
@ Christos Kozyrakis 1PACT 2006, Transactional Memory Tutorial

Agenda

Transactional Memory (TM)
• TM Introduction
• TM Implementation Overview
• Hardware TM Techniques
• Software TM Techniques

Q&A

HTM: Hardware Transactional
Memory Implementations

Christos Kozyrakis

Computer Systems Laboratory
Stanford University

http://csl.stanford.edu/~christos

@ Christos Kozyrakis 3PACT 2006, Transactional Memory Tutorial

Why Hardware Support for TM

Performance
• Software TM starts with a 40% to 2x overhead handicap

Features
• Works for all binaries and libraries wo/ need to recompile
• Strong atomicity is easy
• Depending on the implementation

Word-level conflict detection, forward progress guarantees, …

How much HW support is needed?
• This is the topic of ongoing research
• All proposed HTMs are essentially hybrid

Add flexibility by switching to software on occasion

@ Christos Kozyrakis 4PACT 2006, Transactional Memory Tutorial

HTM Mechanisms Summary

Data versioning in caches
• Cache the write-buffer or the undo-log
• Zero overhead for both loads and stores

The cache HW handles versioning and detection transparently

• Can do with private, shared, and multi-level caches

Conflict detection through some cache coherence protocol
• Coherence lookups detect conflicts between transactions
• Works with snooping & directory coherence

Notes
• Register checkpoint must be taken at transaction begin
• Virtualization of hardware resources discussed later
• HTM support similar to that for thread-level speculation (TLS)

Some HTMs support both TM and TLS

@ Christos Kozyrakis 5PACT 2006, Transactional Memory Tutorial

HTM Design

Cache lines annotated to track read-set & write set
• R bit: indicates data read by transaction; set on loads
• W bit: indicates data written by transaction; set on stores

R/W bits can be at word or cache-line granularity

• R/W bits gang-cleared on transaction commit or abort
• For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts
• E.g. shared request to W-word is a read-write conflict
• E.g. exclusive request to W-word is a write-write conflict
• E.g. exclusive request to R-word is a write-read conflict

V D E Tag R W Word 1 R W Word N. . .

@ Christos Kozyrakis 6PACT 2006, Transactional Memory Tutorial

HTM Example (Lazy, Optimistic)

T1 copies foo into bar
T2 should read [0, 0] or should read [9,7]

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y;

}

T2

0 0
0 0
0 0
0 0

R WTag

CACHE 1

0 0
0 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2

@ Christos Kozyrakis 7PACT 2006, Transactional Memory Tutorial

HTM Example (1)

Both transactions make progress independently

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y;

}

T2

1 0 9
0 1 9
0 0
0 0

R WTag

CACHE 1

0 0
0 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2

foo.x
bar.x

@ Christos Kozyrakis 8PACT 2006, Transactional Memory Tutorial

HTM Example (2)

Both transactions make progress independently

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y;

}

T2

1 0 9
0 1 9
0 0
0 0

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2

foo.x
bar.x

bar.x
t1

@ Christos Kozyrakis 9PACT 2006, Transactional Memory Tutorial

HTM Example (3)

Transaction T1 is now ready to commit

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y;

}

T2

1 0 9
0 1 9
1 0 7
0 1 7

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 1

foo.x
bar.x
foo.y
bar.y

bar.x
t1

@ Christos Kozyrakis 10PACT 2006, Transactional Memory Tutorial

HTM Example (3)

T1 updates shared memory
• R/W bits are cleared
• This is a logical update, data may stay in caches as dirty

Exclusive request for bar.x reveals conflict with T2
• T2 is aborted & restarted; all R/W cache lines are invalidated
• When it reexecutes, it will read [9,7] without a conflict

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y;

}

T2

0 0 9
0 0 9
0 0 7
0 0 7

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=9, y=7

foo
bar

CACHE 2

foo.x
bar.x

bar.x
t1

foo.y
bar.y

Excl bar.x
Excl bar.y

Conflict

@ Christos Kozyrakis 11PACT 2006, Transactional Memory Tutorial

Support for Nested Transactions

Caches track read-sets & write-sets multiple transactions
• Multi-tracking for eager versioning, associativity best for lazy
• Gange-merge or lazy merge at inner commit

See paper by McDonald at [ISCA’06] for details
• Including HW and SW interactions around nesting

Multi-tracking

Associativity-based NL1:0V

MOESI

D E Tag

=

Lookup
Address

Match?
Match
Level

Data
...
...R W

@ Christos Kozyrakis 12PACT 2006, Transactional Memory Tutorial

HTM Virtualization

Space virtualization What if caches overflow?
• Where is the write-buffer or log stored?
• How are R & W bits stored and checked?

Time virtualization What if time quanta expires?
• Interrupts, paging, and thread migrations half-way through

transactions

Nesting virtualization What if nesting level exhausted?

Observations: most transactions are currently small
• Small read-sets & write-sets, short in terms of instructions,

nesting is uncommon
• See paper by Chung at [HPCA’06]

@ Christos Kozyrakis 13PACT 2006, Transactional Memory Tutorial

Time Virtualization

Three-tier interrupt handling for low overhead
1. Defer interrupt until next short transaction commits

• Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction
Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts
• Use space virtualization to swap out (typically higher overhead)
• Only needed when most threads run very long transactions

Key assumption
• Rolling back a short transaction is cheaper than virtualizing it

See paper by Chung at [ASPLOS’06]

@ Christos Kozyrakis 14PACT 2006, Transactional Memory Tutorial

Space Virtualization

Virtualized TM (Rajwar @ [ISCA’05])
• Map the write-buffer and read-/write-set in a global structure

in virtual memory
They become unbounded; they can be at any physical location

• Caches capture working set of write-buffer/undo-log
Hardware and firmware handle misses, relocation, etc
Bloom filters used to reduce lookups in virtual memory

eXtended TM (Chung @ [ASPLOS’06])
• Use OS virtualization capabilities (virtual memory)

On overflow, use page-based TM no HW/firmware needed
Similar to page-based DSM, but used only as a back up
Overflow either all transaction state or just a part of it

• Works well when most transactions are small

@ Christos Kozyrakis 15PACT 2006, Transactional Memory Tutorial

Bulk Disambiguation (Ceze @ [ISCA’06])

Track read-sets and write-sets using signatures
• HW bloom filters replace R and W bits in caches

One filter for read-set, one for write-set, etc
Filters are updated on loads/stores, checked on coherence traffic

• Filters can be swapped to memory, transmitted to other processors, …
Simple compression can reduce filter size significantly

Tradeoffs
+ Decouples cache from read-set/write-set tracking

Same cache design, non overflow for R and W bits
+ Simplifies nesting

Cheap to track read-set & write-set seperately, easy to merge on commit
– Inexact operations can lead to false conflicts

May lead to degradation, depending on application behavior and HW details
– Still, there are virtualization challenges

Coherence messages must reach filter even if cache does not hold the line
Challenge for non-broadcast coherence schemes

@ Christos Kozyrakis 16PACT 2006, Transactional Memory Tutorial

Hybrid TM Implementations

Combine the best of both worlds
• Performance of HTM
• Virtualization, cost, and flexibility of STM

Dual TM implementations [PPoPP’06, ASPLOS’06]
• Start transaction in HTM; switch to STM on overflow, abort, …
• Carefully handle interactions between HTM & STM transactions

Use special headers/pointers to detect STM/HTM interaction
Hash-based techniques can reduce overheads

• Typically requires 2 versions of the code

HW support for STM [Transact’06, Micro’06]
• There is only one TM implementation in software
• Identify bottlenecks in STM and introduce instructions/HW to help

E.g. special coherence states triggered by software on demand
• Single version of the code

@ Christos Kozyrakis 17PACT 2006, Transactional Memory Tutorial

Transactional Coherence

Key observation
• For well synchronized programs, coherence &

consistency needed only at transaction boundaries

Transactional Coherence & Consistency (TCC)
• Eliminate MESI coherence protocol
• Coherence using the R/W bits only

Fewer/simpler states; multiple writers are allowed
• Communication logically only at commit points

Characteristics
• Sequential consistency at transaction boundaries
• Coarser-grain communication
• Bulk coherence creates hybrid between shared-

memory and message passing

See TCC papers at [ISCA’04], [ASPLOS’04], & [PACT’05]

foo() {
work1();
atomic {

a.x = b.x;
a.y = b.y;

}
work2();

}

@ Christos Kozyrakis 18PACT 2006, Transactional Memory Tutorial

Warehouse

stockTable
(B-Tree)

itemTable
(B-Tree)

3-tier Java benchmark
Shared data within and across warehouses
• B-trees for database tier

Can we parallelize the actions within a warehouse?
• Orders, payments, delivery updates, etc

Performance Example: SpecJBB2000

orderTable
(B-Tree)

District

Warehouse

newIDTransaction
Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable
(B-Tree)

itemTable
(B-Tree)

@ Christos Kozyrakis 19PACT 2006, Transactional Memory Tutorial

Sequential Code for NewOrder
TransactionManager::go() {

// 1. initialize a new order transaction
newOrderTx.init();
// 2. create unique order ID
orderId = district.nextOrderId(); // newID++
order = createOrder(orderId);
// 3. retrieve items and stocks from warehouse
warehouse = order.getSupplyWarehouse();
item = warehouse.retrieveItem(); // B-tree search
stock = warehouse.retrieveStock(); // B-tree search
// 4. calculate cost and update node in stockTable
process(item, stock);
// 5. record the order for delivery
district.addOrder(order); // B-tree update
// 6. print the result of the process
newOrderTx.display();

}

Non-trivial code with complex data-structures
• Fine-grain locking difficult to get right
• Coarse-grain locking no concurrency

@ Christos Kozyrakis 20PACT 2006, Transactional Memory Tutorial

Transactional Code for NewOrder

TransactionManager::go() {
atomic { // begin transaction

// 1. initialize a new order transaction
// 2. create a new order with unique order ID
// 3. retrieve items and stocks from warehouse
// 4. calculate cost and update warehouse
// 5. record the order for delivery
// 6. print the result of the process

} // commit transaction
}

Whole NewOrder as one atomic transaction
• 2 lines of code changed

Also tried nested transactional versions
• To reduce frequency & cost of violations

@ Christos Kozyrakis 21PACT 2006, Transactional Memory Tutorial

HTM Performance

Simulated 8-way CMP with TM support
• Stanford’s TCC architecture
• Lazy versioning and optimistic conflict

detection

Speedup over sequential
• Flat transactions: 1.9x

Code similar to coarse-grain locks
Frequent aborted transactions due to
dependencies

• Nested transactions: 3.9x to 4.2x
Reduced abort cost OR
Reduced abort frequency

See paper in [WTW’06] for details
• http://tcc.stanford.edu

0

10

20

30

40

50

60

flat
transactions

nested 1 nested 2
N

or
m

al
iz

ed
 E

xe
c.

 T
im

e
(%

) Aborted

Successful

http://tcc.stanford.edu/

@ Christos Kozyrakis 22PACT 2006, Transactional Memory Tutorial

Hardware TM Summary

High performance + compatibility with binary code,…

Common characteristics
• Data versioning in caches
• Conflict detection through the coherence protocol

Active research area; current research topics
• Support for PL and OS development (see paper [ISCA’06])

Two-phase commit, transactional handlers, nested transactions

• Development and comparison of various implementations
• Hybrid TM systems
• Long transactions
• Scalability issues

	Agenda
	HTM: Hardware Transactional Memory Implementations
	Why Hardware Support for TM
	HTM Mechanisms Summary
	HTM Design
	HTM Example (Lazy, Optimistic)
	HTM Example (1)
	HTM Example (2)
	HTM Example (3)
	HTM Example (3)
	Support for Nested Transactions
	HTM Virtualization
	Time Virtualization
	Space Virtualization
	Bulk Disambiguation (Ceze @ [ISCA’06])
	Hybrid TM Implementations
	Transactional Coherence
	Performance Example: SpecJBB2000
	Sequential Code for NewOrder
	Transactional Code for NewOrder
	HTM Performance
	Hardware TM Summary

