
PL 1993 qual

1. Subtyping and Polymorphism
a. Subtyping – substitutivity. If A is a subtype of B, then A can replace B without type

error.
i. Advantages – uniform operations over multiple types of data, can add

functionality with minimal modification to system.
ii. Implementation cost – compilation complexity if subtyping relies on inheritance

b. Polymorphism – dynamic method lookup. Function that can be applied to arguments of
more than one type.

i. Advantages – code reuse (Templates at the user and programmer level,
polymorphic functions at the code level). Dynamic lookup – all objects call
same method ‘name’

ii. Implementation cost – level of indirection is slower (compiler, runtime). In
C++, templates generate multiple copies of the code.

2. Smalltalk vs. C++

a. Smalltalk:
i. Properties – dynamic typing, implicit subtyping (not linked to inheritance),

everything is an object (int, bool), programmer template and method lookup, no
multiple inheritance.

ii. When useful – flexibility, easier to add things, stability, more correct programs
b. C++:

i. Properties – static typing, explicit subtyping through inheritance, not everything
is an object, vtable, multiple inheritance.

ii. When useful – speed, don’t pay for unused features (object lookup), existing
code

3. Prolog

4. Closures vs. objects

a. Closure – function and its execution environment
b. Object – data (hidden) plus functions operating on the data
c. Difference – no inheritance for closures, object is its own environment
d. Closures can simulate objects (except subtyping and inheritance) by creating an object

when you need to return the closure.
e. Can objects simulate high order functions? We speculate you can simulate a closure with

an object, and then simulate high order functions with the closure. In fact, see
http://www.cs.hmc.edu/~keller/Polya/ for an implementation of high order functions in
C++.

5. Lisp and Pascal combining

a. Problems – type checking, memory allocation, variable access, moving data between
procedures, memory references, interpreted vs. compiled

b. Fixes – define an RPC like interface between Lisp parts and Pascal parts. This requires
everything to be converted into an ‘intermediary’ form to cross boundaries between
languages. You could also try compiling Lisp or interpreting Pascal.

6. Eliminating the run-time stack in a compiler.

a. Reasonable when – efficiency doesn’t matter, high order functions already exist, Lisp,
ML

b. Losing proposition when – need efficiency, need explicit memory control, don’t need to
return functions, Pascal, C++

