
Memory

Main issues:
1) Virtual Memory (Multics)

- description
- what does it provide?

2) VA to PA (64-bit PT, Mach, VMS)
3) Abstraction of data (Mach, Multics)

- memory objects
- segments

4) I/O buffering (VMS, Mach, Working Set)
5) Locality improvement (CCNUMA, NUMA, Appl. Driven, Working Set)

Provided by virtual memory:
1) Automatic storage allocation

- everything doesn’t have to be in main memory
- this is what everyone thinks about
- programmer doesn’t have to worry about data placement and overlays
- programmer doesn’t need to know demands or specific details of other

segments it uses
2) Modular organization

- everything is organized in terms of segments
- allows combination of separately compiled, reusable, and sharable

components without prior arrangement and without manual linking into
address space (“making a segment known”)

3) Protection
- each segment has its own protection status

4) Object orient programming
- allows only managers of objects to access and modify them (private data)
- falls out of 2 & 3

5) Parallel computations on multicomputers
- all memories joined into single address space, reducing communication

due to messages

Virtual to Physical Address Mapping

Address space – set of addresses available for processes use
Ex.) VMS divides address space into 3 components (code, control, system) each
having its own page table.
Ex.) Many systems divide address space into user space and system space

Two techniques for mapping:
1) Page table
2) Address Map

Page Tables:
- large, sparse address spaces will get you giant page tables with little

locality
- linear bad because gigantic.
- multilevel and forward-mapping bad because they require multiple

memory accesses on a page fault to go through levels of page table.
- Hashed bad for dense address spaces because each entry has a fixed

(large) overhead.
- Suggested solutions were use of superpages (to reduce overhead) and

clustered page tables.
- Clustered page tables good because they amortize the overhead of

hashing over a number of pages. Thus, for dense address spaces less
room is taken up.

Address Map:

- contiguous portions of memory objects mapped into logical address space
- given VA, memory manager must determine (memory object, offset). This

gets sent to the memory object who then handles reading in of the data.
- can have shadow objects (for copies between different address maps) and

share maps (one for each shared memory object)
- compact representation of data
- typically small
- make overhead of large sparse address spaces manageable

Abstract Concept of Data
Types:
1) Memory objects (Mach)
2) Segments (Multics)
3) Vs. Memory mapped files
Comments:

- representation of data in secondary storage
- reduces overhead of copying of data
- retains characteristics of data (length, access rights, etc)

Buffering of I/O
1) VMS

- swapper – swaps out entire resident set of process being swapped out
- pager – buffers evicted pages, amortizes I/O costs over several pages

2) Mach
- object cache buffers non currently referenced pages in memory because

likely to be used by another process soon.

Importance of Locality
1) Working Set

- program (over time) consists of phases of locality separated by transition
periods lacking locality

- window over time will give us a working set
- requires counter for feedback
- only allow process to run if there is room for its working set. This strategy

eliminates thrashing.
2) Application Driven

- application knows better how to allocate its memory given resource
restrictions. Cost model which allows you to appropriately combine
processor and memory usage (over time).

3) NUMA, CCNUMA
- automate paging
- use migration and replication
- statistics collection required
- false sharing is bad

