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Abstract 

Multiprocessors with non-uniform memory access times 
introduce the problem of placing data near the processes 
that use them, in order to improve performance. We 
have implemented an automatic page placement strat- 
egy in the Mach operating system on the IBM ACE 
multiprocessor workstation. Our experience indicates 
that even very simple automatic strategies can produce 
nearly optimal page placement. It also suggests that the 
greatest leverage for further performance improvement 
lies in reducing false sharing, which occurs when the 
same page contains objects that would best be placed 
in different memories. 

1 Introduction 

Shared-memory multiprocessors are attractive machines 
for parallel computing. They not only support a model 
of parallelism based on the familiar von Neumann 
paradigm, they also allow processes to interact effi- 
ciently at a very fine level of granularity. Simple physics 
dictates, however, that memory cannot simultaneously 
be located very close to a very large number of proces- 
sors. Memory that can be accessed quickly by one node 
of a large multiprocessor will be distant from many other 
nodes. Even on a small machine, price/performance 
may be maximized by an architecture with non-uniform 
memory access times. 

On any Non-Uniform Memory Access (NUMA) ma- 
chine, performance depends heavily on the extent to 
which data reside close to the processes that use them. 
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In order to maximize locality of reference, data repiica- 
tion and migration can be performed in hardware (with 
consistent caches), in the operating system, in compilers 
or library routines, or in application-specific user code. 
The last option can place an unacceptable burden on 
the programmer and the first, if feasible at all in large 
machines, will certainly be expensive. 

We have developed a simple mechanism to automat- 
ically assign pages of virtual memory to appropriately 
located physical memory. By managing locality in the 
operating system, we hide the details of specific mem- 
ory architectures, so that programs are more portable. 
We also address the locality needs of the entire applica- 
tion mix, a task that cannot be accomplished through 
independent modification of individual applications. Fi- 
nally, we provide a migration path for application de- 
velopment. Correct parallel programs will run on our 
system without modification. If better performance is 
desired, they can then be modified to better exploit au- 
tomatic page placement, by placing into separate pages 
data that are private to a process, data that are shared 
for reading only, and data that are writably shared. This 
segregation can be performed by the applications pro- 
grammer on an ad hoc basis or, potentially, by special 
language-processor based tools. 

We have implemented our page placement mechanism 
in the Mach operating system[l] on a small-scale NUMA 
machine, the IBM ACE multiprocessor workstation[9]. 
We assume the existence of faster memory that is local 
to a processor and slower memory that is global to all 
processors, and believe that our techniques will gener- 
alize to any machine that fits this general model. 

Our strategy for page placement is simple, and was 
embedded in the machine-dependent portions of the 
Mach memory management system with only two man- 
months of effort and 1500 lines of code. We use local 
memory as a cache over global, managing consistency 
with a directory-based ownership protocol similar to 
that used by Li[15] for distributed shared virtual mem- 
ory. Briefly put, we replicate read-only pages on the pro- 
cessors that read them and move written pages to the 
processors that write them, permanently placing a page 
in global memory if it becomes clear that it is being writ- 
ten routinely by more than one processor. Specifically, 
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we assume when a program begins executing that every 
page is cacheable, and may be placed in local memory. 
We declare that a page is noncacheable when the con- 
sistency protocol has moved it between processors (in 
response to writes) more than some small fixed number 
of times. All processors then access the page directly in 
global memory. 

We believe that simple techniques can yield most of 
the locality improvements that can be obtained by an 
operating system. Our results, though limited to a sin- 
gle machine, a single operating system, and .a modest 
number of applications, support this intuition. We have 
achieved good performance on several sample applica, 
tions, and have observed behavior in others that sug- 
gests that no operating system strategy will olbtain sig- 
nificantly better results without also making language- 
processor or application-level improvements in the way 
that data are grouped onto pages. 

We describe our implementation in Section 2. We 
include a brief overview of the Mach memory manage- 
ment system and the ACE architecture. We present 
performance measurements and analysis in Section 3. 
Section 4 discusses our experience and what we think 
it means. Section 5 suggests several areas for .future re- 
search. We conclude with a summary of what we have 
learned about managing NUMA memory. 

2 Automatic Page Placement 
in a Two-Level Memory 

2.1 The Mach Virtual Memory 
System 

Perhaps the most important novel idea in Mach is that 
of machine-independent virtual memory[l7]. The bulk 
of the Mach VM code is machine-independent and is 
supported by a small machine-dependent component, 
called the pmap layer, that manages address translation 
hardware. The pmap interface separates the machine- 
dependent and machine-independent parts of the VM 
system. 

A Mach pmap (physical map) is an abstract ob- 
ject that holds virtual to physical address translations, 
called mappings, for the resident pages of a single virtual 
address space, which Mach calls a task. The pmap in- 
terface consists of such pmap operations as pmap-enter, 
which takes a pmap, virtual address, physicarl address 
and protection and maps the virtual addre,ss to the 
physical address with the given protection in the given 
pmap; pmap-protect, which sets the protection on all 
resident pages in a given virtual address range within a 
pmap; pmap,remove, which removes all mappings in a 
virtual address range in a pmap; and pmap-remove-all, 

which removes a single physical page from all pmaps in 
which it is resident. Other operations create and de- 
stroy pmaps, fill pages with zeros, copy pages, etc. The 
protection provided to the pmap-enter operation is not 
necessarily the same as that seen by the user; Mach may 
reduce privileges to implement copy-on-write or as part 
of the external paging system[22]. 

A pmap is a cache of the mappings for an address 
space. The pmap manager may drop a mapping or re- 
duce its permissions, e.g. from writable to read-only, at 
almost any time. This may cause a page fault, which 
will be resolved by the machine-independent VM code 
resulting in another pmap-enter of the mapping. This 
feature had already been used on the IBM RT/PC, 
whose memory management hardware only allows a sin- 
gle virtual address for a physical page. We use it on the 
ACE to drive our consistency protocol for pages cached 
in local memory. 

Mappings can be dropped, or permissions reduced, 
subject to two constraints. First, to ensure forward 
progress, a mapping and its permissions must persist 
long enough for the instruction that faulted to complete. 
Second, to ensure that the kernel works correctly, some 
mappings must be permanent. For example, the kernel 
must never suffer a page fault on the code that handles 
page faults. This second constraint limits our ability to 
use automatic NUMA page placement for kernel mem- 
ory. 

Mach views physical memory as a fixed-size pool of 
pages. It treats the physical page pool as if it were real 
memory with uniform memory access times. It is un- 
derstood that in more sophisticated systems these “ma- 
chine independent physical pages” may represent more 
complex structures, such as pages in a NUMA mem- 
ory or pages that have been replicated. Unfortunately, 
there is currently no provision for changing the size of 
the page pool dynamically, so the maximum amount of 
memory that can be used for page replication must be 
fixed at boot time. 

2.2 The IBM ACE Multiprocessor 
Workstation 

The ACE Multiprocessor Workstation[S] is a NUMA 
machine built at the IBM T. J. Watson Research Center. 
Each ACE consists of a set of processor modules and 
global memories connected by a custom global memory 
bus (see Figure 1). Each ACE processor module has 
a ROMP-C processor[l2], Rosetta-C memory manage- 
ment unit and 8Mb of local memory. Every processor 
can address any memory, with non-local requests sent 
over a 32-bit wide, 80 Mbyte/set Inter-Processor Com- 
munication (IPC) bus designed to support 16 processors 
and 256 Mbytes of global memory. 

20 



Figure 1: ACE Memory Architecture 

Packaging restrictions prevent ACES from supporting 
the full complement of memory and processors permit- 
ted by the IPC bus. The ACE backplane has nine slots, 
one of which must be used for (up to) 16 Mbytes of 
global memory. The other eight may contain either a 
processor or 16 Mbytes of global memory. Thus, con- 
figurations can range from 1 processor and 128 Mbytes 
to 8 processors and 16 Mbytes, with a “typical” con- 
figuration having 5 processors and 64 Mbytes of global 
memory. Most of our experience was with ACE proto- 
types having 4-8 processors and 4-16 Mbytes of global 
memory. 

We measured the time for a 32-bit fetches and stores 
of local memory as 0.65,~s and 0.84~s respectively. The 
corresponding times for global memory are 1.5~s and 
1.4~s. Thus, global memory on the ACE is 2.3 times 
slower than local on fetches, 1.7 times slower on stores, 
and about 2 times slower for reference mixes that are 
45% stores. ACE processors can also reference each 
other’s local memories directly, but we chose not to use 
this facility (see Section 4.4). 

2.3 NUMA Management on the ACE 

To minimize the costs of developing and maintaining 
kernel software, we followed the Mach conventions for 
machine-independent paging. We thus implemented our 
support for NUMA page placement entirely within the 
Mach machine-dependent pmap layer. Our pmap layer 
for the ACE is composed of 4 modules (see Figure 2): 
a pmap manager, an MMU interface, a NUMA man- 
ager and a NUMA policy. Code for the first two mod- 
ules was obtained by dividing the pmap module for the 
IBM RT/PC into two modules, one of which was ex- 
tended slightly to form the pmap manager, and the 
other of which was used verbatim as the MMU inter- 
face. The pmap manager exports the pmap interface to 
the machine-independent components of the Mach VM 
system, translating pmap operations into MMU opera- 
tions and coordinating operation of the other modules. 

- 

1’ 

---- 
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Pmap manager ++ NUMA manager 

1 r t 

mmu interface NUMA policy 

Figure 2: ACE pmap Layer 

The MMU interface module controls the Rosetta hard- 
ware. The NUMA manager maintains consistency of 
pages cached in local memories, while the NUMA pol- 
icy decides whether a page should be placed in local or 
global memory. We have only implemented a single pol- 
icy to date, but could easily substitute another policy 
without modifying the NUMA manager. 

2.3.1 The NUMA Manager 

ACE local memories are managed as a cache of global 
memory. The Mach machine-independent page pool, 
which we call logical memory, is the same size as the 
ACE global memory. Each page of logical memory cor- 
responds to exactly one page of global memory, and may 
also be cached in at most one page of local memory per 
processor. A logical page is in one of three states: 

l read-only - may be replicated in zero or more local 
memories, must be protected read-only; 

l local-writable - in exactly 1 local memory, may be 
writable; or 

l global-writable - in global memory, may be 
writable by zero or more processors. 

Read-only logical pages can be used for more than 
read-only code. A page of writable virtual memory may 
be represented by a read-only logical page if, for exam- 
ple, it contains a string table that is read but is never 
written. Similarly, a shared writable page may, over 
time, be local-writable in a sequence of local memories 
as the cache consistency protocol moves it around. The 
current content of a local-writable page is in the local 
memory and must be copied back to the global page 
before the page changes state. 

The interface provided to the NUMA manager by 
the NUMA policy module consists of a single function, 
cache-policy, that takes a logical page and protection 
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unmap all sync&flush other 
LOCAL copy to local copy to local No action copy to local 

Read-Only Read-Only 
flush all sync&flush own sync&flush other 

GLOBAL No action 
Global-Writable Global-Writable Global-Writable 

Table 1: NUMA Manager Actions for Read Requests 

(,,Global-&%?e ‘“~~~~ zl-Wrizbzher node . 

flush other unmap all sync&Rush other 
LOCAL copy to local copy to local No action copy to local 

Local-Writable Local-Writable Local-Writable 
flush all sync&flush own sync&flush other 

GLOBAL No action 
Global-Writable Global-Writable Global-Writable 

Table 2: NUMA Manager Actions for Write Requests 

and returns a location: LOCAL or GLOBAIL. Given 
this location and the current known state of the page, 
the NUMA manager then takes the action indicated in 
Table 1 or Table 2. In each table entry, the top line 
describes changes to clean up previous cache state, the 
middle line tells whether the page is copied into local 
memory on the current processor and the bottom line 
gives the new cache state. All entries describe the de- 
sired new appearance; no action may be necessary. For 
example, a processor with a locally cached copy of a 
page need not copy the page from global memory again. 
“sync” means to copy a Local-Writable page from lo- 
cal memory back to global memory. “flush” means to 
drop any virtual mappings to a page and free any copies 
cached in local memory (used only for Read-Only or 
Local- Writable pages). “unmap” means to drop any vir- 
tual mappings to a page (used only for Global-Writable 
pages). “own”, “other” and “all” identify the set of 
processors affected. 

These NUMA manager actions are driven by requests 
from the pmap manager, which are in turn dlriven by 
normal page faults handled by the machine-independent 
VM system. These faults occur on the first reference to 
a page, when access is needed to a page rem.oved (or 
marked read-only) by the NUMA manager, 011 when a 
mapping is removed due to Rosetta’s restriction of only 

a single virtual address per physical page per processor. 
When uninitialized pages are first touched, Mach 

fills them with zeros in the course of handling the ini- 
tial zero-fill page fault. It does this by calling the 
pmap,tero,page operation of the pmap module. The 
page is then mapped using pmap-enter and processing 
continues. Since the the processor using the page is 
not known until pmap-enter time, we lazy evaluate the 
zero-filling of the page to avoid writing zeros into global 
memory and immediately copying them. 

2.3.2 A Simple NUMA Policy That Limits 
Page Movement 

In our ACE pmap layer, the NUMA policy module de- 
cides whether a page should be placed in local or global 
memory. We have implemented one simple policy (in 
addition to those we used to collect baseline timings) 
that limits the number of moves that a page may make. 
We initially place all pages in local memory because it is 
faster. Read-only pages are thus replicated and private 
writable pages are moved to the processor that writes 
them. Writably-shared pages are moved between local 
memories as the NUMA manager keeps the local caches 
consistent. Our policy counts such moves (transfers of 
page ownership) for each page and places the page in 
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global memory when a threshold (a system-wide boot- 
time parameter which defaults to four) is passed. The 
page then remains in global memory until it is freed. 

In terms of Tables 1 and 2, our policy answers LOCAL 
for any page that has not used up its threshold number 
of page moves and GLOBAL for any page that has. 
Once the policy decides that a page should remain in 
global memory, we say that the page has been pinned. 

2.3.3 Changes to the Mach pmap Interface 
to Support NUMA 

Our experience with Mach on the ACE confirms the ro- 
bust design of the Mach pmap interface. Although this 
machine-independent paging interface was not designed 
to support NUMA architectures’, we were able to imple- 
ment automatic NUMA page placement entirely within 
the ACE pmap layer with only three small extensions 
to support pmap-level page caching: 

0 pmapfree-page operations, 

l min-max protection arguments to pmap,enter, and 

0 a target processor argument to pmap-enter. 

The original machine-independent component of the 
Mach VM system did not inform the pmap layer when 
physical page frames were freed and reallocated. This 
notification is necessary so that cache resources can 
be released and cache state reset before the page 
frames are reallocated. We split the notification into 
two parts to allow lazy evaluation. When a page is 
freed, pmapfree,page starts lazy cleanup of a physical 
page and returns a tag. When a page is reallocated, 
pmapfree,pagesync takes a tag and waits for cleanup 
of the page to complete. 

Our second change to the pmap interface added a 
second protection parameter to the pmap-enter opera- 
tion. Pmap-enter creates a mapping from a virtual to a 
physical address. As originally specified, it took a sin- 
gle protection parameter indicating whether the map- 
ping should be writable or read-only. Since machine- 
independent code uses this parameter to indicate what 
the user is legally permitted to do to the page, we can 
interpret it as the maximum (loosest) permissions that 
the pmap layer is allowed to establish. We added a 
second protection parameter to indicate the minimum 
(strictest) permissions required to resolve the fault. 
Our pmap module is therefore able to map pages with 
the strictest possible permissions-replicating writable 
pages that are not being written by provisionally mark- 
ing them read-only. Subsequent write faults will make 
such pages writable after first eliminating replicated 

l And at least some of the Mach implementors considered 
NUMA machines unwise[l9]. 

copies. The pmap layers of non-NUMA systems can 
avoid these subsequent faults by initially mapping with 
maximum permissions. 

Our third change to the pmap interface reduced the 
scope of the pmap,enter operation, which originally 
added a mapping that was available to all processors. 
Mach depended on this in that it did not always do the 
pmap-enter on the processor where the fault occurred 
and might resume the faulting process on yet another 
processor. Since NUMA management relies on under- 
standing which processors are accessing which pages, we 
wanted to eliminate the creation of mappings on proces- 
sors which did not need them. We therefore added an 
extra parameter that specified what processor needed 
the mapping. Newer versions of Mach may always in- 
voke pmap-enter on the faulting processor[21], so the 
current processor id could be used as an implicit param- 
eter to pmap,enter in place of our explicit parameter. 

3 Performance Results 

To discover the effectiveness and cost of our NUMA 
management system, we measured several multiproces- 
sor applications running on the ACE. 

3.1 Evaluating Page Placement 

We were primarily interested in determining the effec- 
tiveness of our automatic placement strategy at placing 
pages in the more appropriate of local and global mem- 
ory. Since most reasonable NUMA systems will repli- 
cate read-only data and code, we focused on writable 
data. We define four measures of execution time: 

l Tnuma is total user time (process virtual time as 
measured by the Unix time(l) facility) across all 
processors when running our NUMA strategy. 

l Toptimal is total user time when running under a 
page placement strategy that minimizes the sum of 
user and NUMA-related system time using future 
knowIedge. 

09 Tiocal is the total user time of the application, were 
it possible to place all data in local memory. 

l Tgrobol is total user time when running with all 
writable data located in global memory. 

We measured T,,,, by running the application under 
our normal placement policy. We measured Tgrobal by 
using a specially modified NUMA policy that placed all 
data pages in global memory. 

We would have liked to compare T,,,, to Toptimal 
but had no way to measure the latter, so we compared 
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to Trocal instead. Tloeai is less than Toptimal because ref- 
erences to shared data in global memory cannot. be made 
at local memory speeds. Tloear thus cannot actually be 
achieved on more than one processor. We measured 
Tfocal by running the parallel applications with a single 
thread on a single processor system, causing all data 
to be placed in 1ocaI memory. We were forced to use 
single threaded cases because our applications synchro- 
nize their threads using non-blocking spin locks. With 
multiple threads time-sliced on a single processor, the 
amount of time spent in a lock would be deter:mined by 
this time-shcing, and so would invalidate the user time 
measurements. None of the applications spend much 
time contending for locks in the multiprocessa,r runs. 

A simple measure of page placement effectiveness, 
which we call the “user-time expansion factor.,” y, 

T numa = 7 T local, (1) 

can be misleading. A small value of y may mean that 
our page placement did well, that the application spends 
little of its time referencing memory, or that local mem- 
ory is not much faster than global memory. To better 
isolate these effects, we model program execution time 
as: 

T numa = Xoear { (1 -P> + P [a + (I- 4gI) (2) 

L and G are the times for a 32-bit memory reference 
to local and global memory, respectively. As noted in 
section 2.2, G/L is about 2 on ACE (2.3 if all references 
are fetches). 

Our model incorporates two sensitivity factors: 

l (Y is the fraction of references to writable data that 
were actually made to local pages while running 
under our NUMA page placement strategy. 

l p is the fraction of total user run time that would 
be devoted to referencing writable data if all of the 
memory were local. 

CY resembles a cache hit ratio: cache “hits” are refer- 
ences to local memory and cache “misses” are references 
to gIoba1 memory. (Y measures both the use of private 
(non-shared) memory by the application and the success 
of the NUMA strategy in making such memory local. A 
“good” value for a is close to 1.0, indicating that most 
references are to local memory. A smaller value indi- 
cates a problem with the placement strategy or, as we 
typically found in practice, heavy use of shared memory 
in the application. Application sharing would not. have 
been included, had we been able to use Toptimal instead 

of 3oca1. 
/3 measures the sensitivity of an application to the 

performance of writable memory. It depends both on 

the fraction of instructions that reference writable mem- 
ory and on the speed of the instructions that do not 
(which itself is a function of local memory performance 
and of processor speed). Small values of ,f3 indicate that 
the program spends little of its time referencing writable 
memory, so the overall run time is relatively unaffected 
by (Y. 

In the Tgiobal runs, all writable data memory refer- 
ences were to global memory and none to local, thus cv 
for these runs was 0. Substituting Tg{obar for T,,,, and 
0 for (Y in equation 2 yields a model of the all-global 
runs: 

Solving equation 3 simultaneously with equation 2 for 
(Y and ,B yields: 

T global - T’ma 
(Y= 

Tgmal - Zoeal 

Our use of total user time eliminates the concurrency 
and serialization artifacts that show up in elapsed (wall 
clock) times and speedup curves. We are not concerned 
with how much faster our applications run on eight pro- 
cessors than they do on one; we are concerned with how 
much faster they run with our NUMA strategy than 
they do with all writable data in global memory. The 
greatest weakness of our model is that, because we use 
Zoeol rather than Toptimal, it fails to distinguish between 
global references due to placement “errors”, and those 
due to legitimate use of shared memory. We were able 
to make this distinction only through ad hoc examina- 
tion of the individual applications. We have begun to 
make and analyze reference traces of parallel programs 
to rectify this weakness. 

On the whole, our evaluation method was both simple 
and informative. It was within the capacity of the ACE 
timing facilities2. It was not unduly sensitive to loss 
of precision despite the arithmetic in Equations 4 and 
5. It did require that measurements be repeatable, so 
applications such as simulated annealing were beyond it. 
It also required that measurements not vary too much 
with the number of processors. Thus applications had 
to do about the same amount of work, independent of 
the number of processors, and had to be relatively free 
of lock, bus or memory contention. 

2The only clock on the ACE is a 5OHz timer interrupt. 
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Application Application 1 ~l$l,,b~r 1 T nzlma 
ParMult ParMult 1 67.4 1 67.4 
Gfetch3 Gfetch3 
IMatMult3 IMatMult3 
Primes1 Primes1 

i 

Primes2 Primes2 
Primes3 Primes3 
FFT FFT 
PlvTrace PlyTrace 

60.2 60.2 
82.1 82.1 

18502.2 18502.2 

L 5754.3 5754.3 
39.1 39.1 

687.4 687.4 
56.9 56.9 

60.2 60.2 
69.0 69.0 

17413.9 17413.9 
4972.9 4972.9 

37.4 37.4 
449 .o 449 .o 
38.8 38.8 

ZOCd ZOCd 
67.3 67.3 
26.5 26.5 
68.2 68.2 

17413.3 17413.3 
4968.9 4968.9 

28.8 28.8 
438.4 438.4 
38.0 38.0 

a! P 
=F na .oo 

0 1.0 
.94 .26 
1.0 .06 
.99 .16 
.17 .36 
.96 .56 
.96 .5O 

Y 
1.00 
2.27 
1.01 
1.00 
1.00 
1.30 
1.02 
1.02 

Table 3: Measured user times in seconds and computed model parameters. 

3.2 The Application Programs 

Our application mix consists of a fast Fourier trans- 
form (FFT), a graphics rendering program (PlyTrace), 
three prime finders (Primesl-3) and an integer matrix 
multiplier (IMatMult), as well as a program designed to 
spend all of its time referencing shared memory (Gfetch) 
and one designed not to reference shared memory at all 
(ParMult). FFT is an EPEX FORTRAN application, 
while the other appIications are written using the Mach 
C-Threads package. 

The Mach C-Threads package[6] provides a parallel 
programming environment with a single, uniform mem- 
ory. All data is implicitly shared; truly private and 
truly shared data may be indiscriminately interspersed 
in the program load image by the compiler and loader. 
Any desired segregation of private and shared data must 
be induced by hand, by padding data structures out to 
page boundaries. 

EPEX FORTRAN[18] provides a parallel program- 
ming environment with private and shared memory. 
Variables are implicitly private unless explicitly tagged 
“shared.” Shared data is automatically gathered to- 
gether and separated from private data by the EPEX 
preprocessor. 

ParMult and Gfetch are at the extremes of the spec- 
trum of memory reference behavior. The ParMult pro- 
gram does nothing but integer multiplication. Its only 
data references are for workload allocation and are too 
infrequent to be visible through measurement error. Its 
,0 is thus 0 and its a: irrelevant. The Gfetch program 
does nothing but fetch from shared virtual memory. 
Loop control and workload allocation costs are too small 
to be seen. Its p is thus 1 and its Q 0. 

The IMatMult program computes the product of a 
pair of 200x200 integer matrices. Workload allocation 

3Since Gfetch and IMatMult do almost all fetches and no 
stores, their computations were done using 2.3 for G/L. The 
other applications used G/L as 2 to reflect a reasonable balance 
of loads and stores. 

parcels out elements of the output matrix, which is 
found to be shared and is placed in global memory. 
Once initialized, the input matrices are only read, and 
are thus replicated in local memory. This program em- 
phasizes the value of replicating data that is writable, 
but that is never written. The high a reflects the 400 
local fetches per global store (the memory references 
required for the dot product resulting in an output ele- 
ment), while the low p reflects the high cost of integer 
multiplication on the ACE. Had we multiplied floating 
point matrices, the even higher cost of floating multi- 
plication would have overwhelmed the data reference 
costs. 

The three primes programs use different parallel ap- 
proaches to finding the prime numbers between 1 and 
10,000,000. Primesl[4] determines if an odd number is 
prime by dividing it by all odd numbers less than its 
square root and checking for remainders. It computes 
heavily (division is expensive on the ACE) and most of 
its memory references are to the stack during subrou- 
tine linkage. Primes2[5] divides each prime candidate 
by all previously found primes less than its square root. 
Each thread keeps a private list of primes to be used 
as divisors, so virtually all data references are local. It 
also computes heavily, but makes local data references 
to fetch potential divisors. 

The primes3 algorithm is a variant of the Sieve of Er- 
atosthenes, with the sieve represented as a bit vector of 
odd numbers in shared memory. It produces an integer 
vector of results by masking off composites in the bit 
vector and scanning for the remaining primes. It refer- 
ences the shared bit vector heavily, fetching and storing 
as it masks off bits representing composite numbers. It 
also computes heavily while scanning the bit vector for 
primes. 

The FFT program, which does a fast Fourier trans- 
form of a 256 by 256 array of floating point numbers, was 
parallelized using the EPEX FORTRAN preprocessor. 
In an independent study, Baylor and Rathi analyzed 
reference traces from an EPEX fft program and found 
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Sglobal As T’,,, AW’-numa 
7 

1.2 3.3 82.1 4.0% 
2.3 17413.9 0% 

29.9 8.5 2Y4 4972.9 0.4% 
11.2 1.9 9.3 37.4 24.9% 

10.0 11.1 449.0 2.5% 

Table 4: Total slystem time for runs on 7 processors. 

that about 95% of its data references were to private 
memory[3]. Although there are differences in compilers 
and runtime support, we think that this supports our 
contention that our NUMA strategy has placed pages 
effectively and that the remaining global memory refer- 
ences are due to the algorithm in the application pro- 
gram. 

PlyTrace[8] is a floating-point intensive C-threads 
program for rendering artificial images in which surfaces 
are approximated by polygons. One of its phases is par- 
allelized by using as a work pile its queue of lists of 
polygons to be rendered. 

Overall, our cy and y values were remarkably good, 
the exceptions being the Gfetch program, which was de- 
signed to be terrible, and the Primes3 program, which 
makes heavy legitimate use of writably shared memory. 
We see little hope that programs with such heavy shar- 
ing can be made to perform better on NUMA machines 
without restructuring to reduce their use of writably 
shared data. 

3.3 Page Placement Overhead 

The results in Section 3.2 reflect only the time spent 
by the applications in user state, and not the time the 
NUMA manager uses for page movement and book- 
keeping overhead. Table 4 shows the difference in sys- 
tem time between the all global and NUMA managed 
cases. This difference is interesting because system 
time includes not only page movement, but also sys- 
tem call time and other unrelated overhead; since the 
all global case moves no pages, essentially no time is 
spent on NUMA management, while the system call and 
other overheads stay the same. Comparing this differ- 
ence with the NUMA managed user times in Table 3 
shows that for all but Primes3 the overhead was small, 
Primes3 suffers from having a large amount of mem- 
ory almost all of which winds up being placed in global 
memory, but which is first copied from local memory to 
local memory several times. Since the sieve runs quickly, 
this memory is allocated rapidly relative to the amount 
of user time user, resulting in a high system/user time 
ratio. 

We have put little effort into streamlining our NUMA 
management code. We were more interested in de- 
termining what constituted a good placement strategy’ 
than in how best to code that strategy. Streamlining 
should greatly reduce system time, as would fast page- 
copying hardware. 

4 Discussion 

4.1 The Two-Level NUMA Model 

Supporting only a single class of shared physical mem- 
ory (global memory) was our most important simplifica- 
tion of the NUMA management problem. We chose to 
use a two-level NUMA memory model (with only local 
and global memory) because there was an obvious corre- 
spondence between it and a simple application memory 
model that had only private and shared virtual memory. 
We saw a simple way for automatic page placement to 
put pages that were private or that could be replicated 
in local memory and to put pages that were shared in 
global memory. We hoped that such automatic place- 
ment would be a useful tool, making it easier to get 
parallel programs running, with subsequent tuning to 
improve performance possible when necessary. 

Our experience with Mach on the ACE has been 
heartening in this respect. We found that we were 
largely able to ignore the quirks of the memory system 
and spent most of our energy while writing applications 
in debugging application errors, often in synchroniza- 
tion and concurrency control. Automatic page place- 
ment worked well enough and predictably enough that 
we could often ignore it and could make it do what we 
wanted when we cared. 

4.2 The Impact of False Sharing 

By definition, an object is writably shared if it is written 
by at least one processor and read or written by more 
than one. Similarly, a virtual page is writably shared 
if at least one processor writes it and more than one 
processor reads or writes it. By definition, an object 
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that is not writably shared, but that is on a writably 
shared page is falsely shared. 

In a NUMA machine where writably shared pages 
are placed in slower global memory, accesses to falsely 
shared objects are slower than they would be if the ob- 
jects had been placed in faster local memory. This per- 
formance degradation makes false sharing a problem. 

Many applications put objects on pages with little 
regard for the threads that will access the objects. The 
resulting false sharing places an inherent limit on the 
extent to which the “NUMA problem” can be solved 
in an operating system, because falsely shared objects 
cannot all be placed nearest the processor that is using 
them. 

Our efforts to reduce false sharing in specific ap- 
plications were manual and clumsy but effective. We 
forced proximity of objects by merging them into a sin- 
gle large object. We forced separation by adding page- 
sized padding around objects. We separately coalesced 
cacheable and non-cacheable objects and padded around 
them, so that they would be placed in local or global 
memory as appropriate. We created new private objects 
to hold data that would otherwise be falsely shared. By 
eliminating false sharing, our changes improved the val- 
ues of T,,,, and y, and also brought Toplima closer 
to Tloeal, by decreasing the amount of data that was 
“shared.” These changes did not significantly change 
the ratio of Tnunaa to Toptinaal. 

As an example, consider the primes2 program, which 
tested for new primes by dividing by those previously 
found. An initial version of the program segregated 
most private and shared data, but used the output vec- 
tor of previously found primes as divisors for new can- 
didates. The output vector was shared because it was 
written by any processor that found a new prime, yet 
the potential divisors never changed once found. By 
modifying the program so that each processor copied 
the divisors it needed from the shared output vector 
into a private vector, the value of o! (fraction of local 
references) was increased from 0.66 to 1.00. 

Not all false sharing is explicit in application source 
code; a significant amount is created implicitly by lan- 
guage processors. Compilers create unnamed data, such 
as tables of addresses and other constants, that we can- 
not control. Loaders arrange data segments without 
regard to what objects are near to and far from each 
other. 

We believe, and our experience to date confirms, that 
simple techniques for automatic page placement can 
achieve most of the benefit attainable by the operating 
system and can be a useful tool in coping with a NUMA 
multiprocessor. We have found that performance can 
be further improved by reducing false sharing manu- 
ally. We expect that language processor level solutions 

to the false sharing problem can significantly reduce the 
amount of intervention necessary by the application pro- 
grammer . 

4.3 Making Placement Decisions 

The two most important goals of automatic page place- 
ment are to place pages that are private and those that 
can be replicated in local memory, and pages that are 
writably shared in global memory. Our automatic place- 
ment strategy was reasonably successful at both. 

There is a fundamental problem, however, with lo- 
cality decisions based on reference behavior: it is hard 
to make a good decision quickly. A placement strat- 
egy should avoid pinning a page in global memory on 
the basis of transient behavior. On the other hand, it 
should avoid moving a page repeatedly from one local 
memory to another before realizing that it should be 
pinned. The cost of deciding that a page belongs in 
global memory also suggests that the decision to put it 
there should not be reconsidered very often4. 

Any locality management system implemented solely 
in the operating system must suffer some thrashing of 
writably shared pages between local memories. This 
cost is probably acceptable for a limited number of small 
data objects, but may be objectionable when a signif- 
icant number of pages is involved. For data that are 
known to be writably shared (or that used to be writably 
shared but can now be replicated), thrashing overhead 
may be reduced by providing placement pragmas to ap- 
plication programs. We have considered pragmas that 
would cause a region of virtual memory to be marked 
cacheable and placed in local memory or marked non- 
cacheable and placed in global memory. We have not 
yet implemented such pragmas, but it would be easy to 
do so. 

4.4 Remote References 

Remote memory references are those made by one pro- 
cessor to the local memory of another processor. Such 
references are supported in several existing NUMA ma- 
chines, including the BBN Butterfly and IBM RP3, as 
well as the ACE. On the ACE, remote references may 
be appropriate for data used frequently by one proces- 
sor and infrequently by others. On the Butterfly and 
RP3, all memory belongs to some processor, so remote 
references provide the only means of actually sharing 
data. 

41n fact, our system never reconsiders a pinning decision (un- 
less the pinned page is paged out and back in). Our sample appli- 
cations showed no cases in which reconsideration would have led 
to a significant improvement in performance, but one can imagine 
situations in which it would. 
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Remote references permit shared data to ble placed 
closer to one processor than to another, and raise the 
issue of deciding which location is best. Unfortunately, 
we see no reasonable way of determining this location 
without pragmas or special-purpose hardware. Conven- 
tional memory-management systems provide no way to 
measure the relative frequencies of references from pro- 
cessors to pages. Tricks such as those of the lJnix pa- 
geout daemon[2], detect only the presence or absence of 
references, not their frequency. 

Without frequency of reference information, consid- 
ering only a single class of physical shared mlemory is 
both a reasonable approach and a major simplification. 
On machines without physically global memory, every 
page will need to be local to some processor, and the 
lack of frequency of reference information will be more 
of a problem than it is on machines like the ACE. In 
practice we expect that machines with only local mem- 
ory will rely on pragmas for page location, or accept the 
burden of mis-located pages. 

If desired, our pmap manager could accommodate 
both global and remote references with minimal mod- 
ification. The necessary cache transition rules are a 
straightforward extension of the algorithm presented in 
Section 2. With appropriate pragmas from the applica- 
tion, it might be worthwhile to consider this extension, 
though it is not clear whether applications actually dis- 
play reference patterns lopsided enough to make remote 
references profitable. Remote memory is likely .to be sig- 
nificantly slower than global memory on most machines. 

It is hard to predict what sorts of memory architec- 
tures will appear on future multiprocessors, beyond the 
fact that they will display non-uniform access times. 
Individual processors will probably have caches on the 
path to local memory. It may be difficult to route re- 
mote references through these caches, so it may not be 
possible for a writable shared page to reside in the local 
memory of some processor. However, even if references 
to another processor’s local memory are disallowed, it 
is entirely possible that the non-processor-local mem- 
ory will itself be non-uniform[l6], and so the problem of 
determining relative reference rates and thereby appro- 
priate locations will remain. 

4.5 Comparison to Hardware-Based 
Caches 

It is not yet clear whether the NUMA proble:m is best 
attacked in hardware (with consistent caches) or in soft- 
ware. It may be possible to construct machines such 
as the Encore Ultramax[20] or Wisconsin Mult.icube[lO] 
with hundreds or even thousands of processors. If these 
machines are successful they will avoid the overhead of 
software-based solutions and may also reduce the im- 

pact of false sharing by performing their migration and 
replication at a granularity (the cache line) significantly 
finer than the page. On the other hand, machines with- 
out hardware cache consistency are likely to be substan- 
tially cheaper to build, and with reasonable software (to 
move pages and to reduce false sharing) may work about 
as well. 

4.6 Mach as a Base for NUMA 
Systems 

Aside from the problem of the fixed-sized logical page 
pool, which forces a fixed degree of replication, Mach 
has supported our effort very well. It allowed us to 
construct a working operating system for a novel new 
machine in a very short period of time. The number of 
changes necessary in the system was surprisingly small, 
considering that no one was attempting to solve the 
NUMA problem at the time the pmap interface was de- 
signed. Of particular use was the ability to drop map- 
pings or tighten protections essentially at whim; this 
relieved us of determining which faults were caused by 
our NUMA-related tightening of protections and which 
were caused by other things. 

One problem that we had with our version of Mach is 
that much of the Unix compatibility code is still in the 
kernel. The CMU Mach project intends to remove this 
code from the kernel and parallelize it at the same time. 
At present, however, Mach implements the portions of 
Unix that remain in the kernel by forcing them to run 
on a single processor, called the “Unix Master.” This 
causes two problems, one for all multiprocessors and one 
only for NUMA systems. The first is that execution 
of system calls can produce a bottleneck on the mas- 
ter processor. The second is that some of these system 
calls reference user memory while running on the mas- 
ter processor. It would be difficult and probably unwise 
to treat these references differently from all the others. 
Thus pages that are used only by one process (stacks 
for example) but that are referenced by Unix system 
calls can be shared writably with the master processor 
and can end up in global memory. To ease this prob- 
lem, we identified several of the worst offending system 
calls (sigvec, fstat and ioctl) and made ad hoc changes 
to eliminate their references to user memory from the 
master processor. 

4.7 Scheduling for Processor Affinity 

Schedulers on NUMA machines should almost certainly 
maintain an affinity between processors and the pro- 
cesses that run on them because of the large amounts of 
process state that reside near the processors. Even on 
traditional UMA (uniform memory access) multiproces- 
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sors, the state in TLBs and instruction and data caches 
can make affinity desirable. 

The scheduler that came with our version of Mach had 
little support for processor affinity. There was concep- 
tually a single queue of runnable processes, from which 
available processors selected the next process to run. On 
the ACE this resulted in processes moving between pro- 
cessors far too often. We therefore modified the Mach 
scheduler to bind each newly created process to a pro- 
cessor on which it executed everything except Unix sys- 
tem calls. We assigned processors sequentially by pro- 
cessor number, skipping processors that were busy at 
the time unless all processors were busy. This approach 
proved adequate for our toy benchmarks and for a Unix- 
like environment with short-lived processes, but it is not 
a real solution. For load balancing in the presence of 
longer-lived compute-bound applications, we will need 
to migrate processes to new homes and move their local 
pages with them. 

5 Future Work 

The study of parallel programming on NUMA machines 
is still in its infancy. We have already mentioned sev- 
eral areas we think deserve further investigation. Chief 
among these is false sharing (Section 4.2) and what 
language processors can do to automate its reduction. 
The study of parallel applications on NUMA machines 
should continue. We need experience with a much wider 
application base than we have at present. Trace-driven 
analyses can provide much more detailed understand- 
ing than what we could garner through the processor- 
time based approach described in Section 3. Processor 
scheduling on NUMA machines (Section 4.7) remains 
to be explored, as does the value of having applications 
provide placement pragmas (Sections 4.3 and 4.4) to 
improve placement or to reduce automatic placement 
overhead. 

The comparison of alternative policies for NUMA 
page placement is an active topic of current research[7, 
11, 131. It is tempting to consider ever more complex 
policies, but our work suggests that a simple policy can 
work extremely well. We doubt that substantial addi- 
tional gains can be obtained in the operating system. It 
may in some applications be worthwhile periodically to 
reconsider the decision to pin a page in global memory. 
It may also be worth designing a virtual memory system 
that integrates page placement more closely with pagein 
and pageout, or that attempts to achieve the simplicity 
of our cache approach without requiring that all pages 
be backed by global memory or that local memory be 
used only as a cache[l4]. 

The operating system itself is a parallel application 

worthy of investigation. We have not attempted to place 
any kernel data structures in local memory other than 
those required to be there by the hardware. Increasing 
the autonomy of the kernel from processor to proces- 
sor and making private any kernel data that need not 
be shared should both improve performance on small 
multiprocessors and improve scalability to large ones. 

6 Summary and Conclusions 

We have explored what a virtual memory paging subsys- 
tem can do about the problem of data placement in mul- 
tiprocessors with non-uniform memory access (NUMA) 
times. Our approach was: 

l to simplify the application program view of memory 
by using automatic placement of virtual pages to 
hide the NUMA memory characteristics, 

l to consider only a simple, two-level (local and 
global) memory hierarchy, even if the actual NUMA 
memory system is more complex, and 

l to use a simple cache-like strategy for placing and 
replicating pages. 

Our placement strategy was to replicate read-only 
pages, including those that could have been written but 
never actually were. Written pages were placed in local 
memory if only one processor accessed them or in global 
memory if more than one processor did. 

We tested our approach in a version of the Mach op- 
erating system running on the IBM ACE multiprocessor 
workstation. We found: 

that our simple page placement strategy worked 
about as well as any operating system level strategy 
could have, 

that this strategy could be implemented easily 
within the Mach machine-dependent pmap layer, 
and 

that the dominant remaining source of avoidable 
performance degradation was false sharing, which 
could be reduced by improving language processors 
or by tuning applications. 

We found our ,automatic page placement to be an ad- 
equate tool for coping with a NUMA memory system. 
It presented applications with a simple view of virtual 
memory that was not much harder to program than 
the flat shared memory of a traditional UMA multi- 
processor. Correct application programs ran correctly 
and could then be tuned to improve performance. Our 
placement strategy was easy to predict, it put pages in 
appropriate places, and it ran at acceptable cost. 
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False sharing is an accident of colocating data objects 
with different reference characteristics in the satme vir- 
tual page, and is thus beyond the scope of operating 
system techniques based on placement of virtua.1 pages. 
Because shared pages are placed in global memory, false 
sharing causes memory references to be made to slower 
global memory instead of faster local memory. We found 
that false sharing could be reduced, often dramatically, 
by tuning application code. Additional work is needed 
at the language processor level to make it easier to re- 
duce this source of performance degradation. 
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