
Simple But Effective Techniques
for NUMA Memory Management

William J. Boloskyl Robert P. Fitzgerald2 Michael L. Scott’

Abstract

Multiprocessors with non-uniform memory access times
introduce the problem of placing data near the processes
that use them, in order to improve performance. We
have implemented an automatic page placement strat-
egy in the Mach operating system on the IBM ACE
multiprocessor workstation. Our experience indicates
that even very simple automatic strategies can produce
nearly optimal page placement. It also suggests that the
greatest leverage for further performance improvement
lies in reducing false sharing, which occurs when the
same page contains objects that would best be placed
in different memories.

1 Introduction

Shared-memory multiprocessors are attractive machines
for parallel computing. They not only support a model
of parallelism based on the familiar von Neumann
paradigm, they also allow processes to interact effi-
ciently at a very fine level of granularity. Simple physics
dictates, however, that memory cannot simultaneously
be located very close to a very large number of proces-
sors. Memory that can be accessed quickly by one node
of a large multiprocessor will be distant from many other
nodes. Even on a small machine, price/performance
may be maximized by an architecture with non-uniform
memory access times.

On any Non-Uniform Memory Access (NUMA) ma-
chine, performance depends heavily on the extent to
which data reside close to the processes that use them.

1 Department of Computer Science,
University of Rochester, Rochester, NY 14627.
internet: boloskyOcs.rochester.edu, scott&s.rochester.edu

21BM Thomas J. Watson Research Center,
PO Box 218, Yorktown Heights, NY 10598-0218.
internet: fitzgerald@ibm.com

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 08979L338-3/89/0012/0019 $1.50

In order to maximize locality of reference, data repiica-
tion and migration can be performed in hardware (with
consistent caches), in the operating system, in compilers
or library routines, or in application-specific user code.
The last option can place an unacceptable burden on
the programmer and the first, if feasible at all in large
machines, will certainly be expensive.

We have developed a simple mechanism to automat-
ically assign pages of virtual memory to appropriately
located physical memory. By managing locality in the
operating system, we hide the details of specific mem-
ory architectures, so that programs are more portable.
We also address the locality needs of the entire applica-
tion mix, a task that cannot be accomplished through
independent modification of individual applications. Fi-
nally, we provide a migration path for application de-
velopment. Correct parallel programs will run on our
system without modification. If better performance is
desired, they can then be modified to better exploit au-
tomatic page placement, by placing into separate pages
data that are private to a process, data that are shared
for reading only, and data that are writably shared. This
segregation can be performed by the applications pro-
grammer on an ad hoc basis or, potentially, by special
language-processor based tools.

We have implemented our page placement mechanism
in the Mach operating system[l] on a small-scale NUMA
machine, the IBM ACE multiprocessor workstation[9].
We assume the existence of faster memory that is local
to a processor and slower memory that is global to all
processors, and believe that our techniques will gener-
alize to any machine that fits this general model.

Our strategy for page placement is simple, and was
embedded in the machine-dependent portions of the
Mach memory management system with only two man-
months of effort and 1500 lines of code. We use local
memory as a cache over global, managing consistency
with a directory-based ownership protocol similar to
that used by Li[15] for distributed shared virtual mem-
ory. Briefly put, we replicate read-only pages on the pro-
cessors that read them and move written pages to the
processors that write them, permanently placing a page
in global memory if it becomes clear that it is being writ-
ten routinely by more than one processor. Specifically,

19

we assume when a program begins executing that every
page is cacheable, and may be placed in local memory.
We declare that a page is noncacheable when the con-
sistency protocol has moved it between processors (in
response to writes) more than some small fixed number
of times. All processors then access the page directly in
global memory.

We believe that simple techniques can yield most of
the locality improvements that can be obtained by an
operating system. Our results, though limited to a sin-
gle machine, a single operating system, and .a modest
number of applications, support this intuition. We have
achieved good performance on several sample applica,
tions, and have observed behavior in others that sug-
gests that no operating system strategy will olbtain sig-
nificantly better results without also making language-
processor or application-level improvements in the way
that data are grouped onto pages.

We describe our implementation in Section 2. We
include a brief overview of the Mach memory manage-
ment system and the ACE architecture. We present
performance measurements and analysis in Section 3.
Section 4 discusses our experience and what we think
it means. Section 5 suggests several areas for .future re-
search. We conclude with a summary of what we have
learned about managing NUMA memory.

2 Automatic Page Placement
in a Two-Level Memory

2.1 The Mach Virtual Memory
System

Perhaps the most important novel idea in Mach is that
of machine-independent virtual memory[l7]. The bulk
of the Mach VM code is machine-independent and is
supported by a small machine-dependent component,
called the pmap layer, that manages address translation
hardware. The pmap interface separates the machine-
dependent and machine-independent parts of the VM
system.

A Mach pmap (physical map) is an abstract ob-
ject that holds virtual to physical address translations,
called mappings, for the resident pages of a single virtual
address space, which Mach calls a task. The pmap in-
terface consists of such pmap operations as pmap-enter,
which takes a pmap, virtual address, physicarl address
and protection and maps the virtual addre,ss to the
physical address with the given protection in the given
pmap; pmap-protect, which sets the protection on all
resident pages in a given virtual address range within a
pmap; pmap,remove, which removes all mappings in a
virtual address range in a pmap; and pmap-remove-all,

which removes a single physical page from all pmaps in
which it is resident. Other operations create and de-
stroy pmaps, fill pages with zeros, copy pages, etc. The
protection provided to the pmap-enter operation is not
necessarily the same as that seen by the user; Mach may
reduce privileges to implement copy-on-write or as part
of the external paging system[22].

A pmap is a cache of the mappings for an address
space. The pmap manager may drop a mapping or re-
duce its permissions, e.g. from writable to read-only, at
almost any time. This may cause a page fault, which
will be resolved by the machine-independent VM code
resulting in another pmap-enter of the mapping. This
feature had already been used on the IBM RT/PC,
whose memory management hardware only allows a sin-
gle virtual address for a physical page. We use it on the
ACE to drive our consistency protocol for pages cached
in local memory.

Mappings can be dropped, or permissions reduced,
subject to two constraints. First, to ensure forward
progress, a mapping and its permissions must persist
long enough for the instruction that faulted to complete.
Second, to ensure that the kernel works correctly, some
mappings must be permanent. For example, the kernel
must never suffer a page fault on the code that handles
page faults. This second constraint limits our ability to
use automatic NUMA page placement for kernel mem-
ory.

Mach views physical memory as a fixed-size pool of
pages. It treats the physical page pool as if it were real
memory with uniform memory access times. It is un-
derstood that in more sophisticated systems these “ma-
chine independent physical pages” may represent more
complex structures, such as pages in a NUMA mem-
ory or pages that have been replicated. Unfortunately,
there is currently no provision for changing the size of
the page pool dynamically, so the maximum amount of
memory that can be used for page replication must be
fixed at boot time.

2.2 The IBM ACE Multiprocessor
Workstation

The ACE Multiprocessor Workstation[S] is a NUMA
machine built at the IBM T. J. Watson Research Center.
Each ACE consists of a set of processor modules and
global memories connected by a custom global memory
bus (see Figure 1). Each ACE processor module has
a ROMP-C processor[l2], Rosetta-C memory manage-
ment unit and 8Mb of local memory. Every processor
can address any memory, with non-local requests sent
over a 32-bit wide, 80 Mbyte/set Inter-Processor Com-
munication (IPC) bus designed to support 16 processors
and 256 Mbytes of global memory.

20

Figure 1: ACE Memory Architecture

Packaging restrictions prevent ACES from supporting
the full complement of memory and processors permit-
ted by the IPC bus. The ACE backplane has nine slots,
one of which must be used for (up to) 16 Mbytes of
global memory. The other eight may contain either a
processor or 16 Mbytes of global memory. Thus, con-
figurations can range from 1 processor and 128 Mbytes
to 8 processors and 16 Mbytes, with a “typical” con-
figuration having 5 processors and 64 Mbytes of global
memory. Most of our experience was with ACE proto-
types having 4-8 processors and 4-16 Mbytes of global
memory.

We measured the time for a 32-bit fetches and stores
of local memory as 0.65,~s and 0.84~s respectively. The
corresponding times for global memory are 1.5~s and
1.4~s. Thus, global memory on the ACE is 2.3 times
slower than local on fetches, 1.7 times slower on stores,
and about 2 times slower for reference mixes that are
45% stores. ACE processors can also reference each
other’s local memories directly, but we chose not to use
this facility (see Section 4.4).

2.3 NUMA Management on the ACE

To minimize the costs of developing and maintaining
kernel software, we followed the Mach conventions for
machine-independent paging. We thus implemented our
support for NUMA page placement entirely within the
Mach machine-dependent pmap layer. Our pmap layer
for the ACE is composed of 4 modules (see Figure 2):
a pmap manager, an MMU interface, a NUMA man-
ager and a NUMA policy. Code for the first two mod-
ules was obtained by dividing the pmap module for the
IBM RT/PC into two modules, one of which was ex-
tended slightly to form the pmap manager, and the
other of which was used verbatim as the MMU inter-
face. The pmap manager exports the pmap interface to
the machine-independent components of the Mach VM
system, translating pmap operations into MMU opera-
tions and coordinating operation of the other modules.

-

1’

1 d

Pmap manager ++ NUMA manager

1 r t

mmu interface NUMA policy

Figure 2: ACE pmap Layer

The MMU interface module controls the Rosetta hard-
ware. The NUMA manager maintains consistency of
pages cached in local memories, while the NUMA pol-
icy decides whether a page should be placed in local or
global memory. We have only implemented a single pol-
icy to date, but could easily substitute another policy
without modifying the NUMA manager.

2.3.1 The NUMA Manager

ACE local memories are managed as a cache of global
memory. The Mach machine-independent page pool,
which we call logical memory, is the same size as the
ACE global memory. Each page of logical memory cor-
responds to exactly one page of global memory, and may
also be cached in at most one page of local memory per
processor. A logical page is in one of three states:

l read-only - may be replicated in zero or more local
memories, must be protected read-only;

l local-writable - in exactly 1 local memory, may be
writable; or

l global-writable - in global memory, may be
writable by zero or more processors.

Read-only logical pages can be used for more than
read-only code. A page of writable virtual memory may
be represented by a read-only logical page if, for exam-
ple, it contains a string table that is read but is never
written. Similarly, a shared writable page may, over
time, be local-writable in a sequence of local memories
as the cache consistency protocol moves it around. The
current content of a local-writable page is in the local
memory and must be copied back to the global page
before the page changes state.

The interface provided to the NUMA manager by
the NUMA policy module consists of a single function,
cache-policy, that takes a logical page and protection

21

unmap all sync&flush other
LOCAL copy to local copy to local No action copy to local

Read-Only Read-Only
flush all sync&flush own sync&flush other

GLOBAL No action
Global-Writable Global-Writable Global-Writable

Table 1: NUMA Manager Actions for Read Requests

(,,Global-&%?e ‘“~~~~ zl-Wrizbzher node .

flush other unmap all sync&Rush other
LOCAL copy to local copy to local No action copy to local

Local-Writable Local-Writable Local-Writable
flush all sync&flush own sync&flush other

GLOBAL No action
Global-Writable Global-Writable Global-Writable

Table 2: NUMA Manager Actions for Write Requests

and returns a location: LOCAL or GLOBAIL. Given
this location and the current known state of the page,
the NUMA manager then takes the action indicated in
Table 1 or Table 2. In each table entry, the top line
describes changes to clean up previous cache state, the
middle line tells whether the page is copied into local
memory on the current processor and the bottom line
gives the new cache state. All entries describe the de-
sired new appearance; no action may be necessary. For
example, a processor with a locally cached copy of a
page need not copy the page from global memory again.
“sync” means to copy a Local-Writable page from lo-
cal memory back to global memory. “flush” means to
drop any virtual mappings to a page and free any copies
cached in local memory (used only for Read-Only or
Local- Writable pages). “unmap” means to drop any vir-
tual mappings to a page (used only for Global-Writable
pages). “own”, “other” and “all” identify the set of
processors affected.

These NUMA manager actions are driven by requests
from the pmap manager, which are in turn dlriven by
normal page faults handled by the machine-independent
VM system. These faults occur on the first reference to
a page, when access is needed to a page rem.oved (or
marked read-only) by the NUMA manager, 011 when a
mapping is removed due to Rosetta’s restriction of only

a single virtual address per physical page per processor.
When uninitialized pages are first touched, Mach

fills them with zeros in the course of handling the ini-
tial zero-fill page fault. It does this by calling the
pmap,tero,page operation of the pmap module. The
page is then mapped using pmap-enter and processing
continues. Since the the processor using the page is
not known until pmap-enter time, we lazy evaluate the
zero-filling of the page to avoid writing zeros into global
memory and immediately copying them.

2.3.2 A Simple NUMA Policy That Limits
Page Movement

In our ACE pmap layer, the NUMA policy module de-
cides whether a page should be placed in local or global
memory. We have implemented one simple policy (in
addition to those we used to collect baseline timings)
that limits the number of moves that a page may make.
We initially place all pages in local memory because it is
faster. Read-only pages are thus replicated and private
writable pages are moved to the processor that writes
them. Writably-shared pages are moved between local
memories as the NUMA manager keeps the local caches
consistent. Our policy counts such moves (transfers of
page ownership) for each page and places the page in

33

global memory when a threshold (a system-wide boot-
time parameter which defaults to four) is passed. The
page then remains in global memory until it is freed.

In terms of Tables 1 and 2, our policy answers LOCAL
for any page that has not used up its threshold number
of page moves and GLOBAL for any page that has.
Once the policy decides that a page should remain in
global memory, we say that the page has been pinned.

2.3.3 Changes to the Mach pmap Interface
to Support NUMA

Our experience with Mach on the ACE confirms the ro-
bust design of the Mach pmap interface. Although this
machine-independent paging interface was not designed
to support NUMA architectures’, we were able to imple-
ment automatic NUMA page placement entirely within
the ACE pmap layer with only three small extensions
to support pmap-level page caching:

0 pmapfree-page operations,

l min-max protection arguments to pmap,enter, and

0 a target processor argument to pmap-enter.

The original machine-independent component of the
Mach VM system did not inform the pmap layer when
physical page frames were freed and reallocated. This
notification is necessary so that cache resources can
be released and cache state reset before the page
frames are reallocated. We split the notification into
two parts to allow lazy evaluation. When a page is
freed, pmapfree,page starts lazy cleanup of a physical
page and returns a tag. When a page is reallocated,
pmapfree,pagesync takes a tag and waits for cleanup
of the page to complete.

Our second change to the pmap interface added a
second protection parameter to the pmap-enter opera-
tion. Pmap-enter creates a mapping from a virtual to a
physical address. As originally specified, it took a sin-
gle protection parameter indicating whether the map-
ping should be writable or read-only. Since machine-
independent code uses this parameter to indicate what
the user is legally permitted to do to the page, we can
interpret it as the maximum (loosest) permissions that
the pmap layer is allowed to establish. We added a
second protection parameter to indicate the minimum
(strictest) permissions required to resolve the fault.
Our pmap module is therefore able to map pages with
the strictest possible permissions-replicating writable
pages that are not being written by provisionally mark-
ing them read-only. Subsequent write faults will make
such pages writable after first eliminating replicated

l And at least some of the Mach implementors considered
NUMA machines unwise[l9].

copies. The pmap layers of non-NUMA systems can
avoid these subsequent faults by initially mapping with
maximum permissions.

Our third change to the pmap interface reduced the
scope of the pmap,enter operation, which originally
added a mapping that was available to all processors.
Mach depended on this in that it did not always do the
pmap-enter on the processor where the fault occurred
and might resume the faulting process on yet another
processor. Since NUMA management relies on under-
standing which processors are accessing which pages, we
wanted to eliminate the creation of mappings on proces-
sors which did not need them. We therefore added an
extra parameter that specified what processor needed
the mapping. Newer versions of Mach may always in-
voke pmap-enter on the faulting processor[21], so the
current processor id could be used as an implicit param-
eter to pmap,enter in place of our explicit parameter.

3 Performance Results

To discover the effectiveness and cost of our NUMA
management system, we measured several multiproces-
sor applications running on the ACE.

3.1 Evaluating Page Placement

We were primarily interested in determining the effec-
tiveness of our automatic placement strategy at placing
pages in the more appropriate of local and global mem-
ory. Since most reasonable NUMA systems will repli-
cate read-only data and code, we focused on writable
data. We define four measures of execution time:

l Tnuma is total user time (process virtual time as
measured by the Unix time(l) facility) across all
processors when running our NUMA strategy.

l Toptimal is total user time when running under a
page placement strategy that minimizes the sum of
user and NUMA-related system time using future
knowIedge.

09 Tiocal is the total user time of the application, were
it possible to place all data in local memory.

l Tgrobol is total user time when running with all
writable data located in global memory.

We measured T,,,, by running the application under
our normal placement policy. We measured Tgrobal by
using a specially modified NUMA policy that placed all
data pages in global memory.

We would have liked to compare T,,,, to Toptimal
but had no way to measure the latter, so we compared

23

to Trocal instead. Tloeai is less than Toptimal because ref-
erences to shared data in global memory cannot. be made
at local memory speeds. Tloear thus cannot actually be
achieved on more than one processor. We measured
Tfocal by running the parallel applications with a single
thread on a single processor system, causing all data
to be placed in 1ocaI memory. We were forced to use
single threaded cases because our applications synchro-
nize their threads using non-blocking spin locks. With
multiple threads time-sliced on a single processor, the
amount of time spent in a lock would be deter:mined by
this time-shcing, and so would invalidate the user time
measurements. None of the applications spend much
time contending for locks in the multiprocessa,r runs.

A simple measure of page placement effectiveness,
which we call the “user-time expansion factor.,” y,

T numa = 7 T local, (1)

can be misleading. A small value of y may mean that
our page placement did well, that the application spends
little of its time referencing memory, or that local mem-
ory is not much faster than global memory. To better
isolate these effects, we model program execution time
as:

T numa = Xoear { (1 -P> + P [a + (I- 4gI) (2)

L and G are the times for a 32-bit memory reference
to local and global memory, respectively. As noted in
section 2.2, G/L is about 2 on ACE (2.3 if all references
are fetches).

Our model incorporates two sensitivity factors:

l (Y is the fraction of references to writable data that
were actually made to local pages while running
under our NUMA page placement strategy.

l p is the fraction of total user run time that would
be devoted to referencing writable data if all of the
memory were local.

CY resembles a cache hit ratio: cache “hits” are refer-
ences to local memory and cache “misses” are references
to gIoba1 memory. (Y measures both the use of private
(non-shared) memory by the application and the success
of the NUMA strategy in making such memory local. A
“good” value for a is close to 1.0, indicating that most
references are to local memory. A smaller value indi-
cates a problem with the placement strategy or, as we
typically found in practice, heavy use of shared memory
in the application. Application sharing would not. have
been included, had we been able to use Toptimal instead

of 3oca1.
/3 measures the sensitivity of an application to the

performance of writable memory. It depends both on

the fraction of instructions that reference writable mem-
ory and on the speed of the instructions that do not
(which itself is a function of local memory performance
and of processor speed). Small values of ,f3 indicate that
the program spends little of its time referencing writable
memory, so the overall run time is relatively unaffected
by (Y.

In the Tgiobal runs, all writable data memory refer-
ences were to global memory and none to local, thus cv
for these runs was 0. Substituting Tg{obar for T,,,, and
0 for (Y in equation 2 yields a model of the all-global
runs:

Solving equation 3 simultaneously with equation 2 for
(Y and ,B yields:

T global - T’ma
(Y=

Tgmal - Zoeal

Our use of total user time eliminates the concurrency
and serialization artifacts that show up in elapsed (wall
clock) times and speedup curves. We are not concerned
with how much faster our applications run on eight pro-
cessors than they do on one; we are concerned with how
much faster they run with our NUMA strategy than
they do with all writable data in global memory. The
greatest weakness of our model is that, because we use
Zoeol rather than Toptimal, it fails to distinguish between
global references due to placement “errors”, and those
due to legitimate use of shared memory. We were able
to make this distinction only through ad hoc examina-
tion of the individual applications. We have begun to
make and analyze reference traces of parallel programs
to rectify this weakness.

On the whole, our evaluation method was both simple
and informative. It was within the capacity of the ACE
timing facilities2. It was not unduly sensitive to loss
of precision despite the arithmetic in Equations 4 and
5. It did require that measurements be repeatable, so
applications such as simulated annealing were beyond it.
It also required that measurements not vary too much
with the number of processors. Thus applications had
to do about the same amount of work, independent of
the number of processors, and had to be relatively free
of lock, bus or memory contention.

2The only clock on the ACE is a 5OHz timer interrupt.

24

Application Application 1 ~l$l,,b~r 1 T nzlma
ParMult ParMult 1 67.4 1 67.4
Gfetch3 Gfetch3
IMatMult3 IMatMult3
Primes1 Primes1

i

Primes2 Primes2
Primes3 Primes3
FFT FFT
PlvTrace PlyTrace

60.2 60.2
82.1 82.1

18502.2 18502.2

L 5754.3 5754.3
39.1 39.1

687.4 687.4
56.9 56.9

60.2 60.2
69.0 69.0

17413.9 17413.9
4972.9 4972.9

37.4 37.4
449 .o 449 .o
38.8 38.8

ZOCd ZOCd
67.3 67.3
26.5 26.5
68.2 68.2

17413.3 17413.3
4968.9 4968.9

28.8 28.8
438.4 438.4
38.0 38.0

a! P
=F na .oo

0 1.0
.94 .26
1.0 .06
.99 .16
.17 .36
.96 .56
.96 .5O

Y
1.00
2.27
1.01
1.00
1.00
1.30
1.02
1.02

Table 3: Measured user times in seconds and computed model parameters.

3.2 The Application Programs

Our application mix consists of a fast Fourier trans-
form (FFT), a graphics rendering program (PlyTrace),
three prime finders (Primesl-3) and an integer matrix
multiplier (IMatMult), as well as a program designed to
spend all of its time referencing shared memory (Gfetch)
and one designed not to reference shared memory at all
(ParMult). FFT is an EPEX FORTRAN application,
while the other appIications are written using the Mach
C-Threads package.

The Mach C-Threads package[6] provides a parallel
programming environment with a single, uniform mem-
ory. All data is implicitly shared; truly private and
truly shared data may be indiscriminately interspersed
in the program load image by the compiler and loader.
Any desired segregation of private and shared data must
be induced by hand, by padding data structures out to
page boundaries.

EPEX FORTRAN[18] provides a parallel program-
ming environment with private and shared memory.
Variables are implicitly private unless explicitly tagged
“shared.” Shared data is automatically gathered to-
gether and separated from private data by the EPEX
preprocessor.

ParMult and Gfetch are at the extremes of the spec-
trum of memory reference behavior. The ParMult pro-
gram does nothing but integer multiplication. Its only
data references are for workload allocation and are too
infrequent to be visible through measurement error. Its
,0 is thus 0 and its a: irrelevant. The Gfetch program
does nothing but fetch from shared virtual memory.
Loop control and workload allocation costs are too small
to be seen. Its p is thus 1 and its Q 0.

The IMatMult program computes the product of a
pair of 200x200 integer matrices. Workload allocation

3Since Gfetch and IMatMult do almost all fetches and no
stores, their computations were done using 2.3 for G/L. The
other applications used G/L as 2 to reflect a reasonable balance
of loads and stores.

parcels out elements of the output matrix, which is
found to be shared and is placed in global memory.
Once initialized, the input matrices are only read, and
are thus replicated in local memory. This program em-
phasizes the value of replicating data that is writable,
but that is never written. The high a reflects the 400
local fetches per global store (the memory references
required for the dot product resulting in an output ele-
ment), while the low p reflects the high cost of integer
multiplication on the ACE. Had we multiplied floating
point matrices, the even higher cost of floating multi-
plication would have overwhelmed the data reference
costs.

The three primes programs use different parallel ap-
proaches to finding the prime numbers between 1 and
10,000,000. Primesl[4] determines if an odd number is
prime by dividing it by all odd numbers less than its
square root and checking for remainders. It computes
heavily (division is expensive on the ACE) and most of
its memory references are to the stack during subrou-
tine linkage. Primes2[5] divides each prime candidate
by all previously found primes less than its square root.
Each thread keeps a private list of primes to be used
as divisors, so virtually all data references are local. It
also computes heavily, but makes local data references
to fetch potential divisors.

The primes3 algorithm is a variant of the Sieve of Er-
atosthenes, with the sieve represented as a bit vector of
odd numbers in shared memory. It produces an integer
vector of results by masking off composites in the bit
vector and scanning for the remaining primes. It refer-
ences the shared bit vector heavily, fetching and storing
as it masks off bits representing composite numbers. It
also computes heavily while scanning the bit vector for
primes.

The FFT program, which does a fast Fourier trans-
form of a 256 by 256 array of floating point numbers, was
parallelized using the EPEX FORTRAN preprocessor.
In an independent study, Baylor and Rathi analyzed
reference traces from an EPEX fft program and found

25

Sglobal As T’,,, AW’-numa
7

1.2 3.3 82.1 4.0%
2.3 17413.9 0%

29.9 8.5 2Y4 4972.9 0.4%
11.2 1.9 9.3 37.4 24.9%

10.0 11.1 449.0 2.5%

Table 4: Total slystem time for runs on 7 processors.

that about 95% of its data references were to private
memory[3]. Although there are differences in compilers
and runtime support, we think that this supports our
contention that our NUMA strategy has placed pages
effectively and that the remaining global memory refer-
ences are due to the algorithm in the application pro-
gram.

PlyTrace[8] is a floating-point intensive C-threads
program for rendering artificial images in which surfaces
are approximated by polygons. One of its phases is par-
allelized by using as a work pile its queue of lists of
polygons to be rendered.

Overall, our cy and y values were remarkably good,
the exceptions being the Gfetch program, which was de-
signed to be terrible, and the Primes3 program, which
makes heavy legitimate use of writably shared memory.
We see little hope that programs with such heavy shar-
ing can be made to perform better on NUMA machines
without restructuring to reduce their use of writably
shared data.

3.3 Page Placement Overhead

The results in Section 3.2 reflect only the time spent
by the applications in user state, and not the time the
NUMA manager uses for page movement and book-
keeping overhead. Table 4 shows the difference in sys-
tem time between the all global and NUMA managed
cases. This difference is interesting because system
time includes not only page movement, but also sys-
tem call time and other unrelated overhead; since the
all global case moves no pages, essentially no time is
spent on NUMA management, while the system call and
other overheads stay the same. Comparing this differ-
ence with the NUMA managed user times in Table 3
shows that for all but Primes3 the overhead was small,
Primes3 suffers from having a large amount of mem-
ory almost all of which winds up being placed in global
memory, but which is first copied from local memory to
local memory several times. Since the sieve runs quickly,
this memory is allocated rapidly relative to the amount
of user time user, resulting in a high system/user time
ratio.

We have put little effort into streamlining our NUMA
management code. We were more interested in de-
termining what constituted a good placement strategy’
than in how best to code that strategy. Streamlining
should greatly reduce system time, as would fast page-
copying hardware.

4 Discussion

4.1 The Two-Level NUMA Model

Supporting only a single class of shared physical mem-
ory (global memory) was our most important simplifica-
tion of the NUMA management problem. We chose to
use a two-level NUMA memory model (with only local
and global memory) because there was an obvious corre-
spondence between it and a simple application memory
model that had only private and shared virtual memory.
We saw a simple way for automatic page placement to
put pages that were private or that could be replicated
in local memory and to put pages that were shared in
global memory. We hoped that such automatic place-
ment would be a useful tool, making it easier to get
parallel programs running, with subsequent tuning to
improve performance possible when necessary.

Our experience with Mach on the ACE has been
heartening in this respect. We found that we were
largely able to ignore the quirks of the memory system
and spent most of our energy while writing applications
in debugging application errors, often in synchroniza-
tion and concurrency control. Automatic page place-
ment worked well enough and predictably enough that
we could often ignore it and could make it do what we
wanted when we cared.

4.2 The Impact of False Sharing

By definition, an object is writably shared if it is written
by at least one processor and read or written by more
than one. Similarly, a virtual page is writably shared
if at least one processor writes it and more than one
processor reads or writes it. By definition, an object

26

that is not writably shared, but that is on a writably
shared page is falsely shared.

In a NUMA machine where writably shared pages
are placed in slower global memory, accesses to falsely
shared objects are slower than they would be if the ob-
jects had been placed in faster local memory. This per-
formance degradation makes false sharing a problem.

Many applications put objects on pages with little
regard for the threads that will access the objects. The
resulting false sharing places an inherent limit on the
extent to which the “NUMA problem” can be solved
in an operating system, because falsely shared objects
cannot all be placed nearest the processor that is using
them.

Our efforts to reduce false sharing in specific ap-
plications were manual and clumsy but effective. We
forced proximity of objects by merging them into a sin-
gle large object. We forced separation by adding page-
sized padding around objects. We separately coalesced
cacheable and non-cacheable objects and padded around
them, so that they would be placed in local or global
memory as appropriate. We created new private objects
to hold data that would otherwise be falsely shared. By
eliminating false sharing, our changes improved the val-
ues of T,,,, and y, and also brought Toplima closer
to Tloeal, by decreasing the amount of data that was
“shared.” These changes did not significantly change
the ratio of Tnunaa to Toptinaal.

As an example, consider the primes2 program, which
tested for new primes by dividing by those previously
found. An initial version of the program segregated
most private and shared data, but used the output vec-
tor of previously found primes as divisors for new can-
didates. The output vector was shared because it was
written by any processor that found a new prime, yet
the potential divisors never changed once found. By
modifying the program so that each processor copied
the divisors it needed from the shared output vector
into a private vector, the value of o! (fraction of local
references) was increased from 0.66 to 1.00.

Not all false sharing is explicit in application source
code; a significant amount is created implicitly by lan-
guage processors. Compilers create unnamed data, such
as tables of addresses and other constants, that we can-
not control. Loaders arrange data segments without
regard to what objects are near to and far from each
other.

We believe, and our experience to date confirms, that
simple techniques for automatic page placement can
achieve most of the benefit attainable by the operating
system and can be a useful tool in coping with a NUMA
multiprocessor. We have found that performance can
be further improved by reducing false sharing manu-
ally. We expect that language processor level solutions

to the false sharing problem can significantly reduce the
amount of intervention necessary by the application pro-
grammer .

4.3 Making Placement Decisions

The two most important goals of automatic page place-
ment are to place pages that are private and those that
can be replicated in local memory, and pages that are
writably shared in global memory. Our automatic place-
ment strategy was reasonably successful at both.

There is a fundamental problem, however, with lo-
cality decisions based on reference behavior: it is hard
to make a good decision quickly. A placement strat-
egy should avoid pinning a page in global memory on
the basis of transient behavior. On the other hand, it
should avoid moving a page repeatedly from one local
memory to another before realizing that it should be
pinned. The cost of deciding that a page belongs in
global memory also suggests that the decision to put it
there should not be reconsidered very often4.

Any locality management system implemented solely
in the operating system must suffer some thrashing of
writably shared pages between local memories. This
cost is probably acceptable for a limited number of small
data objects, but may be objectionable when a signif-
icant number of pages is involved. For data that are
known to be writably shared (or that used to be writably
shared but can now be replicated), thrashing overhead
may be reduced by providing placement pragmas to ap-
plication programs. We have considered pragmas that
would cause a region of virtual memory to be marked
cacheable and placed in local memory or marked non-
cacheable and placed in global memory. We have not
yet implemented such pragmas, but it would be easy to
do so.

4.4 Remote References

Remote memory references are those made by one pro-
cessor to the local memory of another processor. Such
references are supported in several existing NUMA ma-
chines, including the BBN Butterfly and IBM RP3, as
well as the ACE. On the ACE, remote references may
be appropriate for data used frequently by one proces-
sor and infrequently by others. On the Butterfly and
RP3, all memory belongs to some processor, so remote
references provide the only means of actually sharing
data.

41n fact, our system never reconsiders a pinning decision (un-
less the pinned page is paged out and back in). Our sample appli-
cations showed no cases in which reconsideration would have led
to a significant improvement in performance, but one can imagine
situations in which it would.

27

Remote references permit shared data to ble placed
closer to one processor than to another, and raise the
issue of deciding which location is best. Unfortunately,
we see no reasonable way of determining this location
without pragmas or special-purpose hardware. Conven-
tional memory-management systems provide no way to
measure the relative frequencies of references from pro-
cessors to pages. Tricks such as those of the lJnix pa-
geout daemon[2], detect only the presence or absence of
references, not their frequency.

Without frequency of reference information, consid-
ering only a single class of physical shared mlemory is
both a reasonable approach and a major simplification.
On machines without physically global memory, every
page will need to be local to some processor, and the
lack of frequency of reference information will be more
of a problem than it is on machines like the ACE. In
practice we expect that machines with only local mem-
ory will rely on pragmas for page location, or accept the
burden of mis-located pages.

If desired, our pmap manager could accommodate
both global and remote references with minimal mod-
ification. The necessary cache transition rules are a
straightforward extension of the algorithm presented in
Section 2. With appropriate pragmas from the applica-
tion, it might be worthwhile to consider this extension,
though it is not clear whether applications actually dis-
play reference patterns lopsided enough to make remote
references profitable. Remote memory is likely .to be sig-
nificantly slower than global memory on most machines.

It is hard to predict what sorts of memory architec-
tures will appear on future multiprocessors, beyond the
fact that they will display non-uniform access times.
Individual processors will probably have caches on the
path to local memory. It may be difficult to route re-
mote references through these caches, so it may not be
possible for a writable shared page to reside in the local
memory of some processor. However, even if references
to another processor’s local memory are disallowed, it
is entirely possible that the non-processor-local mem-
ory will itself be non-uniform[l6], and so the problem of
determining relative reference rates and thereby appro-
priate locations will remain.

4.5 Comparison to Hardware-Based
Caches

It is not yet clear whether the NUMA proble:m is best
attacked in hardware (with consistent caches) or in soft-
ware. It may be possible to construct machines such
as the Encore Ultramax[20] or Wisconsin Mult.icube[lO]
with hundreds or even thousands of processors. If these
machines are successful they will avoid the overhead of
software-based solutions and may also reduce the im-

pact of false sharing by performing their migration and
replication at a granularity (the cache line) significantly
finer than the page. On the other hand, machines with-
out hardware cache consistency are likely to be substan-
tially cheaper to build, and with reasonable software (to
move pages and to reduce false sharing) may work about
as well.

4.6 Mach as a Base for NUMA
Systems

Aside from the problem of the fixed-sized logical page
pool, which forces a fixed degree of replication, Mach
has supported our effort very well. It allowed us to
construct a working operating system for a novel new
machine in a very short period of time. The number of
changes necessary in the system was surprisingly small,
considering that no one was attempting to solve the
NUMA problem at the time the pmap interface was de-
signed. Of particular use was the ability to drop map-
pings or tighten protections essentially at whim; this
relieved us of determining which faults were caused by
our NUMA-related tightening of protections and which
were caused by other things.

One problem that we had with our version of Mach is
that much of the Unix compatibility code is still in the
kernel. The CMU Mach project intends to remove this
code from the kernel and parallelize it at the same time.
At present, however, Mach implements the portions of
Unix that remain in the kernel by forcing them to run
on a single processor, called the “Unix Master.” This
causes two problems, one for all multiprocessors and one
only for NUMA systems. The first is that execution
of system calls can produce a bottleneck on the mas-
ter processor. The second is that some of these system
calls reference user memory while running on the mas-
ter processor. It would be difficult and probably unwise
to treat these references differently from all the others.
Thus pages that are used only by one process (stacks
for example) but that are referenced by Unix system
calls can be shared writably with the master processor
and can end up in global memory. To ease this prob-
lem, we identified several of the worst offending system
calls (sigvec, fstat and ioctl) and made ad hoc changes
to eliminate their references to user memory from the
master processor.

4.7 Scheduling for Processor Affinity

Schedulers on NUMA machines should almost certainly
maintain an affinity between processors and the pro-
cesses that run on them because of the large amounts of
process state that reside near the processors. Even on
traditional UMA (uniform memory access) multiproces-

28

sors, the state in TLBs and instruction and data caches
can make affinity desirable.

The scheduler that came with our version of Mach had
little support for processor affinity. There was concep-
tually a single queue of runnable processes, from which
available processors selected the next process to run. On
the ACE this resulted in processes moving between pro-
cessors far too often. We therefore modified the Mach
scheduler to bind each newly created process to a pro-
cessor on which it executed everything except Unix sys-
tem calls. We assigned processors sequentially by pro-
cessor number, skipping processors that were busy at
the time unless all processors were busy. This approach
proved adequate for our toy benchmarks and for a Unix-
like environment with short-lived processes, but it is not
a real solution. For load balancing in the presence of
longer-lived compute-bound applications, we will need
to migrate processes to new homes and move their local
pages with them.

5 Future Work

The study of parallel programming on NUMA machines
is still in its infancy. We have already mentioned sev-
eral areas we think deserve further investigation. Chief
among these is false sharing (Section 4.2) and what
language processors can do to automate its reduction.
The study of parallel applications on NUMA machines
should continue. We need experience with a much wider
application base than we have at present. Trace-driven
analyses can provide much more detailed understand-
ing than what we could garner through the processor-
time based approach described in Section 3. Processor
scheduling on NUMA machines (Section 4.7) remains
to be explored, as does the value of having applications
provide placement pragmas (Sections 4.3 and 4.4) to
improve placement or to reduce automatic placement
overhead.

The comparison of alternative policies for NUMA
page placement is an active topic of current research[7,
11, 131. It is tempting to consider ever more complex
policies, but our work suggests that a simple policy can
work extremely well. We doubt that substantial addi-
tional gains can be obtained in the operating system. It
may in some applications be worthwhile periodically to
reconsider the decision to pin a page in global memory.
It may also be worth designing a virtual memory system
that integrates page placement more closely with pagein
and pageout, or that attempts to achieve the simplicity
of our cache approach without requiring that all pages
be backed by global memory or that local memory be
used only as a cache[l4].

The operating system itself is a parallel application

worthy of investigation. We have not attempted to place
any kernel data structures in local memory other than
those required to be there by the hardware. Increasing
the autonomy of the kernel from processor to proces-
sor and making private any kernel data that need not
be shared should both improve performance on small
multiprocessors and improve scalability to large ones.

6 Summary and Conclusions

We have explored what a virtual memory paging subsys-
tem can do about the problem of data placement in mul-
tiprocessors with non-uniform memory access (NUMA)
times. Our approach was:

l to simplify the application program view of memory
by using automatic placement of virtual pages to
hide the NUMA memory characteristics,

l to consider only a simple, two-level (local and
global) memory hierarchy, even if the actual NUMA
memory system is more complex, and

l to use a simple cache-like strategy for placing and
replicating pages.

Our placement strategy was to replicate read-only
pages, including those that could have been written but
never actually were. Written pages were placed in local
memory if only one processor accessed them or in global
memory if more than one processor did.

We tested our approach in a version of the Mach op-
erating system running on the IBM ACE multiprocessor
workstation. We found:

that our simple page placement strategy worked
about as well as any operating system level strategy
could have,

that this strategy could be implemented easily
within the Mach machine-dependent pmap layer,
and

that the dominant remaining source of avoidable
performance degradation was false sharing, which
could be reduced by improving language processors
or by tuning applications.

We found our ,automatic page placement to be an ad-
equate tool for coping with a NUMA memory system.
It presented applications with a simple view of virtual
memory that was not much harder to program than
the flat shared memory of a traditional UMA multi-
processor. Correct application programs ran correctly
and could then be tuned to improve performance. Our
placement strategy was easy to predict, it put pages in
appropriate places, and it ran at acceptable cost.

29

False sharing is an accident of colocating data objects
with different reference characteristics in the satme vir-
tual page, and is thus beyond the scope of operating
system techniques based on placement of virtua.1 pages.
Because shared pages are placed in global memory, false
sharing causes memory references to be made to slower
global memory instead of faster local memory. We found
that false sharing could be reduced, often dramatically,
by tuning application code. Additional work is needed
at the language processor level to make it easier to re-
duce this source of performance degradation.

Acknowledgements

We are greatly indebted to Dan Poff for his tremendous
help in making Mach run on the ACE, to Armando Gar-
cia and David Foster for building the ACE and making it
work as well as it does, to Bob Marinelli for early help in
bring up the ACE, to the entire Mach crew at CMU for
stimulating and lively discussion regarding the relation-
ship of Mach, the pmap interface and NUMA machines,
and to Felicia Ferlin, Dave Redell and the referees for
helping to improve the presentation of this paper.

References

PI

PI

PI

PI

[51

M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach:
A New Kernel Foundation for UNIX Development.
In Proc. Summer 1986 USENIX Conference, July
1986.

0. Babaoglu and W. Joy. Converting a Swap-Based
System to do Paging in an Architecture Lacking
Page-Referenced Bits. In Proc. 8th Symposium on
Operaling Systems Principles, pages 78-86, Decem-
ber 1981.

S. J. Baylor and B. D. Rathi. An Evalua-
tion of Memory Reference Behavior of Engineer-
ing/Scientific Applications in Parallel Systems. Re-
search Report RC-14287, IBM Research Division,
June 1989.

B. Beck and D. Olien. A Parallel Programming
Process Model. In Proc. Winter 1987 rUSENIX

Conference, pages 83-102, January 1987.

N. Carrier0 and D. Gelernter. Applications Expe-
rience with Linda. In Proc. PPEALS ‘88--Parallel
Programming: Experience with Applications, Lan-

guages and Systems, pages 173-187, July 1988.

PI

PI

PI

PI

WI

Pll

WI

[I31

P41

ml

V-51

30

E. Cooper and R. Draves. C Threads. Technical
report, Carnegie-Mellon University, Computer Sci-
ence Department, March 1987.

A. L. Cox and R. J. Fowler. The Implementation
of a Coherent Memory Abstraction on a NUMA
Multiprocessor: Experiences with PLATINUM. In
Proc. 12th Symposium on Operating Systems Prin-
ciples, December 1989.

A. Garcia. EfJicient Rendering of Synthetic Images.

PhD thesis, Massachusetts Institute of Technology,
February 1988.

A. Garcia, D. Foster, and R. Freitas. The Advanced
Computing Environment Multiprocessor Worksta-
tion. Research Report RC-14419, IBM Research
Division, March 1989.

J. R. Goodman and P. J. Woest. The Wiscon-
sin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor. In Proc. 15th Annual International
Symposium on Computer Architecture, pages 422-
431, May 1988.

M. A. Holliday. Reference History, Page Size,
and Migration Daemons in Local/Remote Archi-
tectures. In Proc. 3rd International Conference on
Architectural Support for Programming Languages
and Operating Systems, April 1989.

IBM. IBM RT/PC Hardware Technical Reference,
1988. Part Numbers SA23-2610-0, SA23-2611-0
and SA23-2612-0, Third Edition.

R. P. LaRowe and C. S. Ellis. Virtual Page Place-
ment Policies for NUMA Multiprocessors. Techni-
cal report, Department of Computer Science, Duke
University, December 1988.

T. J. LeBlanc, B. D. Marsh, and M. L. Scott. Mem-
ory Management for Large-Scale NUMA Multipro-
cessors. Technical report, Computer Science De-
partment, University of Rochester, 1989.

K. Li and P. Hudak. Memory Coherence in Shared
Virtual Memory Systems. In Proc. 5th Symposium
on Principles of Distributed Computing, pages 229-
239, August 1986.

H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and
J. Zahorjan. Introducing Memory into the Switch
Elements of Multiprocessor Interconnection Net-
works. In Proc. 16th Annual International Sym-
posium on Computer Architecture, pages 158-166,
May 1989.

D7 R. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-Independent Virtual Memory Manage-
ment for Paged Uniprocessor and Multiprocessor
Architectures. IEEE Transactions on Computers,
37(8):896-908, August 1988.

[18] J. Stone and A. Norton. The VM/EPEX FOR-
TRAN Preprocessor Reference. Research Report
RC-11408, IBM Research Division, 1985.

W A. Tevanian et al. Personal communication. Com-
ments on the inappropriateness of NUMA ma-
chines.

[20] A. W. Wilson. Hierarchical Cache/Bus Architec-
ture for Shared Memory Multiprocessors. In Proc.
14th Annual International Symposium on Com-
puter Architecture, pages 244-252, June 1987.

[21] M. Young et al. Personal communication. Com-
ments on changes to Mach fault handling in ver-
sions that support external pagers.

[22] M. Young, A. Tevanian, R. Rashid, D. Golub,
J. Eppinger, J. Chew, W. Bolosky, D. Black, and
R. Baron. The Duality of Memory and Com-
munication in the Implementation of a Multipro-
cessor Operating System. In Proc. 11th Sympo-
sium on Operating Systems Principles, pages 63-
76, November 1987.

31

