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Transactional Memory (TM)
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• TM Implementation Overview
• Hardware TM Techniques
• Software TM Techniques

Q&A 
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Why Hardware Support for TM

Performance
• Software TM starts with a 40% to 2x overhead handicap 

Features
• Works for all binaries and libraries wo/ need to recompile
• Strong atomicity is easy
• Depending on the implementation

Word-level conflict detection, forward progress guarantees, …

How much HW support is needed?
• This is the topic of ongoing research 
• All proposed HTMs are essentially hybrid

Add flexibility by switching to software on occasion 
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HTM Mechanisms Summary

Data versioning in caches
• Cache the write-buffer or the undo-log
• Zero overhead for both loads and stores

The cache HW handles versioning and detection transparently

• Can do with private, shared, and multi-level caches

Conflict detection through some cache coherence protocol
• Coherence lookups detect conflicts between transactions
• Works with snooping & directory coherence

Notes
• Register checkpoint must be taken at transaction begin
• Virtualization of hardware resources discussed later 
• HTM support similar to that for thread-level speculation (TLS)

Some HTMs support both TM and TLS 
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HTM Design

Cache lines annotated to track read-set & write set
• R bit: indicates data read by transaction; set on loads
• W bit: indicates data written by transaction; set on stores

R/W bits can be at word or cache-line granularity

• R/W bits gang-cleared on transaction commit or abort
• For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts 
• E.g. shared request to W-word is a read-write conflict
• E.g. exclusive request to W-word is a write-write conflict
• E.g. exclusive request to R-word is a write-read conflict

V D E Tag R W Word 1 R W Word N. . .
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HTM Example (Lazy, Optimistic)

T1 copies foo into bar
T2 should read [0, 0] or should read [9,7]

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y; 

}

T2

0 0
0 0
0 0
0 0

R WTag

CACHE 1

0 0
0 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2
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HTM Example (1)

Both transactions make progress independently

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y; 

}

T2

1 0 9
0 1 9
0 0
0 0

R WTag

CACHE 1

0 0
0 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2

foo.x
bar.x
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HTM Example (2)

Both transactions make progress independently

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y; 

}

T2

1 0 9
0 1 9
0 0
0 0

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 2

foo.x
bar.x

bar.x
t1
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HTM Example (3)

Transaction T1 is now ready to commit

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y; 

}

T2

1 0 9
0 1 9
1 0 7
0 1 7

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=0, y=0

foo
bar

CACHE 1

foo.x
bar.x
foo.y
bar.y

bar.x
t1
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HTM Example (3)

T1 updates shared memory
• R/W bits are cleared 
• This is a logical update, data may stay in caches as dirty

Exclusive request for bar.x reveals conflict with T2
• T2 is aborted & restarted; all R/W cache lines are invalidated
• When it reexecutes, it will read [9,7] without a conflict

atomic {
bar.x = foo.x;
bar.y = foo.y;

}

T1 atomic {
t1 = bar.x;
t2 = bar.y; 

}

T2

0 0 9
0 0 9
0 0 7
0 0 7

R WTag

CACHE 1

1 0 0
0 1 0
0 0
0 0

R WTag

MEMORY

x=9, y=7
x=9, y=7

foo
bar

CACHE 2

foo.x
bar.x

bar.x
t1

foo.y
bar.y

Excl bar.x
Excl bar.y

Conflict
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Support for Nested Transactions

Caches track read-sets & write-sets multiple transactions
• Multi-tracking for eager versioning, associativity best for lazy
• Gange-merge or lazy merge at inner commit

See paper by McDonald at [ISCA’06] for details
• Including HW and SW interactions around nesting

Multi-tracking

Associativity-based NL1:0V

MOESI

D E Tag

=

Lookup 
Address

Match?
Match
Level

Data
...
...R W
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HTM Virtualization

Space virtualization What if caches overflow? 
• Where is the write-buffer or log stored?
• How are R & W bits stored and checked? 

Time virtualization What if time quanta expires? 
• Interrupts, paging, and thread migrations half-way through 

transactions

Nesting virtualization What if nesting level exhausted?

Observations: most transactions are currently small
• Small read-sets & write-sets, short in terms of instructions, 

nesting is uncommon
• See paper by Chung at [HPCA’06]
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Time Virtualization

Three-tier interrupt handling for low overhead
1. Defer interrupt until next short transaction commits

• Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction
Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts
• Use space virtualization to swap out (typically higher overhead)
• Only needed when most threads run very long transactions

Key assumption
• Rolling back a short transaction is cheaper than virtualizing it 

See paper by Chung at [ASPLOS’06]
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Space Virtualization

Virtualized TM (Rajwar @ [ISCA’05])
• Map the write-buffer and read-/write-set in a global structure 

in virtual memory
They become unbounded; they can be at any physical location

• Caches capture working set of write-buffer/undo-log
Hardware and firmware handle misses, relocation, etc
Bloom filters used to reduce lookups in virtual memory 

eXtended TM (Chung @ [ASPLOS’06])
• Use OS virtualization capabilities (virtual memory)

On overflow, use page-based TM no HW/firmware needed
Similar to page-based DSM, but used only as a back up
Overflow either all transaction state or just a part of it

• Works well when most transactions are small
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Bulk Disambiguation (Ceze @ [ISCA’06])

Track read-sets and write-sets using signatures
• HW bloom filters replace R and W bits in caches

One filter for read-set, one for write-set, etc 
Filters are updated on loads/stores, checked on coherence traffic

• Filters can be swapped to memory, transmitted to other processors, …
Simple compression can reduce filter size significantly

Tradeoffs
+ Decouples cache from read-set/write-set tracking

Same cache design, non overflow for R and W bits 
+ Simplifies nesting

Cheap to track read-set & write-set seperately, easy to merge on commit 
– Inexact operations can lead to false conflicts

May lead to degradation, depending on application behavior and HW details
– Still, there are virtualization challenges

Coherence messages must reach filter even if cache does not hold the line
Challenge for non-broadcast coherence schemes
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Hybrid TM Implementations

Combine the best of both worlds
• Performance of HTM
• Virtualization, cost, and flexibility of STM

Dual TM implementations [PPoPP’06, ASPLOS’06]
• Start transaction in HTM; switch to STM on overflow, abort, …
• Carefully handle interactions between HTM & STM transactions

Use special headers/pointers to detect STM/HTM interaction
Hash-based techniques can reduce overheads

• Typically requires 2 versions of the code

HW support for STM [Transact’06, Micro’06]
• There is only one TM implementation in software 
• Identify bottlenecks in STM and introduce instructions/HW to help

E.g. special coherence states triggered by software on demand
• Single version of the code
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Transactional Coherence

Key observation
• For well synchronized programs, coherence & 

consistency needed only at transaction boundaries

Transactional Coherence & Consistency (TCC)
• Eliminate MESI coherence protocol
• Coherence using the R/W bits only

Fewer/simpler states; multiple writers are allowed
• Communication logically only at commit points

Characteristics
• Sequential consistency at transaction boundaries
• Coarser-grain communication 
• Bulk coherence creates hybrid between shared-

memory and message passing

See TCC papers at [ISCA’04], [ASPLOS’04], & [PACT’05]

foo() {
work1();
atomic {

a.x = b.x;
a.y = b.y;

}
work2();

}
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Warehouse

stockTable
(B-Tree)

itemTable
(B-Tree)

3-tier Java benchmark
Shared data within and across warehouses
• B-trees for database tier

Can we parallelize the actions within a warehouse?
• Orders, payments, delivery updates, etc

Performance Example: SpecJBB2000

orderTable
(B-Tree)

District

Warehouse

newIDTransaction
Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable
(B-Tree)

itemTable
(B-Tree)
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Sequential Code for NewOrder
TransactionManager::go() {

// 1. initialize a new order transaction
newOrderTx.init();
// 2. create unique order ID
orderId = district.nextOrderId(); // newID++
order = createOrder(orderId);
// 3. retrieve items and stocks from warehouse
warehouse = order.getSupplyWarehouse();
item = warehouse.retrieveItem();   // B-tree search
stock = warehouse.retrieveStock(); // B-tree search
// 4. calculate cost and update node in stockTable
process(item, stock);
// 5. record the order for delivery
district.addOrder(order); // B-tree update
// 6. print the result of the process
newOrderTx.display();

} 

Non-trivial code with complex data-structures
• Fine-grain locking difficult to get right
• Coarse-grain locking no concurrency
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Transactional Code for NewOrder

TransactionManager::go() {
atomic { // begin transaction

// 1. initialize a new order transaction
// 2. create a new order with unique order ID
// 3. retrieve items and stocks from warehouse
// 4. calculate cost and update warehouse
// 5. record the order for delivery
// 6. print the result of the process

} // commit transaction
}

Whole NewOrder as one atomic transaction
• 2 lines of code changed

Also tried nested transactional versions
• To reduce frequency & cost of violations
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HTM Performance 

Simulated 8-way CMP with TM support
• Stanford’s TCC architecture
• Lazy versioning and optimistic conflict 

detection

Speedup over sequential
• Flat transactions: 1.9x

Code similar to coarse-grain locks
Frequent aborted transactions due to 
dependencies

• Nested transactions: 3.9x to 4.2x 
Reduced abort cost OR
Reduced abort frequency

See paper in [WTW’06] for details
• http://tcc.stanford.edu
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Hardware TM Summary

High performance + compatibility with binary code,…

Common characteristics
• Data versioning in caches
• Conflict detection through the coherence protocol 

Active research area; current research topics 
• Support for PL and OS development (see paper [ISCA’06])

Two-phase commit, transactional handlers, nested transactions

• Development and comparison of various implementations
• Hybrid TM systems
• Long transactions
• Scalability issues
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