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Abstract 
The Synthesis operating system kernel combines sev- 

eral techniques to provide high performa.nce, incl1id- 
ing kernel code synthesis, fine-gra.in scheduling. and 
optimistic sylicllroliiza,tioii. Kernel code synthesis re- 
duces the execution path for frequently used kernel 
calls. Optimistic synchronization increases concurrency 
within the kernel. Their combination results in signifi- 
cant performance improvement over tra.dit,ional operat- 
ing system implementations. Using hardware and soft- 
ware emulating a. SUN 3/100 running SUNOS, Synt,he- 
sis achieves several times to several dozen t.imes speedup 
for UNIX kernel calls and context switch times of 21 mi- 
croseconds or faster. 

1 Introduction 

Synthesis is an operating system kernel for a. parallel 
and distributed computational environment. \Ve have 
three ma.jor goals in the design and implement,a.t,iol~ of 
Synthesis: 

1. high performance, 

2. self-tuning capability to dynamic 1oa.d and config- 
uration chaages, 

3. a simple, uniform and intuitive model of comyut,a- 
tion with a high-level interface. 

In this paper, we focus on the aspects of the Synthe- 
sis kernel implementation that supports threa.ds and in- 
put/output. To achieve very high performa.nce, we com- 
bine kennel code synthesis [5], which decreases kernel ca.11 
overhead through specializat8ion! and reduced sy77.chrn- 

7hatao7&, which decreases kernel t,hread syllchroniza.tion 
overhead. 
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1\‘e ha.ve int,roclucecl the principles of code synthesis 
[F] 1 . .I I-1. t1 J S t1 3 1 w nc i iiia \cs ic . yn resis kernel fast for several rea- 
sons. l’irst., frequently executed Synthesis kernel calls 
are ~.conipilecI” and optimized at run-time using ideas 
siiliilar t.o currying a.nd constant folding. For exa.mple, 
\vhen we open a file for input,, a. custom-ma.de (thus 
short. and last.) rea.d routine is returned for later read 
calls. Second. frequently traversed data structures are 
sprinkled with a. few machine instructions to make them 
self-t.ra.versing. For exa.mple, the CPU dispatching, in- 
cluding context-switches, is done by the rea.dy queue 
t,his way (for deta.ils see Figure 3). In this paper, we de- 
scribe the syiiergy from combining code synthesis with 
the other kernel implementa.tion techniques. To make 
the paper self-contained, we summa.rize kernel code syn- 
tliesis and ot,lier aspects of ba~ckground informa.tion in 
Section 2. 

In t,ra.ditional OS’s, the kernel ca.11 and dispatch- 
ing/schecluling overl1ea.d overshadows the kernel syn- 
c.hroniza.tion cost. Therefore, we see traditional kernels 
using powerful mutua.1 exclusion mechanisms such as 
sema.phores. However, in Synthesis we ha.ve used kernel 
code synthesis t,o trim kernel calls and context switches. 
The next bottleneck turned out to be kernel internal 
synchronization cost, given that the Synthesis kernel is 
highly pa,ra.llel. Our answer to this problem consists of 
met,hods t(1ia.t reduce synchronization in the Synthesis 
kernel, described in Section 3. 

To illustrate the new possibilities for performance im- 
provements int,roduced by these techniques, we will de- 
scribe two kinds of object,s supported by the Synthesis 
kernel, threa.ds and I/O. Our discussions on threads in 
Section 4 and I/O in Section 5 a.re relevant to unipro- 
cessor and multiprocessor systems. The distribution as- 
pects of Synthesis are beyond the scope of this paper. 

All the performance improvement techniques follow 
from one softwa.re engineering principle, called the prin- 
ciple off~~lga.Zz’ty , which sa.ys tl1a.t we should use the least 
powerful solution to a. given problem. Since we carefully 
sepa.ra,te the kernel implementation from the interfa.ce 
specification, the principle of frugality has been applied 
t,hroughout the system. Both kernel code synthesis a.nd 
reduced synchronization a,re good examples. In Section 
6 we present measurement data to show the effectiveness 
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of these techniques. 

2 Synthesis Background 

2.1 Synthesis Model of Computatiou 

The Synthesis model of computa.tion is conce-ptually a 
von Neumaan machine with threads of execution, mem- 
ory protection boundaries, and I/O devices. To support 
parallel and distributed computing, the threads of ex- 
ecution form a directed graph, in which the nodes a.re 
threads and the abcs are data. flow channels. This graph 
model and other support for parallel and distribut.ed 
computation will be described in more detail in a.not,her 
paper [4]. 

Synthesis threads are threacls of execution, .tike IJNIS 
processes. Some threads never execute user-level code, 
but run entirely within the kernel to provide addit.ioua.1 
concurrency for some kernel opera.tions. Threads ex- 
ecute programs in a quaspace (plla.si address space), 
which also store data. Fina.lly, I/O devices move data. 
between threads, including files a.nd messages. 

On one physical node, all the Synthesis quaspa.ces are 
subspa.ces of one single address space, defined by the 
CPU a.rchitecture (e.g., with a 32-bit microprocessor we 
have a. 3%bit address space). The kernel blanks out. the 
part of the address spa.ce that each quaspa.ce is not. sup- 

posed to see. Since they are parts of the same address 
space, it is easy to share memory between quaspaces 1~1 
setting their a.ddress mappings. The current. implemen- 
tation of the kernel does not, support. virtua.1 memory. 

2.2 Kernel Code Synthesis 

The idea. of kernel code synthesis has been introduced 
in a previous paper [5]. In Synthesis, we have a code 
synthesizer in the kernel to generate specia.lized (thus 
short and fast) kernel routines for specific situa,tions. 

We have three methods to synthesize code. The Fac- 
toring Invaria.nts method bypasses redunda,nt coml>ut,ik.- 
tions, much like constant folding. The Colla.psing La.y- 
ers method eliminates unnecessa.ry procedure ca.lls a.r~d 

context switches, both vertically for layerecl modules 

and horizontally for pipelined threads. The Executable 
Da.ta Structures method shortens data structure tra.ver- 
sal time when the data structure is a.lwa,ys traversed t.he 
same way. 

2.3 Basic Kernel Componeuts 

To describe the Synthesis kernel implementation in con- 
crete terms, we first summarize its basic components. 
The Synthesis kernel can be divided into a number of 
collections of procedures and data. We ca.ll these collec- 
tions of procedures quajects that. encapsu1a.t.e ha.rdwa.re 
resources, like Hydra objects [7]. For this pa.per the 
most important qua.jects are threa.ds a,nd I/O device 

servers. Threads are an abstraction of the CPU. The 
device servers are abstractions of I/O devices. Except. 
for the threads, quajects consist only of procedures and 
data. Events such as interrupts sta,rt the threa.ds tha.t. 
animate the quajects and do work. The qua.ject,s do not 
support inheritance or any other language fea.tures. 

fi,Iost quajects are im~~lemented by combining a small 
number of t>uildiilg blocks. Some of the building blocks 
are well known, such as monitors, queues, and sched- 
ulers. The ot,hc~s arc simple but somewhat unusual: 
switches. pumps arid gauges. As we shall see in Sec- 
tiou 5, all of Synlhesis l/O is implemented with these 
building blocks. The quajecl inlerfa.cer (see below) uses 
ol~tiinizat~ion techniques such as Collapsing Iayers to 
combine these building blocks into kernel quajects. 

The unusual building blocks require some explana- 
tion. A switch is equivalent. to the C switch state- 
mcnt . For example, switches direct interrupts to the 
appr0pria.t.e service routines. A pump contains a thread 
tl1a.t actively copies its input into its output. Pumps 
connect- passive producers with passive consumers. A 
ga.uge couut,s events (e.g.> procedure calls, da.ta arrival, 
ir1t.errupt.s). Schedulers use gauges t,o collect clata for 
scheduling clecisioljs. 

Ea.& building block n1a.y ha.ve several implementa- 
tions. Applying the principle of frugality, we use the 
most economical implelnent,a.t.ioll depending on the us- 
age. For example. there a.re severa. kinds of queues 
ill the Synthesis keruel. Semantica.lly, we have the 
usual two kinds of queues, the syncl~ronous queue which 
blocks at queue full or queue empty, and the asyn- 
cl) rouous queue \vhicll signals a.t those conditions. For 
each kind, we ha.ve two implementations: dedicated 
queues a.ncl optimistic queues. Dedicated queues use 
t.lle I~~~owlcdge that only one producer (or consumer) 
is using t.he queue a11tl omit the synchronization code. 
Opt.imist.ic queues a.ccept. queue insert and queue delete 
operal.ious from multiple producers and multiple con- 
sunwrs. The optimistic queue is described in detail in 
Sect.ion 3.2. 

Quajccts such as threa.ds are created by the quaject 
creat,or, which conta.ins three stages: allocation, factor- 
izat,ion, a.nd opt,imiza.tion. The alloca.tion sta.ge allo- 
c.a.t,es memory for the qua.ject and all associated synthe- 
sized procedures. The factoriza.tion stage uses Factor- 
ing hivariants t,o substitute constants into the quaject’s 
code t.emplat.es. The optimiza.tion sta.ge then improves 
the final code with specialized peephole optimizations. 

The quajcct. interfa.cer sta.rts the execution of existing 
qua..jects by installing them in the invoking threa,d. The 
qua..!ect, interfacer has four sta.ges: combination, fa.ctor- 
iza.tlont optimiza.tion, and dynamic link. The combina- 
tion stage finds the a.ppropria.te connecting mechanism 
(queue, monitor, pump, or a simple procedure call). 
Fa.ctoriza.tion a.nd optimization (the same as quaject cre- 
a.tor) c1ea.n up the connecting code. Then the dynamic 
link sta,ge stores the synthesized code’s entry points into 
the qua.jects. 

3 Reduced Synchronization 

3.1 Overview 

We have three methods to reduce synchronization cost: 
Code lsola.tion, Procedure Chaining, and Optimistic 
Synchroniza.tion. Ea.& method shortens the execut,ion 
pa.th in a somewhat different way. Informa.lly speaking, 
Code Isola.tion and Procedure Chaining can be thought 
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of as synchronizat~ion avoidance techniques. 1 f abso- 
lutely unavoidable we use Optimistic Sylic11rol7iz;I(.ic)I1. 

Code Isolation uses kernel code synthesis to sepatat e 
and isolate fragments of data struct,ure ma.nil)rlla.l.ioll 
programs. The separation eliminates unnecexsary syn- 
chronization if ea,ch fragment operates on its owu piece 
of data. For example, each threacl has a. Tl~read Ta- 
ble Entry (TTE, equivalent to the proctable it1 UNIX). 
Naive procedures that traverse the T1~rea.d Table to 
modify a TTE would have to lock the table. However, in 
Synthesis each thread updates its own TTE exclusively. 
Therefore, we can synthesize short code to manipulate 
the TTE without synchronization. 

Procedure Chaining avoids synchroniza.tion by seri- 
alizing the execution of conflicting t.lirea.cls. 1nst.ea.d of 
allowing concurrent esecutiou that would ha.ve compli- 
ca.ted synchronization problems, we chain the new pro- 

cedure to be executed to the end of t,he current.ly I’LIII- 
ning procedure. For esa.mple, the currently esccut.ing 
thread handles interrupts in Synt,hesis. A signal arriv- 
ing in the middle of interrupt handling is potentially 
dangerous: the kill signal may termina.te the iirt,errupt, 
handling prematurely. Therefore, we cha.iu the proce- 
dure invoked by the signal to the end of the interrupt, 
handler. Procedure Chaining is implement,ed efllciently 
by simply changing the return addresses on the stxk. 

Optimistic Synchroniza.tion a.ssumes t,ha.t iiit.erfc!rence 

between threads is ra.re, so we should shorten the norlnal 
non-interfering case. The idea. of optimistic valid;\.t,ion is 

to go ahead and ma.ke t,he cha.nges, without locking at~y- 
thing. A check at the end of t.he upda.t,e t.est.s wllet.l~~~~ 

the assumption of non-int,erftrence remains t,ruc. If the 
test fa.ils, we rollback the cha.nges a.nd retry. Using Op- 
timistic Synchronization we ha.ve implemented an opti- 
mistic queue, which we describe now. 

3.2 Optimistic Queues 

The queue manipula.tion esa,mple for optimist.ic syn- 
chronization is important because most of the Synt,he- 
sis kernel data structures are queues. Also, some of the 
control structures, such as chained interrupt, and signal 
handlers, are implemented a.s queues of pointers to t,he 
routines. In other words, once we can synchronize queue 
operations without locking, most of t#lie Syiit8hesis kernel 
will run without locking. 

Although all the queues have t.lle usual put,-it,em 
(Q-put) and get-item (Q-get) operations, we clas- 
sify them according to their opera.tions enviromnent.. 
We have four kinds of queues: single-producer a,ncl 
single-consumer (SP-SC), multiple-producer a.iid single- 

consumer (Ml’-SC), single-producer and mult~iple- 
consumer (SP-MC), multiple-producer and multiple- 
consumer (MP-MC). 

The simplest case, SP-SC (figure l), gives the basic 
idea. of all four queues: when the queue buffer is neither 
full nor empty, the consumer and the producer operat,e 

on different parts of the buffer. Therefore, synchroniza.- 
tion is necessary only when the buffer becomes empt,y 
or full. The synchronization primitives are the usual 
primitives, say busy wait or blocking wait. 

next(x) : 
if(x == Q- size-l) return 0; 
else return x+1; 

Q-get (data) : Q-put (data) : 
t = Q-tail; h = Q-head; 
if (t == Q-head) if (next(h) == Q-tail) 

wait; wait; 
data = Q-buf Ctl ; Q-buf Ch] = data; 
Q-tail = next Ct.1 ; Q-head = next(h) ; 

Figure 1: SP-SC Queue 

AddWrap(x,n): 
x += n; 
if(x >= Qsize) x -= Qsize 
return x; 

SpaceLeft( 
t = Q-tail; 
if(h >= t) return t-h-l+Q-size; 
else return t-h-l; 

Q-put (data,N) : 
do { 

h = Q-head; 
hl = AddWrap(h,N); 

1 ahile(Spaceleft(h) >= N 
&& cas(Q-head,h,hl) == FAIL); 

for(i=O; i<N: i++) { 
Q-buf C AddWrap(h,i) 1 = data[il; 
Q-flagC AddWrap(h,i) 1 = 1; 

) 

NO’TE: ciLs( v,olcl,new) [compare-and-swap] perforrns the fol- 
lowing operation atomically: 
If( v == old) v = new; return OK; else return FAIL; 

Figure 2: MP-SC Queue [Multiple Insert] 

To a.rgue the corretness of these queues, we need to 
show tha.t these queues do not lose any items being put 
in or generate a.ny items that has already been taken 
out.. To a.voicl lost upda.tes iu the SP-SC queue, we use 
a. va.ria.nt. of Code lsola.tion. Of the two variables being 
writt.en, QJ1ea.d is upda.ted only by the producer and 
Q-tail only by the consumer. To avoid taking out an 
item repeatedly, we upda.te Q-head at the last instruc- 
tion during Q-put. Therefore, the consumer will not 
detect aal item until the producer has finished. 

The difference between the SP-SC queue and the MP- 
SC queue reduces to a single compare-and-swap instruc- 
tion at the end plus the retry loop, to ensure the syn- 
chronization of multiple producers. (Larger critica. sec- 
tions ma.y require more sophisticated synchronization.) 
A more interesting queue (shown in Figure 2) imple- 
meuts a.tomic inserts of mauy items (up to the size of 
the queue). Now we have two problems to consider: 
the multiple producer synchronization, solved by the 
coml>a.re-and-swa.I,, a.nd the a.tomic insert of multiple 
items, which we explain now. 

To minimize the synchroniza.tion among the produc- 
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ers, ea.ch of them increments at,omically t.hc q-head 
pointer by the number of items to be iltserlecl, “slaking 
a claim” to its space in the queue. The producer t,lic:tl 
proceeds to fill the space, at the s a.me time as other pro- 

ducers are filling theirs. But. now the c01~s11mer ~nay 1101, 
trust q-head as a reliable indication t.1la.t. thcrc is dat.a 
in the queue. We fix this with a separate arra.y ol‘ flag 
bits, one for each queue element,. As the producers fill 
each queue element, they also set a flag in tile associated 
array indica.ting to the consumer that. the da.ta item is 
valid. The consumer clea.rs an it,em’s Bag as it, is taken 
out of the queue. 

To give an idea, of relative costs, t,he current imple- 
mentationof RIP-SC ha.s a. normal esecution pal11 Icngtzh 
of 11 instructions (on the MCXSO2O processor) tl~rougll 
Q-put. In the case where two threa.ds are t,rying LO 1vrit.e 
an item to a sufficiently empty queue. t.hey will eit.licl 
both succeed (if they a.ttempt, t,o increment, C)-head a~, 
different times), or one of them will succeed as I ho ot.her 
fails. The thread that succeeds consumes 11 instruc- 
tions. The failing threa.d goes once arorrntl I Itc ret.r> 
loop for a. total of 20 instruct,ions. 

4 Threads 

4.1 Synthesis Threads 

Synthesis threa.ds a.re light-weight, processes, Eaclr SFn- 
thesis thread (called simply “tl1rea.d” fro~l-I IIO\\’ on) (:\x+ 
cutes in a. context, defined by the TTE. The l.lirc?atl st.at.c 
is completely described by its: TTE (see figure 3) con- 
taining: the register save area.; t.he vect.or t.ahle. \vliicll 
points to four kinds of procedures (thread-specific sys- 
tem calls, interrupt handlers, error t,ra.ps and signal vec- 
tors); the address ma.p tables; and the c.ont,est.--s\vit,ch-in 
and context-switch-out procedures. 

Kernel code generated for a. tl1rea.d goes into a. pro- 
tected a.rea. to a.void user tampering. The kernel proce- 
dure bodies that ma,ke up part of the t~hreaci ilrfz: 

the signal, start, stop, step and destroy 
threa.d calls; 

the customized I/O syst.em ca.lls, synthesized by 
open (see Section 5); 

the synthesized int.errupl handlers. such as fool 
queue buffering (see Section 5.4); 

the specialized error trap handlers a.ncl the signa.l- 
me procedures (see Section 4.3). 

When a Synthesis threa.d makes a. kernel call, we sa.y 
that the thread is executing in the kernel mode; t,his 
is in contrast to having a kernel server process run the 
kernel call on the behalf of the client thread. The trap 
instruction swit,ches t,he t1~rea.d jnt,o t.he supervisor state 
and makes the kernel quaspa.ce a.ccessible in a.tldit.ioll to 
the user qnaspa.ce. Consequent,ly, die lmxel cdl me.) 
move data. between the user qua.space and the kernel 

quaspace. Since the other quaspaces a.re outside the 
kernel quaspa.ce, were the thread to a.tttempL access to 
an illegal address, the thread will t,a.ke a. bus-fa.ult es- 
ception, even in the kernel mode. 

If a. tl1rea.d is not. running, it is ~uailiny. A wa.iting 
thread is I~locked for some event or resource. Each re- 
source has it,s own waiting queue. For example, a. thread 
wa,it,ing for CPU is sitting in the ready queue; when 
the t1lrea.d blocks for characters from a. tty driver, it is 
cha.ined to t,he tty driver queue. Spreading the waiting 
t,hrea.cls makes blocking a.nd unblocking fa.ster. Since 
we have elimina.ted the general blocked queue, we do 
not have to traverse it for insertion at blocking or to 
sea.rch it for deletion at unblocking. A waiting thread’s 
unblocking procedure is chained to the end of the inter- 
rupt handling, so each waiting queue has reduced syn- 
chroniza.tion due to Code Isola.tion. 

4.2 Context Switches 

Contest. switches a.re expensive in traditional systems 
like-: IJNIS beca.use they always do the work of a complete 
swit,ch: sa.ve t(he regist(ers in a system area., setup the C 
run-time sta.ck, find the current proc-table arid copy the 
regist,ers into proc-t,able! start the next process, among 
other complica.tions (summa.rized from source code [l]). 
A Synthesis context-switch is shorter for two reasons. 
First, we switch only the part of the context being used, 
not. a.ll of it.. Second, we use executable data structures 
to minimize the critical path. 

In t,wo instances we can optimize context switch by 
moving da.ta only when they are used. The first is the 
handling of floating point registers and the second is the 
Mhl 11 address spa.ce switch. Most of Synthesis threads 
do not use t.he floating point co-processor. If we were 
to save all the floating point co-processor information 
at each context switch, the hundred-plus bytes of infor- 
mat,ion ta.kes a.bout( 10 microseconds to sa.ve to memory, 
which is comparable to the 11 microseconds needed to 
do an entire context switch without the floating point 
(see Section 6.3 for more data). Since most threads 
will not use the floating point co-processor, we gener- 
at,e t,he default. contest switch code without it. When 
t,he t,hrea.d executes its first floating point instruction, 
a.11 illegal instruction tra.p ha.ppens. Then the Synthe- 
sis kernel resynthesizes the context switch procedures to 
include t,he floating point co-processor. This way, only 
users of the floa.ting point. co-processor will pa,y for the 
added overhead. 

There is no 6’dispa.tcller” procedure in Synthesis. Fig- 
ure 3 shows that the ready-to-run threads (waiting for 
CPU) ase cha.ined in a.11 executable circular queue. A 
jmp instruction in ea.& context-switch-out procedure 
of the preceding thread points to the context-switch- 
in procedure of the following thread. Assume thread-0 
is currently running. When its time qua.ntum expires, 
the interrupt is vectored to thread-O’s context-switch- 
out. procedure (SW-out). This procedure saves the CPU 
registers into t,hrea.d-O’s register save area (TTO .reg). 
The jmp instruclion t.hen directs control flow to one of 
t,wo ent,ry point,s of the next thread’s (thread-l) context- 
switch-in procedure, sw-in or swinmmu. Control flows 
to swinmmu when a. change of a.ddress space is required, 
otherwise control flows to sw-in. The context-switch- 
in procedure then loads the CPU’s vector base register 
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SW-in: 
move 
move 
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lT1 .vbr, a0 
aO,vbr 
TlIrcg, <dO-d7,aO-a7> 

ltc 

Figure 3: Thread Contest 

with the a.ddress of t,hrea.d- l’s vector ta,ble, rest,ores t,he 
CPU genera.1 registers, and resumes execution of thread- 
1. The contest switch takes about 11 microseconds (see 
Table 4). This is a. striking esa.mple of wl1a.t ca.n be 
achieved with optimization through synt,hesized code. 

4.3 Thread Operatiom 

As a quaject, the thread supports severa. operations. 
Some of these opera.tions are invoked by the hasdwa,re; 
the error trap handlers and the interrupt handlers fa.lt 
into this category. Some of the opera.tions a.re invoked 
by other threads; these are signal, start, stop, and 
step. We will introduce briefly t,hese opera.tions here 
and describe interrupt handling in Sect,ion 5.3. 

In Synthesis (as in many other systems). a. signa.1 is 
an asynchronous software interrupt sent by a. thread (or 
interrupt handler) to another thread. A synthesized 
signal system call (the signal-me procedure) in the re- 
ceiving thread ca.lls the signal handler procedure. To 
run the signa,l handler in user mode and user qua.spa.ce, 
the signal system call alters the general registers area 
of the receiving threa.d’s TTE t,o rna.ke the receiving 
thread call the signal handler when a.ctiva.ted. 

Thread control and debugger support, is implemented 

Ttv 
Y 

disk 

with three synthesized system calls: stop, start, and 
step. The stop system call suspends execution of a 
tl1rea.d by removing the thread’s TTE from the ready 
queue. The start system call puts the TTE back when 
invoked. The step system ca.11 causes a stopped thread 
to execute a single machine instruction and then stop 
a.ga.in. The debugger runs a.s an asynchronous thread 
that shares the qua.space being debugged. 

An error trap is a. syncl~ronous hardware interrupt 
generated by illegal opera.tions such as referencing non- 
existent memory or dividing by zero. Like other 
harclwa.re interrupts, error trap handlers run in kernel 
mode. Unlike other ha.rdwa,re interrupts, error traps are 
synchronous since they occur immedia.tely a.fter each il- 
legal opera.tiou. Ea.ch thread may ha.ve its own error 
tra.p ha,ndlers. To allow a.rbitra.rily complex error han- 
dling in user mode, we send an error signal to the inter- 
rupted thread itself. The error signal handler then runs 
in user mode (as described above). To send this error 
signal, the error trap ha.ndler copies the kernel stack 
fra.me onto the user stack, modifies the return address 
on the kernel stxk to the user error signal procedure, 
and executes a return from exception which takes the 
tl1rea.d into the user error signal procedure. Synthesized 
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for each thread at creation time, these error t,rap han- 
dlers consume about 5 machine instructions, support- 
ing efficient emulation of unimplemented kernel ca.ll.5 or 
machine instructions. The UNIX emulator used for per- 
formance measurement is implemented with traps. 

4.4 Scheduling 

Currently, the Synthesis scheduling policy is round- 
robin with an adaptively a.djusted CPU quaut,um peg 
thread. Inst,ead of priorities, Synthesis uses fi7/,e-grccilr 
scheduling, which assigns larger or sma.ller quanta to 
threads ba.sed on a “need to execute” criterion. A de- 
tailed explanation on fine-grain scheduling is beyond the 
scope of this paper; the idea aad its il~~plelllenta~tioll in 
Synthesis are described in det,ail in another pa.per [3]. 
Here, we only give a brief informa. summa.ry. 

In our directed graph model of comput,ation (Section 
2.1), a threa.d’s “need to execute” is determined by t,he 
rate at which I/O data flows into and out of it.s qua.- 
space. Since CPU time consumed by the t.hread is an 
increasing function of the data. flow, the faster the I/O 
rate the faster a thread needs to run. Therefore, om 
scheduling algorithm assigns a. larger CPU quaubunn t.o 
the thread. This kind of scheduling must ha.ve a. fine 
granularity since the CPU requirements for a, given l/O 
rate and the I/O rate itself may change quickly, requir- 
ing the scheduling policy to adapt to the changes. 

Effective CPU time received by a. thread is determined 
by the quantum assigned to that tl1rea.d divided by the 
sum of quanta assigned to a,11 threads, Priorities can 
be simulated and preferential treatment, ~a.11 be given to 
certain threads in two ways: we ma.y ra.ise a, threa.d’s 
CPU qua.ntum, and we may reorder t,he ready queue 
when threads block a,nd unblocl~. As an event unblocks 
a thread, its TTE is placed at the front of the ready 
queue, giving it immedia.te a.ccess to the CPU. This way 
we minimize response time to events. To minimize time 
spent context switching, CPU quanta a.re a.cljnsted to be 
as large as possible while maintaining the fine granula.r- 
ity. A typical quantum is on the order of a, few hundred 
microseconds. 

5 Input/Output 

In Synthesis, I/O means more than device drivers. I/O 
includes all data. flow among hardware dIevices and 
quaspaces. Data move along logical cha.nnels we call 
streams, which connect the source and the destina.tion 
of data flow. The details of the stream model of I/O will 
be described in a. separate paper [4]. Here we describe 
how the streams are implemented using the building 
blocks described in Section 2.3. 

5.1 I/O Device Servers 

Physical I/O devices are encapsulated in qusjects called 
device servers. Typically, the device server interface 
supports the usua.1 I/O operations such as read a.nd 
write. In general, write denotes data flow in the same 
direction of control flow (from caller to callee), a.nd read 
denotes data flow in the opposite direction of control 
flow (from callee back to caller). 

Ea.ch device server may ha.ve its own threads or not. 
A polling I/O server would r'un continuously on its own 
thread. An int,errupt.-driven server would block after 
its initializa.tion. The server without threads wakes up 
when its physical device generates an interrupt. 

Bigh-level servers ma.y be composed from more basic 
servers. At boot time, the kernel creates the servers for 
the raw physica. devices. A simple example pipelines 
the output of a. ra.w server into a filter. Concretely, the 
Synthesis equiva.lent of ~JNIX cooked tty driver is a filter 
that, processes the output, from the raw tty server and 
int,erprets the erase and kill control characters. This 
filter rca.ds cha.racters from the ra.w keyboard server 
through a. dedica.ted queue. To send characters to the 
screen, however, the filter writes to an optimistic queue, 
since output can come from both a user program or the 
echoing of input chara.cters. 

The defanlt file system server is composed of several 
filter stages. Connected to the disk hardware we have a 
raw disk device server. The next stage in the pipeline 
is the disk scheduler, which contains the disk request 
queue. followed by the default file system cache man- 
ager, which contains t.he queue of data. transfer buffers. 
Direct,ly connect,ed to the ca.che manager we have the 
synthesized code t*o read the currently open files. The 
other file systems tha.t share the same physical disk unit 
would connect, to t,he disk scheduler through a monitor 
a.nd switch. The disk scheduler then will redirect the 
da.ta. flow to the a.ppropria.te stream. With synthesized 
code, this pipeline 1la.s a very low overhead, shown by 
the measurements in Section G. 

5.2 P~oducer/Consuiiie~ 

The implementation of the stream model of I/O in Syn- 
thesis ca.n be summa.rizecl using the well-known pro- 
ducer/consumer para.cligm. Each stream has a control 
flow that directs its da.ta. flow. There are three cases of 
producer/consumer rela.tionships, which we shall con- 
sider in turn. 

Perhaps t,he simplest case is an active producer a.nd 
a. pa.ssive consumer (or vice-versa). This case, called 
a.ctive-passive, has simple implementations. When there 
is only one producer and one consumer (single-single), 
a. procedure ca.11 does the job. If there are multiple pro- 
ducers or consumers (multiple-single)) we a.ttach a mon- 
itor t,o the end with multiple participa.nts to serialize 
their access. 

But, the norma. producer/consumer problem ha.a both 
a.11 active producer and a.11 a.ctive consumer. This case, 
called a.ctive-active, requires a queue to mediate the two. 
For the single-siugle case, an SP-SC queue suffices. For 
the multiple-single case, we may atta,ch a monitor to the 
multiple end, resulting in MP-SC or MP-MC queues. 
Each queue may be synchronous (blocking) or asyn- 
chronous (using signals) depending on the situation. 

The la.st, case is a, passive producer and a passive con- 
sumer. One example is the xclock program that has 
the clock producer rea.dy to provide a reading at any 
time and a. display consumer that accepts new pixels 
to be pa.inted on the screen. In these cases, we use a 
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pump quaject that reads (the clock time) from the pro- 
ducer and writes the information (new pixels) to t,he 
consumer. This works for multiple passive producers 
and consumers as well. 

In summary, we have an efficient implementation for 
each case of the producer/consumer problem. Since the 
stream model of I/O can be easily described a.s a com- 
position of producers and consumers t,hrough the t,hree 
building blocks (switches, monit,ors, and queues), we 
have shown the genera.lity of the Synthesis implemen- 
tation. In pra,ctice, composing a. new device server with 
these building blocks is straightforward. 

5.3 Interrupt Handling 

At the heart of an I/O device server is the interrupt 
handler. Interrupt processing combines some elements 
of procedure calls and others of context switches. Like 
a procedure call, an interrupt pushes the currently ex- 
ecuting stack and the return address. When the int,er- 
rupt ha.ndling finishes, the execution resun~t’s from t.he 
interrupted instruction in the current thread. Like a 
context switch, an interrupt is unexpected and unre- 
lated to the current, t,hreacl. Furthermore, t,he int&errupt 
handler temporarily changes the program counter and 
some general registers of the current thread, without8 re- 
ceiving any a.rguments from or returning a.ny resu1t.s to 
the current, threa,d. 

Synthesis interrupt handling differs from some tra.di- 
tional OS’s (such as UNIX) in that each threa.d in Syn- 
thesis synthesizes it,s own interrupt ha.ndling routine, as 
well as system calls. These customized interrupt ha.n- 
dlers and system calls may run much faster than general- 
purpose equivalents. Twoexa.mples of synthesized iut,er- 
rupt handlers are the timer interrupt to context switch 
out the current thread (Section 4.2) and the analog to 
digital (A/D) buffered queue (Section 5.4). 

One way to increase the concurrency in the kernel is 
to push the bulk of interrupt processing (e.g., a. cha.ra.c- 
ter a.rrives at /dev/tty, to be inserted into the queue) 
into a separa.te t,hread which is crea.ted by the interrupt. 
handler. However, in most cases the separa,te thread is 
uneconomical, since norma. interrupts require very lit,- 
tle processing. For the simple cases the int,errupt, ha.~~- 
dler could run under the current,ly executing threa.d to 
avoid context switch. We only have to t,ake care to save 
and restore the few registers tha.t the interrupts handle] 
will use. During the (short) interrupt processing, higher 
level interrupt,s ma.y happen and as long a.s t,he int8errupt, 
ha.ndling is simple, the scenario repea.ts until eventua.lly 
the highest level interrupt processing completes and re- 
turlis to the next level, Ultimat,ely the entire stack of 
interrupts is handled. 

Even though the t1~rea.d running the simple inter- 
rupt handler ca.n ta.ke care of recursive int,errupts, sig- 
nals ma.y cause synchronization problems. We have two 
choices to ha.ndIe a signal in the middle of a,n int#errupt,: 
either we create a new threa.d to finish the interrupt., 
or we de1a.y the processing of the signal. Delaying the 
signal costs less, since it bypasses the crea.tion of a. new 
thread, and it does not degra.de system performance sig- 

nificantly, since the current interrupt handling should 
be quick. We use Procedure Chaining to delay the sig- 
nal, linking the signal processing routine to the end of 
interrupt, handler. 

Ea.& Synthesis tl1rea.d has its own vector table, which 
points to routines servicing ha.rdware interrupts, error 
tra.ps, a.ncl sys tern ca.lls. Although in principle each 
t,lirea.cl ma.y ha.ve a completely different set of interrupt 
handlers, current.ly the majority of them are shared by 
all threads. Syst.em calls, however, are frequently cus- 
tomized for each threa.d. In particular, I/O operations 
such a.s read and write are synthesized by the open 
opera.tion. As new qua.jects a,re opened (such as files, 
devices, threads, and others), the thread’s system call 
vectors a.re changed to point to the synthesized proce- 
dures. At its crea.tion, a. threa.d’s vector table is filled 
with a. clefa.ult set of system calls and error vectors that 
help debugging. 

5.4 Optiniizatious 

At boot. t.iine. t,he kernel uses Colla.psing La.yers to op- 
t,imize the device servers. For example, instead of com- 
inuuicating to the ra.w tty through a pipe (as in the con- 
cept,ual model) t,he cooked tty makes a procedure call to 
the ra.w tty to get the next character. This transforms 
a combina.tion of a.ct,ive-ga.ssive producer/consumer pair 
into a procedure ca.11. Down the pipeline, the cooked tty 
act,ively reads and the tty device itself actively writes, 
forming an active-active pair connected by an SP-SC 
optimistic queue. 

Anot,her opt.imiza,tion is the buffered queue. Usually, 
queue operations are cheap (a dozen instructions) com- 
pared to the processing time of each element in the 
queue. However, in the kernel we have cases of data 
movement t1la.t do very little work for each queue op- 
eration, t bus t,he queue opera.tions bec.ome the ma,in 
overl1ea.d. Buffered queues use kernel code synthesis 
t#o genera.te several specia.lized queue insert operations 
(a. couple of inst8ructions); ea.& moves a, chunk of da.ta. 
into a. different area of the sa.me queue element. This 
way, t,he overl1ea.d of a. queue insert, is a.mortized by the 
blocking fa.ctor. For exa.mple, the A/D device server 
handles 44,100 (single word) interrupts per second by 
pa.cking eight, 32-bit, words per queue element (hardware 
described in Sectioll 6.1). 

6 Measurements 

6.1 Environment 

The current, impleiiieiita~tioii of Synthesis runs on an 
experimental ma.chine (called the Quamachine), which 
is simi1a.r t(o a. SUN-3: a. Motorola 68020 CPU, 2.5 MB 
no-wa.it sta.te ma.in memory, 390 MB hard disk, 3L inch 
floppy drive. In a.cldition, it has some unusual I P 0 de- 
vices: t,wo-cha.nnel 16-bit, a.na.log output, t,wo-channel 
l&bit analog input, a compa.ct disc pla.yer interface, and 
a PIis2KxB-bit, fra.mebuffer with gra.phics co-processor. 

The Quamachine is designed and instrumented to aid 
systems research. Mea.surement facilities include an in- 
st8ruct,iou counter, a. memory reference counter, hard- 
ware pr0gra.m t,ra.cing, and a. microsecond-resolution in- 
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====Raw Sun Data=== Sun Synthesis Synthesis 
No Descr. user sys tot watch u+s Emulator Ratio thruput 
-- ------------- ---- ---- --- -_--- ---- ----_-- __-__ -----_- 

1 Compute 19.8 0.5 20 20.9 20.3 21.42 0.95 
2 R/W pipe 1 0.4 9.6 10 10.2 10.0 0.18 56. lOOKB/s 
3 R/W pipe 1024 0.5 14.6 15 15.3 15.1 2.42 6.2 8MB/sec 
4 R/W pipe 4096 0.7 37.2 38 38.2 37.9 9.64 3.9 8MB/sec 
5 R/W file 0.5 20.1 21 23.4 20.6 2.91 7.1 GMB/sec 
6 open null/close 0.5 17.3 17 17.4 17.8 0.69 26. 
7 open tty/close 0.5 42.1 43 43.1 42.6 0.88 48. 

Table 1: Measured UNIS System Calls (in seconds) 

terval timer. The CPU can operate at any clock speed 
from 1 MHz up to 50 MHz. Norma.lly we run t,he Qua- 
machine at 50 MHz. By setting the CPU speed to 16 
MHz and introducing 1 wa.it.-sta.te int,o the memory ac- 
cess, the Quama.chine ~a.11 closely emula.te the perfor- 
mance of a SUN-3/160. 

We also have written a IJNIS emula.tor running on 
top of the Synthesis kernel, which is capable of servicing 
SUNOS kernel ca.lls. In the simplest case, t,he emula.tor 
translates the UNIX kernel call into a.n equiva.].ent Syn- 
thesis kernel call. Otherwise, mult,iple Synthes,is primi- 
tives are combined to emulate a. UNIX call. With both 
hardware and software emulation, we run the sa.nie ob- 
ject code on equivalent hardware t,o a.chieve a. fac7.ir corn- 
parison between Synthesis and SUNOS. 

All benchmark progra.ms were compiled on the SUN 
3/160, using cc -0 under SUNOS release 3.5. The exe- 
cutable a. out wa.s t,imed on the SUN, t,hen brought, over 
to the Quama.chine a.nd executed under t,he IJNIX em- 
ula.tor. To validate our emula.tion, the first. benchmark 
program is a compute-bound test of similarit,y bet.ween 
the two machines. This test program implements a. func- 
tion producing a chaotic sequence [2]. It touches a. la.rge 
array at non-contiguous points, which ensures, t,liat we 
are not just measuring the “in-the-cache” performa.nce. 

6.2 Comparing Synthesis with SUNOS 

The purpose of making the Synthesis hardwa.re and soft- 
ware emula.te the SUN 3/160 is to compare Synthesis 
with SUNOS kernel calls. Since the esecut,a.hles a.re t,hc 
same, the compa.rison is direct. In t.able 1 we SUIII- 
marize and compare the results of t.he ~neasurement,s. 
The columns under “Raw SUN da.ta” were obtained 
with the time command a,nd also wit,h a st,opwa,tch. 
The SUN was unloaded during these mea.surements, as 
time reported more than 99% CPU a.va.ilable for them. 
The Synthesis emulator data were obta.ined by using 
the microsecond-resolution real-time clock on t,he Qua- 
machine, rounded to hundredths of a seconcl. These 
times were also verified with stopwatch (sometimes run- 
ning eac.11 test 10 times to obtain a. more easily measured 
time interval). 

The source code for the progra.ms numbered 1 to 7 a.re 
included in appendix A. Program 1 is the computation- 
intensive calibration function to va.lida.te the hardware 
emulation. The calibration program shows the Synthe- 
sis emulator to be roughly 5% slower than a SUN Z/100. 

Recent,ly we lea.rned that the SUN 3/160 runs actually 
a.t 16.7 MHz, which is about 5% fast,er tha,n 16 MHz. 

Programs 2, 3, and 4 write and then read back data 
from a pipe in chunks of 1, lI< and 4K bytes. They show 
a remarka.ble speed adva.ntage (56 times) for single-byte 
read/write operations. This is due to a combination 
of synthesized kernel calls, which are very short, and 
fine-grain scheduling, which reduces the average queue 
operation cost,s. When the chunk grows to page size, 
the difference is still very significant (4 to 6 times). The 
genera.ted code loa.ds long words from one quaspace into 
registers and stores them back in the other quaspace. 
With unrolled loops this achieves the data transfer rate 
of a.bout SMB per second. Program 5 reads a.nd writes 
a. file (cached in ma.in memory) in chunks of lI< bytes. 
This is the same 1)rogra.m used in a.n earlier measure- 
ment of Synthesis [5] and shows some improvement in 
t,lie current iniplementation of Synthesis. 

We include the programs 6 and 7, which open/close 
/dev/null and /dev/tty, to show that Synthesis ker- 
nel cocle genera.tion is very efficient. The open and close 
opera.tions synthesize code for la.ter read and write, yet 
t,hey a.re 20 to 40 times faster than the UNIX open with- 
out code genera.tion. Although this Synthesis file system 
is entirely memory-resident, the 10000 loops must have 
kept all the da.ta pa.ges in the SUNOS memory buffers, 
minimizing this difference. Table 2 contains more de- 
ta.ils of file system opera.tions that are discussed in the 
nest, sect8ion. 

6.3 Synthesis Kernel Calls 

To obta.in direct, timings of Synthesis kernel ca.11 times 
(in microseconds), we use the Synthesis kernel monitor 
execution tra.ce, which records in memory the instruc- 
tions executed by the current thread. Using this tra.ce, 
we can calculate the exact kernel call times by counting 
the memory references and each instruction execution 
time. Tables 2 t,o 5 show the timings calculated for SUN 
emulation mode. (When running full speed at 50 MHz, 
the a.ctua.1 performance is about three times faster.) 

In t,able 2 we ha.ve more file and device I/O oper- 
ations. These operations are the native Synthesis file 
and device ca.1l.s. A comparison of the native mode and 
the emula.tor mode shows the cost of ~JNIX emulation 
in Synthesis. Worth noting in Table 2 is the cost of 
open. The simplest. case, open (/dev/null), takes 49 
microseconds, of which about 60% are used to find the 
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operation 
native Unix 
time (usec> emulation (usec) 

emulation trap overhead 
open (/dev/null) 
open (/dev/tty) 
open (file) 
close 
read 1 char from file 
read N chars from file 
read N from /dev/null 

2 
43 49 
62 68 
73 85 
18 
9 (*) :o’ (*) 
9+N/8 (*) lO+N/8 (*I 
6 8 

(*) Data already in kernel queues or buffer cache. 
Table 5: Interrupt Handling (in microseconds) 

Table 2: File and Device I/O (in microseconds) interrupt ha.ndling simply picks up the character. 

operation time (usec) 
==================================== 
create 142 
destroy 11 
stop 8 
start 8 
step 37 
signal 8 (thread to thread) 

Table 3: Thread Operations (in microseconds) 

file (hashed string names stored ba.ckwa.rcls) a.nd 40% 
for code synthesis (read and write null). The addit*ional 
19 microseconds in opening /dev/tty come from gener- 
ating real code to read and write. Finally, opening a file 
implies synt,hesizing Inore sophisticated code a.ncl bulfel 
allocations (17 additional microseconds). 

In table 3, we see that Synthesis t.hreacls a,re light- 
weight - less than 150 microsecond creation time. 
Of these, about 100 are needed to fill approsimately 
1KBytes in the TTE and the rest are used by code syn- 
thesis. The short tilne to start, stop, a.nd step a. tl1rea.d 
makes it possible to trace and debug threads in a highly 
interactive way. 

In ta.ble 4 we see the contest switch tinles consumed 
by the dispatcher. Aga.in we note tl1a.t these timings are 
achieved with generated code (executable da.ta struc- 
tures, in this case). The separa.tion bet.ween using and 
not using the floating point co-processor is to shoiten 
the main critica. path (explained in Section 4.2). Table 
5 shows some timings for interrupt ha.ndling, ala.rm set- 
ting and handling, and signabng. For example, raw tty 

operation time (usec) 
==============t============-==--======= 
Full context switch 11 (*) 
Full context switch 21 (with FP registers) 
Partial context switch 3 
Block thread 4 
Unblock thread 4 

(*I If the thread does not use the Floating Point co- 
processor. 

Table 4: Dispatcher/Scheduler [in microseconcls) 

operation time (usec) 
====-----------=====-- ------ -------- ----------- 

Service raw TTY interrupt 16 
Service raw A/D interrupt 3 
Set alarm 9 
Alarm interrupt 7 
Chain to a procedure 4 (if no re-try) 
Chain to a procedure 7 (with 1 re-try) 
Chain (signal) a thread 9 (delayed interrupt) 

At,teut.ive readers would leave noticed that our mea- 
surenlent, figures are fa.ster than traditional run-tinle 
library routines. For esample, naive implementations 
of memory a.lloca.tion, block copy, and string compari- 
son would have slowed down our system considerably. 
In Synthesis. the memory allocation routine is an exe- 
cutable data structure implementing a fast-fit heap [6] 
wit,h ra,ndomized traversal added. The block copy as 
used in read has been outlined in Section 6.2. The 
st.ring comparison was mentioned as part of the open 
earlier in this section. 

6.4 Kernel Size 

The Synthesis kernel is written in 68020 assembly lan- 
guacre which is used as a fast prototyping language. 
Thiz may sound peculia.r, since usually people use high- 
level programming Langua.ges for fast prototyping. How- 
ever, given the la.& of support for efficient dynamic code 
syrrthesis in part,icular and efficient static code genera- 
tion in general, we were unable to find a suitable com- 
piler. We a,re a.ctively pursuing the design and imple- 
menta.tion of a high-level programming language for the 
development of the nest-generation Synthesis. 

A rough breakdown of the kernel shows about 3000 
lines of code for the raw device drivers (TTY, disk, A/D 
and D/rl, graphics), 1000 lines for the quaject creator 
and interfa.cer, 1000 lines for the templates used in code 
synthesis (e.g. queues, threads, files), 1000 lines for util- 
ities and shared libra.ry (e.g. printf), and about 5000 

lines for the kernel monitor with high-level debugging 
and progran-nning tools. The whole kernel assembles to 
64I<Bytes, of which 321<B are the kernel monitor. 

There is some concern on kernel size when using code 
gene&ion since many little functions ca.n add up to a. 
lot of memory. However, there are space advantages to 
code generation. While it is true that a synthesis kernel 
running severa. hundred threads each having maay open 
files can use more memory than a UNIX system running 
a similar load, such heavily loaded systems are not nor- 
mally seen. On a lightly loaded system, the static kernel 
size dominates any spa.ce a.llocat8ed dynamically. This is 
where Synthesis excels. With 3 processes running, the 
Syrrt,hesis kernel occupies only 32K. As more threads a.re 
crea.ted a.nd more files opened, the spa.ce requirements 
go up. However, the small static space required for the 
liernel niea.ns that you can run Synthesis on small, PC- 
like computers and embedded industrial controllers, two 
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application areas tha.t are unlikely to have much more 
than a few tells of threads running simulta.neolilsly. On 
the other hand, if you have a. ma.chine tha,t. c(l?t ruu 
300 jobs concurrently, then you probably havtl llrc es- 
tra memory space to run them well. 

7 Conclusion 

Weexpect the techniques described here to be useful to 
operating system implementors. Specifically, we have 
used kernel code synthesis, optimistic synchroniza.tion, 
and fine-grain scheduling to increase OS kernel concur- 
rency and efficiency in the implementation of the Syn- 
thesis kernel support for threads and input/output,. 

To achieve very high performance in Synthesis, we re- 
peatedly apply the principle of frugality, which says dollar. 
we should use the simplest abstraction and the cheap- 
est implementation for each case. Given the lel:el of ab- 
straction of Synthesis kernel interface (all references to 
kernel data structures or algorithms eliminated), we call 
then use sophisticated algorithms to implement. this iu- 
terface. Although we use many different tricks to speed 
up the Synthesis kernel, their common theme is the sim- 
plification of the normal case, as dicta,ted by the princi- 
ple of frugality. 

Kernel code synthesis shortens the normal execution 
path by binding the system state early; subsequent. ker- 
nel calls simply jump into the generated routines, avoid- 
ing the system state traversal repetition. At, code gen- 
eration time, we also apply known compiler optimiza- 
tion techniques, such as constant folding and common 
sub-expression elimination. This is applied throughout, 
Synthesis, including threads and input/output.. 

Reduced synchronization shortens the critical path 
by careful set-up and exception handling. For exa.m- 
ple, we have implemented queue operations using only 
Optimistic Synchronization. Since a.lmost all of Synthe- 
sis kernel data structures are queues, the kernel ba.si- 
tally runs without any inter-locking. We expect this to 
be especially important when we move Synthesis to a. 
multi-processor, as it is designed for. 

Combining kernel code synthesis and optimistic syn- 
chronization we have achieved very high performance 
compared to mature, commercial systems. F’or exa.m- 
pie, using a UNIX emulator running on a ha.rdware em- 
ulator of SUN 3/160 to run the sa.me bina.ry executable, 
Synthesis performance (for I/O and threads) is several 
times or several dozen times better than SUNOS. Since 
optimistic synchronization is best suited for a multi- 
processor and fine-grain scheduling for a distributed sys- 
tem, we expect more performance gains when we run 
Synthesis on those environments. 
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A Measurement Programs 
------- ------ ------P------SE==IUE~=====*===--- -===-le==P=====P====P=PIJE=PI=======-======--*==--- 
/*Test #l, "compute" */ 
#define N 500000 
int 
main0 
c 

3 
d) 
C 

3 

xl31 ; 

int i; 
for(i=5; i--; > 

go ; 
printf("%d\n%d\n", x[N-21, x[N-11); 

int i; 
x co3 = xc11 = 1; 
for(i=2; i<N; i++) 

xCi1 = x[i-xCi-111 + XL-xCi-211; 

------ =z======------====---------------^------------------- ---------------------------------=====----------- ===I-===- 

/* Test #2,"R/W pipe 1" Test #3,"R/W pipe 1024" Test #4."R/W pipe 4096" */ 
#define N 1024 /* or 1 or 4096 */ 
char xCN1; 
main0 
c 

int fdC21,i; 
pipecfd); 
for(i=lOOOO; i--; ) I 

write(fdClj, x, N); 
read(fd[Ol, x, N); 

3 
3 
=====s=====E====i=x=z ===E===I=IE=E===r=P===============~========~============= 
/* Test 5,"Fl/W file" */ 
#include <sys/file.h> 
#define N 1024 
char xCN1; 
main0 
{ 

int f,i.j; 
f = open("file", OJDWR I O-CREAT I O-TRUNC, 0666); 
for(j=lOOO; j--; > { 

lseekcf, OL, L-SET); 
for(i=lO; i--; ) 

writecf, x, N); 
lseekcf, OL, L-SET); 
for(i=lO; i--; ) 

read(f, x, N); 
3 
close(f); 

3 
==E===========e=rl=l===~====~=== ~=llIb====I======3==================-====-=- 
/* Test #6,"open null" Test #7,"open tty" */ 
#include <sys/file.h> 
#define D "/dev/null" /* or /dev/tty */ 
main0 
c 

int f,i; 
for(i=lOOOO; i--; ) { 

f = open("/dev/null", O-RDONLY); 
close(f); 

3 
3 
--------------------===I=-=======-===== 
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