
@ Christos Kozyrakis 1PACT 2006, Transactional Memory Tutorial

Agenda

Transactional Memory (TM)
• TM Introduction
• TM Implementation Overview
• Hardware TM Techniques
• Software TM Techniques
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TM Implementation Requirements

TM implementation must provide atomicity and isolation
• Without sacrificing concurrency  

Basic implementation requirements
• Data versioning
• Conflict detection & resolution

Implementation options
• Hardware transactional memory (HTM)
• Software transactional memory (STM)
• Hybrid transactional memory
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Data Versioning

Manage uncommited (new) and commited (old) versions of 
data for concurrent transactions

1. Eager (undo-log based)
• Update memory location directly; maintain undo info in a log
+ Faster commit, direct reads (SW) 
– Slower aborts, no fault tolerance, weak atomicity (SW)

2. Lazy (write-buffer based)
• Buffer writes until commit; update memory location on commit 
+ Faster abort, fault tolerance, strong atomicity (SW)
– Slower commits, indirect reads (SW) 
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Eager Versioning Illustration
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Lazy Versioning Illustration
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Conflict Detection

Detect and handle conflicts between transaction
• Read-Write and (often) Write-Write conflicts
• For detection, a transactions tracks its read-set and write-set 

1. Pessimistic detection 
• Check for conflicts during loads or stores

HW: check through coherence lookups
SW: checks through locks and/or version numbers

• Use contention manager to decide to stall or abort
Various priority policies to handle common case fast 

2. Optimistic detection
• Detect conflicts when a transaction attempts to commit

HW: write-set of committing transaction compared to read-set of others
– Committing transaction succeeds; others may abort

SW: validate write-set and read-set using locks and version numbers

Can use separate mechanism for loads & stores (SW)
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Pessimistic Detection Illustration
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Optimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4
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Conflict Detection Tradeoffs

1. Pessimistic conflict detection (aka encounter or eager)
+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases 
– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka commit or lazy)
+ Forward progress guarantees
+ Potentially less conflicts, no locking (SW), bulk 

communication (HW)
– Detects conflicts late
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Implementation Space

No convergence yet
Decision will depend on
• Application characteristics
• Importance of fault tolerance, strong atomicity, complexity
• Success of contention managers

May have different approaches for HW, SW, and hybrid
• It may not even matter

Version Management
Eager Lazy

Pessimistic
HW: UW LogTM
SW: Intel McRT, MS-STM

HW: MIT LTM, Intel VTM
SW: MS-OSTM

Optimistic
HW: Stanford TCC
SW: Sun TL/2

C
onflict 

D
etection

[This is just a subset of proposed implementations]
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Conflict Detection Granularity

Object granularity (SW/hybrid)
+ Reduced overhead (time/space)
+ Close to programmer’s reasoning
– False sharing on large objects (e.g. arrays)

– Unnecessary aborts

Word granularity 
+ Minimize false sharing
– Increased overhead (time/space)

Cache line granularity
+ Compromise between object & word
+ Works for both HW/SW

Mix & match best of both words
• Word-level for arrays, object-level for other data, …



@ Christos Kozyrakis 13PACT 2006, Transactional Memory Tutorial

Atomicity to Non-Transactional Code

Can non-transactional code read non-committed updates?
• Yes weak atomicity
• No strong atomicity

Strong atomicity is generally preferred 
• Otherwise there can be consistency and correctness issues 
• Difficult to provide in SW with eager version management 

But static or dynamic analysis may be able to help…

. . .
atomic {

write X;
. . . 
. . . 

}

T1 . . . 
. . . 
. . . 
read X;
. . . 
. . . 

T2
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Interactions with PL & OS

Challenging issues 
• Interaction with library-based software,  I/O, exceptions, & system 

calls within transactions, error handling, schedulers, conditional 
synchronization, memory allocators, new language features,  …

Necessary TM semantics
1. Two-phase commit 

Separate validation from commit 
2. Transactional handlers for commit/abort/conflict

All interesting events switch to software handlers
Mechanisms for registering software handlers 

3. Support for nested transactions
Closed: independent rollback & restart for nested transactions
Open: independent atomicity and isolation for nested transactions

See McDonald’s paper in [ISCA’06]



@ Christos Kozyrakis 15PACT 2006, Transactional Memory Tutorial

Closed Nested Transactions
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Open Nested Transactions
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Nested Transactions Summary

Closed nesting
• Independent rollback and restart 

Read-set and write-set tracked independently from parent
On inner conflict, abort inner transaction but not outer
On inner commit, merge with parent’s read-set and write-set

• Uses: reduce cost of conflict, allow alternate execution paths

Open nesting
• Independent atomicity and isolation for nested transactions

On inner commit, shared memory is updated immediately
Independent rollback similar to closed nesting

• Uses: system and runtime code, reduce frequency of conflicts
But, may be too tricky for end programmers
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Questions? 
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