, F

B2 C1 E2A0 B0 C0 D0 E0 F0



@ Christos Kozyrakis 17PACT 2006, Transactional Memory Tutorial

Nested Transactions Summary

Closed nesting
• Independent rollback and restart 

Read-set and write-set tracked independently from parent
On inner conflict, abort inner transaction but not outer
On inner commit, merge with parent’s read-set and write-set

• Uses: reduce cost of conflict, allow alternate execution paths

Open nesting
• Independent atomicity and isolation for nested transactions

On inner commit, shared memory is updated immediately
Independent rollback similar to closed nesting

• Uses: system and runtime code, reduce frequency of conflicts
But, may be too tricky for end programmers



@ Christos Kozyrakis 18PACT 2006, Transactional Memory Tutorial

Questions? 


	Agenda
	Transactional Memory Implementation Overview
	TM Implementation Requirements
	Data Versioning
	Eager Versioning Illustration
	Lazy Versioning Illustration
	Conflict Detection
	Pessimistic Detection Illustration
	Optimistic Detection Illustration
	Conflict Detection Tradeoffs
	Implementation Space
	Conflict Detection Granularity
	Atomicity to Non-Transactional Code
	Interactions with PL & OS
	Closed Nested Transactions
	Open Nested Transactions
	Nested Transactions Summary
	Questions? 

