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Abstract

The dominant architecture for the next generation of shared-

memory multiprocessors is CC-NUMA (cache-coherent non-

w@orm memory architecture). These machines are attractive as

compute servers because they provide transparent access to local

and remote memory. However the access latency to remote

memory is 3 to 5 times the latency to local memory. CC-NOW
machines provide the benejits of cache coherence to networks of
workstations, at the cost of even higher remote access latency.
Given the large remote access latencies of these architectures, &ta
locality is potentially the most important perjorrnance issue. Using

realistic workloads, we study the pe~ormance improvements

provided by OS supported dynamic page migration and

replication. Analyzing our kernel-based implementation, we

provide a detailed breakdown of thecosts. We show that sampling

of cache misses can be used to reduce cost without compromising

perjorrnance, and that TB misses may not be a consistent

approximation for cache misses. Finally, our experiments show

that dynamic page migration and replication can substantially
increase application performance, as much as 30~o, and reduce

contention for resources in the NUMA memory system.

1. Introduction

Shared-memory multiprocessors are attractive as compute servers

because they provide tight coupling of processor and memory

resources. However, the memory bus on current bus-based
multiprocessors is quickly becoming a bottleneck as processors get

faster and as these systems scrde to larger number of processors.

The architectural solution to this problem is to divide the machine
into a number of nodes, each node consisting of one or more

processors and a part of main memory. These nodes are connected
using scalable interconnect technology, and cache-coherence is
provided using directo~ techniques. There are two variations to

cache-coherent shared-memory systems. The first is the more
traditional CC-NUMA machine (cache-coherent non-uniform
memory-access) that uses custom interconnect technology —

Stanford DASH [LLG+90], MIT Alewife [ACD+91 ], Sequent

STiNG[LoC96], and Convex Exemplar. The other is the CC-NOW
machine (cache-coherent networks of workstations) that uses

general-purpose interconnect technology with the nodes being

users’ workstations — the Stanford Distributed PLASH proposal
[Kus+94] and the SUN s3.mp architecture [NAB+95]. On both

these architectures, the access to local memory is optimized to

Permissionto make digitahhard copy of part or all of this work for personal
or classroomuse is ranted without fee provided that copies are not made

Yor distributed for pro It or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
@PYln9ISby p~rmission of ACM, Inc. To mpy ofherwise, to republish, to
post on servers,or to red@nbuta to lids, requires prior speeific permission
andlor a fee.

ASPLOS WI 10/96 MA, USA
01996 ACM 0-89791-767-719610010...$3.50

provide workstation-like latencies. Ile remote access latency is

expected to be 3 to 5 times the local access latency for CC-NUMA

machines and 10 to 20 times for CC-NOW.

The high remote latency makes data locality potentially the most

important performance issue because a large number of cache

misses to remote memory could severely impact application

performance, and increase the utilization of memory system

components. This is compounded in compute-server workloads
where processes will need to be moved from one processor to

another for load balancing. Page migration can be used to keep
data local to the process when it is moved. Replication of pages is

desirable where data is heavily read-shared between many
processors.

Using realistic workloads on a real implementation, we show that

the operating system can substantially improve data locality by

migrating and replicating pages. On CC-NUMA architectures, our
implementation improves the workload execution time as much as

29% over a first touch policy. Improving data locality also has a

system-wide benefit, reducing the contention for resources in the
NUMA memory system. Our results also show that both page

migration and page replication are necessary, and that neither on
its own suffices. For most of the workloads, migration and
replication provide substantially better performance than the

optimal static page placement.

CC-NUMA architectures have the ability to cache remote data,

therefore pages must be moved selectively and efficiently. Pages
that are write-shared cannot benefit from migration or replication,

and we show that our policy is robust in the face of workloads

which exhibit this type of sharing. Our studies show that TLB miss

information is not adequate to consistently select the appropriate

pages to move. Information about cache misses is needed, and we

identify the architectural support necessary. Finally, current SMP

operating systems are not designed to support migration and
replication, and large kernel overheads can potentially negate any
performance improvement. We describe optimizations we made to
reduce the kernel overheads, and point out other remaining kernel
bottlenecks.

The rest of this paper is organized as follows. Section 3 presents a

framework within which various design issues and policy choices

are developed. Section 4 describes the kernel mechanisms needed.
In Sections 5 and 6 we describe our experimental environment and

workloads. In Section 7, we present the costs and benefits of page
migration and replication from experimental runs. In Section 8, we

explore a number of interesting issues related to migration and
replication.

2. Related Work

Significant work related to page migration and replication has been

done on architectures other than CC-NUMA. Much of this has
focused on implementing shared memory in software, including
IVY [Li88], Munin and Treadmarks [BCZ90], Midway [BZS93],

Jade [RSL92], and SAM [SCL94]. In these systems, data
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replication or migration, at a page or object level, is required for

correctness when a processor references a remote datum. Our work
differs from these systems because the hardware on CC-NUMA
machines provides the shared memory abstraction; page
replication and migration is purely an optimization. Other work

has focused on migration and replication on shared-memory

machines that are not cache-coherent, such as the BBN-Butterfly

and the IBM ACE [BSF+91, LEK91, COF89, H0189]. In these

systems, migration and replication is triggered by page faults not

cache misses, and although some mechanisms developed are
relevant to our study, such as freezing and defrosting of pages, the

policies used and the performance results are not, because of the

lack of coherent caches.

The ability of CC-NUMA machines to cache remote data
substantially changes the potential benefits of migrating and
replicating pages. In this environment, although the remote access

latency is on the order of a microsecond, with cache-coherence,

subsequent accesses hit in the local processor cache and take only

a few nanoseconds. If the workload exhibits good cache locality,

cache-coherent systems will derive less benefits from migration

and replication of pages. Therefore coherent caches force us to be

more selective when moving pages, because the page movement

overheads we can tolerate are much lower.

More directly within the CC-NUMA model, Black et al. [BGW89]

proposed a competitive strategy to migrate and replicate pages
using special hardware support (a counter for each page-frame per
processor). The workloads evaluated were a few small scientific

applications from the SPLASH suite [SWG92], run one at a time,

and only user-mode data references were considered. In contrast,

we evaluate workloads of relevant, complex applications with

multiprogramming, and both kernel and user references are

studied. The policy space explored is also quite different. The

work by Chandra et al [CDV+94] on the Stanford DASH

multiprocessor, while being closely related, is different in three
important respects: (i) focus of their work was process scheduling

and migration, while we build on their work and study memory
locality through both migration and replication; (ii) the workloads
in our study are more varied; and (iii) our study is based on the

SimOS simulation environment [RHW+95]. The SimOS

environment used here is realistic and flexible (see Section 5), and
allows us to choose architectural parameters — processor speeds,

cache sizes, and latencies — more relevant to today’s systems than
when DASH was designed six years ago.

3. Policy Framework

We begin with a detailed analysis of the problem we are trying to
solve, in terms of the benefits and the costs of page migration and

replication. We then present the policy for page migration and
replication that will serve as the framework for the rest of the
study.

3.1 Problem Statement

Our goal is to minimize the runtime for the user’s workload by
reducing the component duc to memory stall. On CC-NUMA

machines, memory stall can be reduced by converting remote
misses to local misses through the migration and replication of
pages. To maximize the overall reduction in execution time, it is

also important to keep the costs of migration and replication to a
minimum. Therefore, we need to be concerned about both the
savings from data locality and the costs of migration and
replication.

The first aspect, improving data locality, involves finding the pages
that suffer the most remote-misses and converting them to local-

cache-miss

(%
1. miss rate

to page

I!2x!4 x2. sharing

high low

FIGURE 1: Replication/Migration decision tree.
The flowchart shows the decision process for a page to which a
cache miss is taken. The possibilities are to replicate, migrate, or
do nothing.

misses if possible. The access patterns to the page can be broadly

classified into three groups that determine the policy action to be
taken. The first group consists of pages that are primarily accessed

by a single process. These pages are candidates for migration when

the process accessing them migrates to another processor, and they

include: data pages of sequential applications; data pages of

parallel applications where the accesses from the processes are to

disjoint sections of the dat~ and the code of sequential

applications, when only one instance of the application is running

on the machine. The second group consists of pages accessed by
multiple processes, but with mostly read accesses. These pages are

candidates for replication, and they include code pages of parallel

applications; code pages of concurrently executing copies of a
sequential application; and read-mostly data pages of parallel

applications. The third group consists of pages accessed by
multiple processes, but with both read and write accesses. These
pages are not candidates for either replication or migration, and

they include the data pages of parallel applications where there is

fine grain sharing with updates from multiple processors.

The second aspect of the problem concerns the costs of page

migration and replication. We classify these costs into four

categories. The first cost is that of gathering information to help

determine when and what pages to migrate or replicate, The
options we consider are to keep counts of all cache misses
(supported by Stanford FLASH) or all TLB misses (many

processors have software handling of TLB misses), or to use time
sampling of either cache misses or TLB misses. The second cost is
that of the kernel overhead for migration and replication. This cost
includes the overheads for allocating a new page, removing all
mappings to the old physical page, establishing the new mappings,

flushing TLBs to maintain coherence and eliminating replicas on a

store to a replicated page, to name a few. The third is the cost of

data movement to physically copy a page from one location to
another. The fourth is the indirect cost of increased memory use

(memory pressure) resulting from page replication.

3.2 Solution Framework

The next step is to design a policy that uses available cache-miss
information to decide if and when to migrate or replicate a page.
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I Parameter

1 I&sethlttmd

t-

Trigger Threshold

Sharing Threshold

Semantics

Number of clock cycles after which all
counters are reset.

Number of misses after which page is
considered hot and a migration/replic-
ation decision is triggered.

Number of misses from another pro-
cessor, making a page a candidate for
replication instead of migration.

IWrite Threshold
Number of writes after which a page is
not considered for replication

Migrate Threshold
Number of migrates after which a
ua~e is not considered for migration.

I I .-
1

TABLE 1: Key parameters used by the policy. These
parameters are used along with the counters to approximate rates.
The counters used by the policy include a per-page per-processor
miss counter, a per-page write counter, and a per-page migrate
counter.

Figure 1 shows a decision tree for our policy. We assume that
action may be triggered on any cache miss, but the decision tree is

independent of the metric used.

The first step (node 1) is to determine the pages to which a large

number of misses are occurring, the “hot” pages. Because there is
a page-movement cost, moving only hot pages maximizes

performance. The second step (node 2) is to determine the type of

sharing that applies to the page in question, the page should be

migrated if referenced primarily by one process or replicated if
referenced by many processes. On the basis of the sharing pattern,

we take the replication (high sharing) or the migration (low

sharing) branch. The third step (nodes 3a and 3b) is to help control

the overhead cost. Replication is allowed only if the write

frequency is low and there is no memory pressure. Migration is
allowed only if the page has not been migrated too often in the
past. This decision tree is similar to that used in earlier studies on

non-cache-coherent NUMA machines, but ours is driven by all

cache-misses, not all memory references.

4. Kernel Mechanisms

We modified the SGI IRIX 5.2 operating system to implement the

page migratiordreplication policies. IRIX is an SMP OS that runs
on the SGI CHALLENGE, a bus-based multi-processor system.
Without going into the kernel modifications in detail, we point out

some of the important issues in the implementation.

To implement the policy, we first need to translate the abstract

decision tree developed in the previous section into concrete

parameters that can be observed in the system. It is difficult to
track rates, therefore we approximate them using counters with a

periodic reset. For each page there is a miss counter per processor,

a migrate counter, and a write counter. Table 1 defines a reset

interval parameter and the trigger, sharing, write, and migrate
thresholds that together with the counters approximate the rates in

the decision tree.

A hot page is one whose counter for a processor reaches the

trigger threshold within the reset intervrd. If that page is in a
remote memory, further action is considered. Next, if the miss

counter for this page on any other processor has exceeded the
sharing threshold, we consider the page shared, and it is a
candidate for replication; otherwise the page is not shared and is a

candidate for migration. Finally, a candidate page is only
replicated if the write counter has not exceeded the write threshold,

u1. Count misses
Raise interrupt

lGNOm3. Read counters
~ Make decision 7. Copy page

MIG/RE P
v

4. Allocate page
8. Free pages

— Update mappings

*

1.

2.

3.

4.

5.

6.

7.

8.

L I

The memory controller counts misses, and interrupts the CPU if a
counter reachesthe trigger threshold.

The processor takes the interrupt, and catls the pager routine that
implements the page movement code.

The pager routine ~ads the counters for the page and its repticas, rmd
decides to migrate, replicate, or collapse a page on the basis of the
counter vahres and the sharing, migrate, and write thresholds. The
necessarypage-level locks are acquired.The decision taken can also be
to do nothing, in which casethe remaining steps are skipped.

A new page is allocated from the appropriate memory.

The new page is linked into atl the appropriate data structures
maintained by the OS. The page table entries are changed to reflect the
transient nature of the page. The page itself is locked, so that the
entries cannot be changed by a faulting processor.

The TLBs on atl the processors are flushed. Ftushing the TLB removes
old TLB mappings that may not be Viitid after a migrate or a collapse.
It also prevents writes to the page while the data is being copied.

The data is uow copied to the new page.

Old pages are freed if necessary,and page table mappings are updated
to point to the nearest page.

FIGURK 2: Flow chart for migration or replication of a page
in the kernel implementation. A page collapse only goes
through a subset of these steps and is not shown.

and a candidate page is only migrated if the migration counter has
not exceeded the migrate threshold.

In our implementation, the directory controller maintains the miss

counters, and generates an interrupt when a page crosses the
trigger threshold. The flow-chart in Figure 2 describes tbe low-
priority interrupt handler, which services this pager interrupt by

replicating or migrating pages if necessary. To reduce the per-page
overhead for taking the interrupt and flushing TLBs, the directory

controller attempts to collect multiple pages before generating an
interrupt. The interrupt handler code iterates over steps 3 to 5 for
each page. Then a single TLB flush c~peration is done, followed by

steps 7 and 8. There is one other path to the pager routine, the page
collapse (not shown in Figure 2); it handles writes to replicated
pages. The page table entries for replicated pages are marked read-
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only, and a write to a replicated page causes a trap that vectors the

processor to the protection fault handler (pfault). This handler
collapses the replicas to a single page before letting the write

proceed.

Three significant changes had to be made to the IRIX VM system
to enable our implementation. The performance overhead of these

changes, when not migrating or replicating pages, was
insignificant (less than o.s~o of non-idle execution time).

Replication support: In IRIX, a hash table is used to translate

logical pages (vnode, offset) to physical pages. Physical page
frame descriptors (pfds) are linked into this open hash table.

Support was added for replicas of a physical page. The replicas are

linked together, and one of them is linked into the hash table.

Finer grain locking: The version of IRIX we used had fairly

coarse locking for VM related structures. There is one lock

(mer-nlock), which protects the global hash table of active physical
pages and the global free page list. There is also one lock per
memory region (region lock), which is acquired when changing
page table entries. Both memlock and the region locks for shared
text or data regions were potential performance bottlenecks. To
reduce the contention for memlock, we added page level locking

for manipulating replica chains. A lock was also added to page

table entries, to avoid having to acquire the region lock when

changing the mapping. These changes reduced the synchronization

cost in our implementation.

Page table back mappings: Page table entries (ptes) for virtual
addresses point to pfds, but there is no link from the pfd directly

back to the pte. To facilitate easy mapping changes, links were

added to the pfd pointing back to all the ptes mapping this page,
similar to an inverted page table.

5. Experimental Environment

In this study we model CC-NUMA and CC-NOW machines based

on the Stanford FLASH and Distributed FLASH architectures,
respectively. As these machines are not yet available, we use a

machine simulator crdled SimOS [RHW+95]. SimOS is a

complete and accurate simulator of the FLASH machine. It is

capable of booting a commercial operating system, Silicon

Graphics’ IRIX 5.2 in this case, and executing any application that

is binary compatible with IRIX. SimOS accurately models the

processors, caches, memory system, and I/O devices (disks,
ethernet, etc.) of the system, and includes a cycle accurate

simulator of the MAGIC chip, the directory controller on FLASH.
SimOS is an invaluable tool because it allows us to collect any
number of statistics about the hardware or system activity, without

altering the behavior of the workload. This non-intrusiveness,
along with the complete and accurate modelling of all system

activity, is the key advantage of SimOS over software-based
instrumentation techniques on actual hardware.

In this study we model an 8 processor FLASH machine. The

benefits of migration and replication should be seen even with this

small configuration because the probability that a process would
randomly find a page in local memory is already quite small
(O.125). The following are the other machine characteristics

assumed: 300MHz processors with a TLB size of 64 entries;
separate 32KB two-way set-associative first-level I and D caches
with a one cycle hit time; a unified 5 12KB two-way set-associative
second-level cache with a 50ns hit time; a minimum local memory
access time of 300ns and a minimum remote memory access time
of 1200ns for the CC-NUMA configuration, and 3000ns for the
CC-NOW configuration (we assume the 1000 ft. of fiber traversed
in CC-NOW causes approximately 2000ns of latency).

Name Contents Notes

K H,ashlite multiprogrammed,

erilog
compute-intensive serial
applications

IRaytrace IRaytrace
parallel graphics application
(renderim? a scene) I

Raytrace multiprogrammed,
Splash Volrendering compute-intensive parallel

Ocean applications

Database Sybase
commercial database
(decision suDI)ort aueries) I. . . .

Pmake
4 four-way software development
parallel Makes (compilation of gnuchess)

J

TABLE 2: Description of the workloads. For each workload,
the table lists the applications in the workload and a short
description of the workload. All the workloads are run on an eight
processor configuration, except the database workload that uses
four.

6. Workload Characterization

The value of a study such as this depends critically on the

workloads used. We use five diverse and realistic workloads to

capture some of the major uses of compute servers. These

workloads are summarized in Table 2 and detailed CPU and
memory system statistics are given in Table 3.

Multiprogrammed Engineering Workload (Engineering): Our

first workload consists of large sequential computation and

memory intensive applications. This is a multiprogrammed
workload, scheduled by UNIX priority scheduling with affinity
[VaZ91]. The workload consists of copies of two applications. One

is the commercial verilog simulator VCS, simulating a large VLSI
circuit. VCS compiles the simulated circuit into code, and the

resulting large code segment causes a high user instruction stall

time. The other application is Flashlite, a functional simulator of

the FLASH machine.

Single Parallel Application (Raytrace): This workload consists

of Raytrace[SWG92], a single compute-intensive parallel graphics

algorithm widely used for rendering images, The processes of the

application are locked to individual processors, a common practice
for dedicated-use workloads.

Multiprogrammed Scientific Workload (Splash): The third

workload consists of parallel invocations of Raytrace, Volume
rendering, and Ocean [S WG92]. The applications enter and leave

the system at different times, and a space-partitioning approach,

similar to scheduler-activations [ABL+9 1, TuG89], is used for
scheduling the jobs.

Decision Support Database (Database): The fourth workload is

a database system running a decision-support benchmark on an

off-line main-memory database. We use the Sybase database that
supports multiple engines, but has not been optimized for NUMA
architectures. This workload is run on a four-processor system,
with the database engines locked to processors.

Multiprogrammed Software Development (Pmake): Our final
workload consists of four Pmake jobs, each compiling the

gnuchess program with four-way parallelism. The workload is I/O
intensive, with a lot of system activity from many small short-lived
processes, such as compilers and linkers. UNIX priority
scheduling with affinity is used. Kernel instruction and data

references, rather than user references, account for the bulk of the
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Workload

t%=-

I Splash

I Database

Pmake

TABLE 3: Executio]
used, the percentage
secondary cache for i

Total CPU Time Breakdown Stall The (% Non-Idle)
Cumulative

Memory (%)

CPU Time
Kernel User

(see)
(Megs)

User Kern Idle Instr. Data Instr. Data

61.76 27.5 74 6 20 1.6 3.8 34.4 37.4

74.08 28.8 69 25 6 3.6 15,1 4.8 36.1

87.52 57.6 65 17 18 4.4 11,8 3.1 36.3

30.40 20.8 55 7 38 1.4 6.0 2.5 50.3

35.27 73.7 34 44 22 4.0 29.3 3.6 9.1

time and memory usage of the workloads. The table shows the execution time of the workload, the total memory
of the execution time spent in Idle, Kernel and User modes, the percentage of non-idle time spent stalled on the
~structions and data.

memory stall time. Therefore, we use this workload in Section 8.2

to focus on the migration and replication potential in the kernel.

7’. Workload Execution Results

This section explores the overall performance improvement, and

then analyzes the different overheads of migrating and replicating
user level pages. We study the engineering, raytrace, splash and

database workloads in this section because of their large user stall
times.

We varied each of the policy parameters for the migration and

replication policy, and chose the ones that gave the best results;

trigger threshold of 128 for the raytrace, splash, and database

workloads and 96 for the engineering workload, sharing threshold

is one quarter of the trigger threshold, the write and migrate

thresholds are set at one, and the reset interval is 100 milliseconds.
This policy is referred to as the base policy. Section 8.4 discusses

the variation of policy parameters. We compare the results using

the base policy against that of first-touch page allocation, the
default policy on CC-NUMA machines.

7.1 Performance Improvement

We first examine in detail the workload execution time

improvements from using the base policy. Next we show how

improving data locality reduces contention for resources in the

100

12 63

ii M@ep H M@3ep
engr raytrace splasl ‘

100
I & zOverhead

RemoteStal
Local Stall

% -other

~ M@Rep
database

FIGURE 3: Performance improvement of the base policy
(M]g/Rep) over first touch (FT). The execution time is divided
into the kernel overhead for migration and replication, the remote
and local stall times, and all other time. The figure shows the
percentage of misses to local memory at the bottom of each bar.

NUMA memory system, and so improves system-wide

performance. Finally we examine the effects of longer network

latency as in the CC-NOW configuration.

7.1.1 Workload Performance

Figure 3 shows the results of our experimental runs. The
improvement in total execution time is dependent on three factors:

the contribution of user stall time to the total execution time, the
fraction of misses satisfied from local memory, and the kernel

overhead required to improve the memory locality. The base

policy improved memory locality substantially, and this resulted in

reductions in memory stall time —- engineering 52Y0, raytraCe

36%, splash 24%, and database 10%l. The total execution time
improved in all cases, even after considering the additional kernel

overhead — engineering 29Y0, raytrace 15Y0, splash 4T0, and

database 5%. We now discuss each workload.

Engineering: The engineering worldoad that has a large user stall

time (7270 of non-idle time), shows the largest performance

improvement. For this workload, page migration improves the

locality of the data segments that are not shared in sequential

applications. Replication of code pnges also has a large impact

because of the large percentage of instruction cache stall time
(34% of non-idle time). This workload demonstrates that both

migration and replication are necessary to fully exploit memory

locality.

Raytrace: In the raytrace workload, the processes make

unstructured read-only accesses to n large shared data structure,
which represents the scene to be rendered. Figure 4 illustrates the

read-only nature of the data misses. This graph indicates the
fraction of cache misses that could he potentially satisfied locally

through replication. The fact that raytrace has 60% of its data

misses in read-chains that are 512 misses or longer indicates most

of the benefit comes from page replication.

Splash: In the splash workloacl there are three parallel
applications, Raytrace, Volume Rendering, and Ocean. As the

applications enter and leave the system, the jobs are redistributed
across the processors to best utilize the CPUS. Therefore static

placement of data is difficult. Ocean has only nearest-neighbor
communication that results in mostly unshared access to data,
therefore migrating pages to the processor currently running the
process will improve locality. Raytrace and Volume Rendering

1. The IT database time has been compensated for user spin
cycles.
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A raytrace
0 splash
❑ engineering
0 database

()~
o 128 256 384 512

ReadChainLength

FIGURE 4: Percentage of data cache misses in read chains.
A read chain represents a string of reads to a page from a
processor, which is terminated by a write from any processor to
that page. A long read chain indicates a page that could benefit
from replication. The X-axis shows read chain lengths and the Y-
axis shows the percentage of the total data misses that are part of
read chains of that length or more.

have substantial read-mostly structures that could be replicated;
30% of the data misses in this workload are in read chains longer

than 512. Therefore we would expect to see gains from replication
also,

There are a couple of reasons the splash workload does not show

more than a 4% improvement. First, as shown in Table 4, 24% of

the time a hot page is identified, the kernel fails to take action

because it cannot allocate a physical page frame on the local node.
Although the total workload fits comfortably in the machine’s

memory, the memory on some of the nodes is exhausted. Second,

when a process switches processors, it continues to use the page
from the old node, even if there is a replica on the new node. Due

to the current page table design, the process will not pick up the
new replica until the page is identified as a hot page and processed
by the kernel.

Database: We expected the database workload to benefit from
replication because the data accesses would be mostly reads. We

did not expect much benefit from migration because we locked the
servers to the processors. However, we see very little additional

benefit for replication over IT. Classifying the pages based on the
type of access reveals that, of the 2.6 million user data misses, only

about 109t0 are to read-mostly pages that could benefit from

replication, The remaining 90V0 of the misses are concentrated in

about 5~o of the pages that have more writes than reads. These
pages are apparently used for synchronization purposes, with fine

Splash 6,328 36 22 18 24

DB 2,003 13 2 85 0

TABLE 4: Breakdown of actions taken on hot pagee. For
each workload the hot pages are broken down into the percentage
of migrations, replications, instances no action was taken, and
failures because no physical page was available on the local node,

FT Mig/Rep FT MiglRep
CC-NUMA CC-NOW

FIGURE 5: Performance comparison of the CC-NUMA and
CC-NOW configurations for the engineering workload. For
each of the two configurations, the non-idle execution time is
shown for the first touch (FT) and base (Mi@Rep) policies.

grain sharing by all the processors. This sharing pattern was

outlined in Section 3, and cannot benefit from replication or

migration, Our policy is robust and correctly identifies this type of

sharing; no action is taken on 85% of the pages, as shown in
Table 4.

7.1.2 System-wide Benefit

In addition to reducing stall time for individual applications, the

improvement of data locality has an additional system-wide

benefit. A remote miss consumes resources on multiple nodes, and

an excess of these remote misses can cause congestion in the

interconnection network, increase occupancy in the directory

processors, and increase queuing delays.

For example in the engineering workload, the base policy, by
improving data locality, reduced the invocations of the remote

memory request handler by 40~0, the average network queue
length for remote requests by 38%, and the maximum directory
processor occupancy by 32%. Consequently, the average latency
of a local read miss was reduced by 34Y0. To reduce hotspots in the

NUMA memory system, we are considering modifying our policy

to migrate even write-shared pages.

Contention for resources can contribute significantly to the latency

of cache misses, both local and remote. Therefore with high

contention, the actual latency of cache misses is much higher than

the expected minimum. To demonstrate how improving data
locality can reduce contention and improve performance, we ran

the engineering workload on a setup with zero interconnection
network delay. For this configuration, the base policy reduced

memory-stall time by 3870, and improved overall execution time
by 21%. This result also shows that improving data locality is
important for CC-NUMA systems, even when the ratio of remote
to local latency is smaller than the 4:1 assumed in this study.

7.1.3 Effect of Longer Network Latency

To study the effect of longer network latency on workload

performance, we increased the network delay such that the
minimum remote cache-miss latency was 3000~s. This represents

a CC-NOW-like system. The engineering workload was run in this
configuration, with and without migration and replication as in the
CC-NUMA case. Figure 5 compares the performance of the CC-
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Workload
Intr. Policy Page Links & TLB Page Policy Total

Proc Decision Allot Mapping Flush Copying End Latency

Repl. 28.6 80.5 441.9
Engineering 13.0 12.6 184.3 35.9 87.0

Migr. 75.8 63.4 472.0

Repl. 34.3 77.4 394.7
Raytrace 24.4 16.0 74.4 61.5 106.7

Migr. 100,5 64.9 448.4

Repl, 40,2 91.9 486.1
Splash 22.2 12.8 170.6

Migr.
51.3 97.1

99.7 62.4 516.1

TABLE 5: Latency of various functions in the policy implementation. The columns correspond to the implementation steps in section 4
Figure 2. The numbers are shown separately for Replication and Migration, where applicable, The latencies are in ws and are averaged
across the entire run.

Kernel
Percentage of Kernel Overhead

Workload Ovhd TLB Page Page Page Links & Policy Policy Intr.
(sees)

Flush Allot copy Fault Mapping End Decision Proco

Engineering 4.54 34.5 25.5 11.1 8.9 8.3 8.8 2.1 1.7

Raytrace 1.80 54.4 7.6 10.8 5.4 7.4 7.4 2.6 2.6

Splash 4.00 44.1 20.7 8.1 7.3 6.5 6.3 2.0 1.9

TABLE 6: Breakdown of total kernel overhead by function. We show the percentage of the kernel overhead for migration and
replication that can be attributed to the various functions. In addition to the steps from Figure 2, we added a category for additional page
faults, due to changes in mappings. TLB flushing and page allocation comprise a large part of the overhead.

NUMA and CC-NOW configurations. In the CC-NOW case,

migration and replication reduces user memory-stall time by 53910,

and improves overall performance for the workload by 30V0.

Though the absolute reduction in stall time and improvement in

performance is good, intuitively we expected larger gains based on
the increase in remote latency. This did not happen for two

reasons. First, the observed increase in remote cache-miss latency

is only 60% (2279ws for CC-NUMA and 3680Ls for CC-NOW),
instead of the expected 150% ( 1200ps for CC-NUMA and 3000ps
for CC-NOW). This difference is due to controller occupancy that
adds significantly to the minimum remote latency. Second, the cost
of a migrate or replicate increases to about 600ps, and the total

kernel overhead to achieve the same data locality almost doubles.
This reduces the overall performance improvement.

7.2 Overhead Analysis

As discussed in Section 3.1, it is important to reduce the overheads

involved with migration and replication. These include the cost of

gathering cache-miss information, the kernel overheads, the cost

of data movement, and the indirect cost of increased memory use
resulting from page replication. This section includes results for
the engineering, raytrace, and splash workloads (the database
workload moves relatively few pages).

7.2.1 Information Gathering Overhead

Cache miss collection involves both a time and a space overhead.

The directory controller in MAGIC is a dedicated processor that

runs software handlers to service cache misses. We added code to

the relevant handlers to count the misses from each processor to
each page of memory. The counting code is added to the end of the
handler, and is only run after all necessary processing is done. The
latency of the handler is unchanged, and only the run-time of the

handler is increased. Further we use sampling, and count only one

in ten invocations of the handler. In Section 8.3 we show that using

sampled cache-misses is as effective as full cache-miss
information. Our measurements show that the inserted cache-miss

counting code has no measurable impact on the latency of cache

misses or the application execution time.

Counting cache misses also incurs a space overhead because the

policy requires one counter for each processor for each page. On
the eight node system we evaluate, with 1 byte counters and 4K

pages, this is a 0.2% overhead. On larger systems, for example
with 128 nodes, this would be a 3.1% overhead. Sampling can also
reduce this space overhead to 1.6% {of memory by using half size
counters. The overhead can be fiurther reduced by logically

grouping processors, and keeping a shared counter for the group.

This overhead is to be contrasted with a 7% memory overhead for

the per cache-line directory information that the controller already

keeps to maintain cache-coherence in FLASH.

7.2.2 Kernel and Data Movement Overhead

We analyze the kernel overhead in two ways. First, we look at the
latency of a page migration or replication operation (Table 5). The
latency is the end-to-end time as seen by the interrupt handler
when performing the operation. Second, we look at a more global
view of the costs - the increase in system activity (kernel time)

because of migration and replication (Table 6).

The total latency per operation ranges between 400-500 p.s. The

interrupt processing and TLB flushing costs are amortized across

multiple pages. Effective values for a single page are shown. The
engineering workload had on average more pages per interrupt, so

its effective latency in these categories is lower. During migration,
memlock is acquired to remove the old page from the physical
page hash table, and to insert the new page. In contrast, for
replication only a page-level lock is acquired because the replicas
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FIGURE 6: Breakdown of user execution time for various policies. There are six runs for each workload, Roundrobin (RR), First
touch (lT), and Post-facto (PF), Migration-only (Migr), Replication-only (Repl), and the combined migrationheplication policy
(Mig/Rep). Each bar represents the execution time for a policy normalized w.r.t. the RR policy. Each bar shows cache-miss stall to local
memory, cache-miss stall to remote memory, the overhead to migrate and replicate pages, and all other time. The percentage of misses to
local memory is shown at the bottom of each bar.

are queued only on the master page. Consequently, the latency for

step 5 (Links & Mapping) is larger for migration. In step 8 (Policy
End), replication takes longer than migration because all current

mappings to the page have to be set to point to the closest replica.
Engineering and splash allocate more pages than raytrace, and the

greater resulting contention for memlock leads to larger Iatencies.

We reduced the latency for the TLB flush by streamlining the

communication between the requesting CPU and the others, and

by collecting multiple pages before flushing the TLBs.

Surprisingly however, Table 6 shows that TLB flushing is still the

leading kernel overhead. This is because all processors on the
system must flush their TLBs, as there is no information in the

kernel about which processors currently hold mappings for the

pages in question. The time spent flushing TLBs can be reduced by

tracking the processors that have mappings for a page, and flushing

only those TLBs. We simulated this capability, and found that the
total kernel overhead decreased by approximately 25%; on
average, each TLB flush only required two TLBs to be flushed
instead of the current eight. However, this functionality is not

supported by the current OS, and would require significant

changes to the VM system.

Page allocation is the second leading cause of kernel overhead,

primarily because of the time spent in contention for memlock. We

reduced the contention for memlock in our implementation

through page-level locks. Redesigning the VM system to remove

the memlock bottleneck entirely should reduce the time spent in

page allocation and some of the other routines, leading to
significantly lower latency and overhead.

We had expected the actual copying of bytes to be the leading
cause of overhead, but we find that it represents only about 10’% of
the observed kernel overhead. An unoptimized bcopy done by the
processor takes approximately 100ps. A pipelined memory to

memory copy done by the directory controller in FLASH takes

about 35ps, and using this feature could reduce the copying
overhead further.

7.2.3 Replication Space Overhead

There is a memory space overhead associated with page
replication because of the additionrd copies. Our

migrationh-eplication policy attempts to keep this space overhead
down by selecting only hot pages for replication. Another possible
policy is to replicate code pages on first-touch. In the engineering
workload, replication on first-touch could potentially result in a
500% increase in memory usage for code pages because there are
six instances of each application. By selecting only hot pages, the

base policy increased memory usage by only 32%. Similarly in

raytrace, for code and data, the increase in memory usage was only

20%. Additionally, the kernel implementation was designed to

respond to memory pressure by stopping replication and
preferentially reclaiming replicated pages.

Summarizing this section, we have shown that page migration and

replication can reduce the overall execution time of a workload.
We achieve large reductions in memory stall time by increasing the

percentage of total cache misses serviced from local memory.

However the kernel overheads, such as TLB flushing and lock

contention, can be rather large. A more efficient implementation

would allow for a more aggressive policy, and increase the benefits

seen,

8. Exploration of Policies and Parameters

Section 7 analyzed the costs and benefits of page replication and
migration on a set of workloads. In this section we will explore a
few interesting issues related to alternative policies and
parameters: effectiveness of alternative policies; migration and
replication for the kernel; effectiveness of alternative metrics;

sensitivity of the base policy to changes in the trigger and sharing

thresholds.

We non-intrusively generated a detailed trace for each workload

using SimOS. The trace contains information about all secondary

cache misses, both user and kernel, and TLB misses, including the

processor taking the miss, and a timestamp. The trace was then
used as input to a policy simulator with a simple contentiouless

memory model. The memory model has a 300ns local-miss latency
and a 1200ns remote-miss latency. The cost of a migrate, replicate,
or collapse is 350ws. We use the traces for this part of the study
because we are only comparing performance, and are not

interested in absolute values. Using traces allows us to explore a

wide range of issues in a controlled manner.

8.1 Alternative Policies

In this section we show how the combined migrationheplication

policy performs against other policies. We consider six strategies,
three static and three dynamic. The static allocation strategies are:
roundrobin (RR) that is equivalent to random relocation; first
touch (FT), where the page is allocated to the processor that first
touches it; and post-facto (PF) that is the best possible static
allocation case and assumes future knowledge. The dynamic
strategies are: migration only (Migr), replication only (Repl), and
the combined replication/migration policy (Mig/Rep). The
parameters for the dynamic policies are similar to the base policy

in Section 7; trigger threshold 128, reset interval 100ms, write

threshold 1, migrate threshold 1, and sharing threshold 32.
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FIGURE 7: Execution time breakdown for the pmake
workload. Only Kernel misses are considered for the different
policies,

Figure 6 shows the result of these simulations for the four

workloads. Overall, for three of the four workloads shown,

policies doing migration or replication or both outperform the
static policies, even the post-facto (PF) policy that assumes perfect

future knowledge. The reduction in execution time is significant
for the Mig/Rep policy even after modelling the costs of page

movement.

8.2 Migration and Replication in the Kernel

The operating system can be considered as a large parallel program
with shared code and data, and for some workloads, like pmake, a

significant fraction of CPU and memory stall time is spent in the
kernel. IRIX, like most UNIX kernels today, is loaded in memory

at boot time, and its code and data are not mapped through the

TLB. Therefore, we cannot actually migrate and replicate kernel
pages, but we use the traces for the pmake workload to study if the
kernel can benefit from migration and replication.

Figure 7 shows the effect of applying the various policies, using

our policy simulation, on the traces of kernel activity. There is
almost no benefit beyond first touch, and the little that is observed

with the Repl and base policies is from the replication of kernel

code that accounts for only about 1270 of the misses. Kernel data
shows no real benefit beyond that of the static FT policy. We

analyzed the kernel miss trace at the granularity of cache lines and

words, to see if restructuring the data layout might produce more
read-mostly pages. We found very little potential for replication.

The IT policy gives some benefit over RR because there are some
kernel structures that are per-processor or have a natural affinity to

a particular processor, e.g. the Private Data Area (PDA), the kernel

stacks, and the Page Frame Descriptors (PFD) for memory local to

a processor. Page migration could produce a small improvement

for structures that are per process, e.g. user page tables. The

migration benefit for these structures is similar to that for unshared

user data, and is dependent on the scheduling of the associated user

process.

8.3 Effectiveness of Alternative Metrics

In the experimental runs in section 7, the policies were based on

full cache-miss information from the directory controller. Full

cache-miss information is difficult to obtain on many machines.
We consider two alternatives to full cache-miss information,

sampling and TLB misses. Cache-miss sampling is becoming

available on next-generation machines, and is a realistic alternative

to full cache-miss information. Also, on systems with software

reloaded TLBs, TLB misses can be collected directly by the OS.

The miss behavior of the TLB can be modelled as a cache with the

line size being a page. Therefore the validity of this approximation

would depend on the access patterns of the application and the size
and architecture of both the cache and the TLB. To evahrate the
effect of approximate information we studied four metrics: full
cache (FC), sampled cache (SC), full TLB (IT), and sampled TLB
(ST). For the sampled metrics, we use a 1 in 10 sampling rate.

Figure 8 shows the results for the policies with approximate

information. The important question when using partial or

approximate information is how faithful is the heuristic to the

original for the purpose at hand. The performance of the policy

when using sampled cache-miss information is identical to that

using full cache-miss information for all the workloads. Clearly

sampled cache-miss information is an effective approximation for
full cache-miss information. Using the sampling of cache-misses
in our instrumentation of the software handlers in MAGIC, we are

able to rdmost completely eliminate any information gathering
overhead. Using TLB misses is effective in some workloads, but

clearly not so in the engineering workload. The use of TLB misses

to drive migration and replication policy needs to be studied

further.

8.4 Variation in Policy Parameters

‘Ikigger threshold: The trigger threshold controls the

aggressiveness of the policy, and introduces a trade-off between
increased memory locality resulting in reduced stall time and the
kernel overhead to migrate and replicate pages. Figure 9 illustrates

this trade-off clearly for the different workloads. The best
“operating point” would depend on the actual values of the local
and remote miss latencies, the overhead to migrate or replicate a
page, and the percentage of execution time spent in memory stall

RIGURE 8: Performance impact of approximate information. There are 4 bars for each workload, Full cache (FC), Sampled cache
(SC), Full TLB (lW), and Sampled TLB (ST). All sampled cases are sampled with ratio 1:10. Each bar shows the run time normalized to
the run time for the Round robin case. The run time is broken down as User stall (local and remote), Overhead for replication and migration
separately, and all other time. The percentage of misses made local is shown at the bottom of each bar.
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for the workload, Reducing the kernel overhead, would enable
larger improvements in performance through the use of a smaller

trigger threshold. The trigger threshold is a critical parameter and

selecting the correct trigger value, statically or adaptively, is a

topic for further study.

Sharing threshold: The sharing threshold is used to differentiate

between shared and unshared pages, and so decides whether a hot
page is potentirdly migrated or replicated. A higher sharing
threshold favors migration over replication. Our tests show that the

performance is quite insensitive to the value of the sharing
threshold within a reasonable range. This fact indicates that most

pages are clearly differentiated, being either shared (code and
shared data of parallel applications) or unshared (data of sequential

applications), and very few pages in the workloads have an

ambiguous sharing behavior.

9. Conclusions

Cache coherent distributed shared memory multiprocessors are
becoming increasingly popular as compute servers. The CC-
NUMA architecture will be used for even moderate-sized
machines because of the increasing speed of next generation
processors and the scalability of this architecture. The key factor

that affects the performance of applications on these systems is
memory locality that is the focus of this paper. We assembled a
realistic set of workloads that included single and

multiprogrammed parallel applications, engineering simulators,

software development tools, and a database server. The results
from running the workloads on a kernel implementation of our

policy showed that migration and replication of pages improved
memory locality and reduced the overall stall time by as much as
52%. Additionally, this significantly reduced the contention for

resources in the NUMA memory system.

A detailed analysis of our kernel-based implementation of the

policy showed that the primary sources of overhead were
processor synchronization and TLB flushing. We investigated the
use of other forms of information to drive the policy and found that
TLB misses were an inconsistent approximation for cache misses.

Our studies also showed that using cache-miss information
sampled at a rate of 1 in 10 can give results matching those of full
cache information without causing any appreciable overhead due
to information collection, To support page migration and
replication, future machines should include the ability to collect
sampled cache-miss information.

Considering both the benefits and the costs involved, page
migration and replication reduced workload execution time as

much as 29% on CC-NUMA, and could potentially do better on

CC-NOW. For applications with access patterns that cannot benefit

from replication or migration of pages, our algorithm is robust and

does not degrade performance. We believe that a fully optimized

migrationkeplication implementation will allow for a more

aggressive policy leading to even larger gains. In workloads where
memory stall time is a problem, page migration and replication is

an effective solution, and is therefore necessary on CC-NUMA
machines to maximize individual application and overall system
performance.
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