
Extensibility, Safety and Performance in the

SPIN Operating System

Brian N. Bershad Stefan Savage Przemyslaw Pardyak Emin Gun Sirer

Marc E. Fiuczynski David Becker Craig ~hambers Susan Eggers

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

This paper describes the motivation, architecture and

performance of SPIN, an extensible operating system.

SPIN provides an extension infrastructure, together

with a core set of extensible services, that allow applica-

tions to safely change the operating system’s interface

and implementation. Extensions allow an application to

specialize the underlying operating system in order to

achieve a particular level of performance and function-

ality. SPIN uses language and link-time mechanisms to

inexpensively export fine-grained interfaces to operat-

ing system services. Extensions are written in a type

safe language, and are dynamically linked into the op-

erating system kernel. This approach offers extensions

rapid access to system services, while protecting the op-

erating system code executing within the kernel address

space. SPIN and its extensions are written in Modula-3

and run on DEC Alpha workstations.

1 Introduction

SPIN is an operating system that can be dynamically

specialized to safely meet the performance and function-

ality requirements of applications. SPIN is motivated

by the need to support applications that present de-

mands poorly matched by an operating system’s imple-

mentation or interface. A poorly matched implementa-

tion prevents an application from working well, while a

poorly matched interface prevents it from working at all.

For example, the implementations of disk buffering and

Thk research was sponsored by the Advanced Research
Projects Agency, the National Science Foundation (Grants no.
CDA-91 23308 and CC! R-9200832) and by an equipment grant
from Digital Equipment Corporation. Bershad was partially sup-
ported by a National Science Foundation Presidential Faculty Fel-
lowship. Chambers was partially sponsored by a National Science
Foundation Presidential Young Investigator Award. Sirer was
supported by an IBM Graduate Student Fellowship. Fiuczynski
was partially supported by a National Science Foundation GEE
Fellowship.

Permission to make digital/hard oopy of part or all of this work for personal
or classroom use is granted without fee provided that mpies are not made
or distributed for profit or commercial advantage, the copyright notica, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To mpy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGOPS ’95 12/95 CO, USA
Q 1995 ACM 0-89791-71 5-4/9510012...$3.50

paging algorithms found in modern operating systems

can be inappropriate for database applications, result-

ing in poor performance [Stonebraker 81]. General pur-

pose network protocol implementations are frequently

inadequate for supporting the demands of high perfor-

mance parallel applications [von Eicken et al. 92]. Other

applications, such as multimedia clients and servers, and

realtime and fault tolerant programs, can also present

demands that poorly match operating system services.

Using SPIN, an application can extend the operating

system’s interfaces and implementations to provide a

better match between the needs of the application and

the performance and functional characteristics of the

system,

1.1 Goals and approach

The goal of our research is to build a general purpose

operating system that provides extensibility, safety and

good performance. Extensibility is determined by the

interfaces to services and resources that are exported

to applications; it depends on an infrastructure that

allows fine-grained access to system services. Safety de-

termines the exposure of applications to the actions of

others, and requires that access be controlled at the

same granularity at which extensions are defined. Fi-

nally, good performance requires low overhead commu-

nication between an extension and the system.

The design of SPIN reflects our view that an operat-

ing system can be extensible, safe, and fast through the

use of language and runtime services that provide low-

cost, fine-grained, protected access to operating system

resources. Specifically, the SPIN operating system re-

lies on four techniques implemented at the level of the

language or its runtime:

Co-location. Operating system extensions are dy-

namically linked into the kernel virtual address

space. Co-location enables communication between

system and extension code to have low cost.

Enforced modularity. Extensions are written in
Modula-3 [Nelson 91], a modular programming lan-

267

guage for which the compiler enforces interface

boundaries between modules. Extensions, which

execute in the kernel’s virtual address space, can-

not access memory or execute privileged instruc-

tions unless they have been given explicit access

through an interface. Modularity enforced by the

compiler enables modules to be isolated from one

another with low cost.

● Logzcal protection domatns. Extensions exist

within logical protection domains, which are ker-

nel namespaces that contain code and exported in-

terfaces. Interfaces, which are language-level units,

represent views on system resources that are pro-

tected by the operating system. An in-kernel dy-

namic linker resolves code in separate logical pro-

tection domains at runtime, enabling cross-domain

communication to occur with the overhead of a pro-

cedure call.

● Dynamtc call btndtng. Extensions execute in re-

sponse to system events. An event can describe

any potential action in the system, such as a virtual

memory page fault or the scheduling of a thread.

Events are declared within interfaces, and can be

dispatched with the overhead of a procedure call.

Co-location, enforcecl modularity, logical protection

domains, and clynamic call binding enable interfaces to

be defined and safely accessed with low overhead. How-

ever, these techniques do not guarantee the system’s ex-

tensibility. Ultimately, extensibility is achieved through

the system service interfaces themselves, which define

the set of resources and operations that are exported

to applications. SPIN provides a set of interfaces to

core system services, such as memory management and

scheduling, that rely on co-location to efficiently export

fme-grained operations, enforced modularity and logical

protection domains to manage protection, and dynamic

call binding to define relationships between system com-

ponents and extensions at runtime.

1.2 System overview

The SPIN operating system consists of a set of extension

services and core system services that execute within the

kernel’s virtual address space. Extensions can be loaded

into the kernel at any time. Once loaded, they integrate

themselves into the existing infrastructure and provide

system services specific to the applications that require

them. SPIN is primarily written in Modula-3, which
allows extensions to directly use system interfaces with-

out requiring runtime conversion when communicating

with other system code.

Although SPIN relies on language features to ensure

safety within the kernel, applications can be written in

any language ancl execute within their own virtual ad-

dress space. Only code that requires low-latency access

to system services is written in the system’s safe ex-

tension language. For example, we have used SPIN to

implement a UNIX operating system server. The bulk

of the server is written in C, and executes within its own

address space (as do applications). The server consists

of a large body of code that implements the DEC OSF/1

system call interface, and a small number of SPIN ex-
tensions that provide the thread, virtual memory, and

device interfaces required by the server.

We have also used extensions to specialize SPIN to

the needs of individual application programs. For ex-

ample, we have built a client/server video system that

requires few control and data transfers as images move

from the server’s disk to the client’s screen. Using SPIN
the server defines an extension that implements a direct

stream between the disk and the network. The client

viewer application installs an extension into the kernel

that decompresses incoming network video packets and

displays them to the video frame buffer.

1.3 The rest of this paper

The rest of this paper describes the motivation, design,

and performance of SPIN. In the next section we moti-

vate the need for extensible operating systems and dis-

cuss related work. In Section 3 we describe the sys-

tem’s architecture in terms of its protection and exten-

sion facilities. In Section 4 we describe the core services

provided by the system. In Section 5 we discuss the

system’s performance and compare it against that of

several other operating systems. In Section 6 we discuss

our experiences writing an operating system in Modula-

3. Finally, in Section 7 we present our conclusions.

2 Motivation

Most operating systems are forced to balance gener-

ality and specialization. A general system runs many

programs, but may run few well. In contrast, a spe-

cialized system may run few programs, but runs them

all well. In practice, most general systems can, with

some effort, be specialized to address the performance

and functional requirements of a particular application’s

needs, such as interprocess communication, synchro-

nization, thread management, networking, virtual mem-

ory and cache management [Draves et al. 91, Bershad

et al. 92bj Stodolsky et al. 93, Bershad 93, Yuhara

et al. 94, Maeda & Bershad 93, Felten 92, Young

et al. 87, Harty & Cheriton 91, McNamee & Armstrong

90, Anderson et al. 92, Fall & Pasquale 94, Wheeler

& Bershad 92, Romer et al. 94, Romer et al. 95, Cao

et al. 94]. Unfortunately, existing system structures

are not well-suited for specialization, often requiring a

substantial programming effort to affect evgn a small

change in system behavior. Moreover, changes intended

to improve the performance of one class of applications

can often degrade that of others. As a result, system

specialization is a costly and error-prone process.

An extensible system is one that can be changed dy-

namically to meet the needs of an application. The need

for extensibility in operating systems is shown clearly

268

by systems such as MS-DOS, Windows, or the Macin-

tosh Operating System. Although these systems were

not designed to be extensible, their weak protection

mechanisms have allowed application programmers to

directly modify operating system data structures and

code [Schulman et al. 92]. While individual applica-

tions have benefited from this level of freedom, the lack

of safe interfaces to either operating system services or

operating system extension services has created system

configuration “chaos” [Draves 93].

2.1 Related work

Previous efforts to build extensible systems have demon-

strated the three-way tension between extensibility,

safety and performance. For example, Hydra [Wulf et al.

81] defined an infrastructure that allowed applications

to manage resources through multi-level policies. The

kernel defined the mechanism for allocating resources

between processes, and the processes themselves im-

plemented the policies for managing those resources.

Hydra’s architecture, although highly influential, had

high overhead due to its weighty capability-based pro-

tection mechanism. Consequently, the system was de-

signed with “large objects” as the basic building blocks,

requiring a large programming effort to affect even a

small extension.

Researchers have recently investigated the use of

microkernels as a vehicle for building extensible sys-

tems [Black et al. 92, Mullender et al. 90, Cheriton

& Zwaenepoel 83, Cheriton & Duda 94, Thacker et al.

88]. A microkernel typically exports a small number

of abstractions that include threads, address spaces,

and communication channels. These abstractions can

be combined to support more conventional operating

system services implemented as user-level programs.

Application-specific extensions in a microkernel occur

at or above the level of the kernel’s interfaces. Unfortu-

nately, applications often require substantial changes to

a microkernel’s implementation to compensate for limi-

tations in interfaces [Lee et al. 94, Davis et al. 93, Wald-

spurger & Weihl 94].

Although a microkernel’s communication facilities

provide the infrastructure for extending nearly any ker-

nel service [Barrera 91, Abrossimov et al. 89, Forin et al.

91], few have been so extended. We believe this is be-

cause of high communication overhead [Bershad et al.

90, Draves et al. 91, Chen & Bershad 93], which lim-

its extensions mostly to coarse-grained services [Golub

et al. 90, Stevenson & Julin 95, Bricker et al, 91].

Otherwise, protected interaction between system com-

ponents, which occurs frequently in a system with fine-

grained extensions, can be a limiting performance fac-

tor.

Although the performance of cross-domain communi-

cation has improved substantially in recent years [Hamil-

ton & Kougiouris 93, Hildebrand 92, Engler et al. 95],

it still does not approach that of a procedure call, en-

couraging the construction of monolithic, non-extensible

svstems. For examDle. the L3 microkernel. even with its. ,,
aggressive design, has a protected procedure call imple-

mentation with overhead of nearly 100 procedure call

times [Liedtke 92, Liedtke 93, Int 90]. As a point of

comparison, the Intel 432 [Int 811, which provided hard-

ware su~~ort for ~rotected cross-domain transfer, had. .
a cross-domain communication overhead on the orcler

of about 10 procedure call times [Colwell 85], and was

generally considered unacceptable

Some systems rely on “little languages” to safely ex-

tend the operating system interface through the use

of interpreted code that runs in the kernel [Lee et al.

94, Mogul et al. 87, Yuhara et al. 94]. These systems

suffer from three problems. First, the languages, being

little, make the expression of arbitrary control and data

structures cumbersome, and therefore limit the range

of ~ossible extensions. Second. the interface between

the’ language’s programming environment and the rest

of the system is generally narrow, making system in-

tegration difficult. Finally, interpretation overhead can

limit performance.

Many systems provide interfaces that enable arbitrary

code to be installed into the kernel at runtime [Heide-

mann & Popek 94, Rozier et al. 88]. In these systems

the right to define extensions is restricted because any

extension can bring down the entire system; application-

specific extensibility is not possible.

Several projects [Lucco 94, Engler et al. 95, Small &

Seltzer 94] are exploring the use of software fault isola-

tion [Wahbe et al. 93] to safely link application code,

writt>n in any lamzua-ge, into the kernel’s virtual ad-

dress space. ~oftw~re Fault isolation relies on a binary

rewriting tool that inserts explicit checks on memory

references and branch instructions. These checks al-

low the system to define protected memory segments

without relying on virtual memory hardware. Software

fault isolation shows ~romise as a co-location mecha-.
nism for relatively isolated code and data segments. It

is unclear, though, if the mechanism is appropriate for a

system with fine-grained sharing, where extensions may

access a large number of segments. In addition, soft-

ware fault isolation is only a protection mechanism and

does not define an extension model or the service inter-

faces that determine the degree to which a system can

be extended.

Aegis [Engler et al. 95] is an operating system that

relies on efficient tra~ redirection to ex~ort hardware

services, such as exce~tion handling and TLB manage-

ment, directly to applications. The system itself defines

no abstractions beyond those minimally provided by the

hardware [Engler & Kaashoek 95]. Instead, conven-

tional operating system services, such as virtual memory

and scheduling, are implemented as libraries executing

in an application’s address space. System service code

executing in a library can be changed by the applica-

tion according to its needs. SPIN shares many of the
same goals as Aegis although its approach is quite dif-

ferent. SPIN uses language facilities to protect the ker-

nel from extensions and implements protected commu-

269

nication using procedure call. Using this infrastructure,

SPIN provides an extension model and a core set of ex-

tensible services. In contrast, Aegis relies on hardware

protected system calls to isolate extensions from the ker-

nel and leaves unspecified the manner by which those

extensions are defined or applied.

Several systems [Cooper et al. 91, Redell et al.

80, Mossenbock 94, Organick 73] like SPIN, have re-

lied on language features to extend operating system

services. Pilot, for inst ante, was a single-address space

system that ran programs written in Mesa [Geschke

et al, 77], an ancestor of Modula-3. In general, sys-

tems such as Pilot have depended on the language for

all protection in the system, not just for the protection

of the operating system and its extensions. In contrast,

SPIN’s reliance on language services applies only to ex-

tension code within the kernel. Tjirtual address spaces

are used to otherwise isolate the operating system and

programs from one another.

3 The SPIN Architecture

The SPIN architecture provides a software infrastruc-

ture for safely combining system and application code.

The protection model supports efficient, fine-grained ac-

cess control of resources, while the extension model en-

ables extensions to be clefined at the granularity of a

procedure call. The system’s architecture is biased to-

wards mechanisms that can be implemented with low-

cost on conventional processors. Consequently, SPIN
makes few demands of the hardware, and instead relies

on language-level services, such as static typechecking

and dynamic linking.

Relevant properties of Modula-3

SPIN and its extensions are written in Modula-3, a

general purpose programming language designed in the

early 1990’s. The key features of the language include

support for interfaces, type safety, automatic storage

management, objects, generic interfaces, threads, and

exceptions. We rely on the language’s support for ob-

jects, generic interfaces, threads, and exceptions for aes-

thetic reasons only; we find that these features simplify

the task of constructing a large system.

The design of SPIN depends only on the language’s

safety and encapsulation mechanisms; specifically inter-

faces, type safety, and automatic storage management.
An interface declares the visible parts of an implemen-

tation module, which defines the items listed in the in-

terface. All other definitions within the implementation

module are hidden. The compiler enforces this restric-

tion at compile-time. Type safety prevents code from

accessing memory arbitrarily. A pointer may only re-

fer to objects of its referent’s type, and array indexing

operations must be checked for bounds violation. The

first restriction is enforced at compile-time, and the sec-

ond is enforced through a combination of compile-time

and run-time checks. Automatic storage management

prevents memory used by a live pointer’s referent from

being returned to the heap and reused for an object of

a different type.

3.1 The protection model

A protection model controls the set of operations that

can be applied to resources. For example, a protection

model based on address spaces ensures that a process

can only access memory within a particular range of vir-

tual addresses. Address spaces, though, are frequently

inadequate for the fine-grained protection and manage-

ment of resources, being expensive to create and slow

to access [Lazowska et al. 81].

Capabilities

All kernel resources in SPIN are referenced by capabil-

ities. A capability is an unforgeable reference to a re-

source which can be a system object, an interface, or a

collection of interfaces. An example of each of these is a

physical page, a physical page allocation interface, and

the entire virtual memory system. Individual resources

are protected to ensure that extensions reference only

the resources to which they have been given access. In-

terfaces and collections of interfaces are protected to

allow different extensions to have different views on the

set of available services.

Unlike other operating systems based on capabilities,

which rely on special-purpose hardware [Carter et al.

94], virtual memory mechanisms [Wulf et al. 81], prob-

abilistic protection [Engler et al. 94], or protected mes-

sage channels [Black et al. 92], SPIN implements ca-

pabilities directly using pointers, which are supported

by the language. A pointer is a reference to a block of

memory whose type is declared within an interface. Fig-

ure 1 demonstrates the definition and use of interfaces

and capabilities (pointers) in SPIN.
The compiler, at compile-tame, prevents a pointer

from being forged or dereferenced in a way inconsis-

tent with its type. There is no run-time overhead for

using a pointer, passing it across an interface, or deref-

erencing it, other than the overhead of going to memory

to access the pointer or its referent. A pointer can be

passed from the kernel to a user-level application, which

cannot be assumed to be type safe, as an externalized

reference. An externalized reference is an.index into a

per-application table that contains type safe references

to in-kernel data structures. The references can later

be recovered using the index. Kernel services that in-
tend to pass a reference out to user level externalize the

reference through this table and instead pass out the

index.

Protection domains

A protection domain defines the set of accessible names

available to an execution context. In a conventional op-

erating system, a protection domain is implemented us-

ing virtual address spaces. A name within one domain,

270

a virtual address, has no relationship to that same name

in another domain. Only through explicit mapping and

sharing operations is it possible for names to become

meaningful between protection domains.

IIi’TERFACE Console; (* An interface. *)

TYPE T <: REFAIJY; (* Read as “Console. T is opaque. ” *)

COIJST InterfaceName = “ConsoleService”;

(* A global name *)

PROCEDURE Openo:T;

(* Open returns a capability for the console. *)

PROCEDURE Write (t: T; msg: TEXT);

PROCEDURE Read(t: VAR msg: TEXT);

PROCEDURE Close (t: T);

END Console;

MODULE Console; (* An implementation module. *)

(* The implementation of Console. T *)

TYPE Buf = ARRAY [0..31] OF CHAR;

REVEAL T = BRAHDED REF RECORD (* T is a pointer *)

input Q: Buf; (* to a record *)

output Q: Buf;

(* device specific info *)

END ;

(* Implementations of interface functions *)

(* have direct access to the revealed type. *)

PROCEDURE Openo:T = . . .

EIID Console;

creates an instance of the new type, and passes it to

a module expecting a Console. T of the original type

creates a type conflict that results in an error. The

error could be avoided by placing all extensions into

a global module space, but since modules, procedures,

and variable names are visible to programmers, we felt

that this would introduce an overly restrictive program-

ming model for the system. Instead, SPIN provides fa-

cilities for creating, coordinating, and linking program-

level namespaces in the context of protection domains.

IMTERFACE Domain;

TYPE T <: REFAMY ; (* Domain .T is opaque *)

PROCEDURE Create (coff: CoffFile. T) : T;

(* Returns a domain created from the specified object

file (’ ‘coff J > is a standard object file format) . *)

PROCEDURE CreateFromModuleo :T;

(* Create a domain containing interfaces defined by the

calling module. This function allows modules to

name and export themselves at runt ime. *)

PROCEDURE Resolve (source ,target: T) ;

(* Resolve any undefined symbols in the target domain

against any expOrted symbOls from the source. *)

PROCEDURE Combine(dl , d2 : T) :T;

(* Create a new aggregate domain that exports the

interfaces of the given domains. *)

END Domain.

MODULE Gatekeeper; (* A client *)

IMPORT Console;

VAR c: Console. T; (* A capability for *)

(* the console device *)

PROCEDURE IntruderAlert () =

BEGIN

c := Console .Openo ;

Console .Write(c, “Intruder Alert”) ;

Console .Close(c) ;

END IntruderAlert;

Figure 2: The Domain interface. This interface operates on in-

stances of type Domain. T, which are described b.v t.vpe safe point-

ers. The implementation of the Domain interface is unsafe with

respect to Modula-3 memory semantics, as it must manipulate

linker symbols and program addresses directly.

A SPIN ~rotection domain defines a set of names. or

program s~mbols, that can be referenced by code with

access to the domain. A domain, named by a capability,

is used to control dynamic linking, and corresponds to

one or more safe obiect files with one or more ex~orted
BEGI?J

EUD Gatekeeper;

Figure 1: ‘The Gatekeeper module interacts with SPIN’s Con-

sole service through the Console interface. Although Gate-

keeper. IntruderAlert mampulate. objects of type Console. T, it

is unable to access the fields within the object, even though it

executes within the same virtual address space as the Console

module.

In SPIN the naming and protection interface is at

the level of the language, not of the virtual memory

system. Consequently, namespace management must

occur at the language level. For example, if the name
c is an instance of the type Console. T, then both c and

Console. T occupy a portion of some symbolic names-

pace. An extension that redefines the type Console. T,

interfaces. An obje;t file is safe if it is unknown ‘to the

kernel but has been signed by the Modula-3 compiler,

or if the kernel can otherwise assert the object file to be

safe. For example, SPIN’s lowest level device interface

is identical to the DEC OSF/1 driver interface [Dig 93],

allowimz us to dynamically link vendor drivers into the

kernel. ‘Althoug~ the driv~rs are written in C, the kernel

asserts their safety. In general, we prefer to avoid using

object files that are “safe by assertion” rather than by

compiler verification, as they tend to be the source of

more than their fair share of bum.

Domains can be intersecting o; disjoint, enabling ap-

plications to share services or define new ones. A do-

main is created using the Create operation, which ini-
tializes a domain with the contents of a safe obiect file.

Any symbols exported by interfaces defined in”the ob-

ject file are exported from the domain, and any inl-

271

ported symbols are left unresolved. Unresolved symbols

correspond to interfaces imported by code within the

domain for which implementations have not yet been

found.

The Resolve operation serves as the basis for dynamic

linking. It takes a target and a source domain, and

resolves any unresolved symbols in the target domain

against symbols exported from the source. During reso-

lution, text and data symbols are patched in the target

domain, ensuring that, once resolved, domains are able

to share resources at memory speed. Resolution only

resolves the target domain’s undefined symbols; it does

not cause additional symbols to be exported. Cross-

linking, a common idiom, occurs through a pair of Re-

solve operations.

The Combzne operation creates linkable namespaces

that are the union of existing domains, and can be used

to bind together collections of related interfaces. For

example, the domain SpanPublic combines the system’s

public interfaces into a single domain available to ex-

tensions. Figure 2 summarizes the major operations on

domains.

The domain interface is commonly used to import

or export particular named interfaces. A module that

exports an interface explicitly creates a domain for its

interface, and exports the domain through an in-kernel

nameserver. The exported name of the interface, which

can be specified within the interface, is used to coor-

dinate the export and import as in many RPC sys-

tems [Schroeder & Burrows 90, Brockschmldt 94]. The

constant Console. Inter faceName in Figure 1 defines a

name that exporters and importers can use to uniquely

identify a particular version of a service.

Some interfaces, such as those for devices, restrict ac-

cess at the time of the import. An exporter can register

an authorization procedure with the narneserver that

will be called with the identity of the importer when-

ever the interface is imported. This fine-grained control

has low cost because the importer, exporter, and autho-

rizer interact through direct procedure calls.

3.2 The extension model

An extension changes the way in which a system pro-

vides service. All software is extensible in one way

or another, but it is the extension model that deter-

mines the ease, transparency, and efficiency with which

an extension can be applied. SPIN’s extension model

provides a controlled communication facility between

extensions and the base system, while allowing for a

variety of interaction styles. For example, the model

allows extensions to passively monitor system activity,

and provide up-to-date performance information to ap-

plications. Other extensions may offer hints to the sys-

tem to guide certain operations, such as page replace-

ment. In other cases, an extension may entirely replace

an existing system service, such as a scheduler, with a

new one more appropriate to a specific application.

Extensions in ,’5’PIN are defined in terms of events

and handlers. An event is a message that announces a

change in the state of the system or a request for ser-

vice. An event handler is a procedure that receives the

message. An extension installs a handler on an event bv

explic~ly registering the handler with the event throug~

a central dispatcher that routes events to handlers.

Event names are protected by the domain machinery

described in the previous section. An event is defined

as a procedure exported from an interface and its han-

dlers are defined as procedures having the same type. A

handler is invoked with the arguments specified by the

event raiser. 1 The kernel is preemptive, ensuring that a

handler cannot take over the ~rocessor.

The right to call a procedur~ is equivalent to the right

to raise the event named by the procedure. In fact, the

two are indistinguishable in SPIN, and any procedure

exported by an interface is also an event. The dispatcher

exploits this similarity to optimize event raise as a direct

~rocedure call where there is onlv one handler for a

~iven event. Otherwise, the disp~tcher uses dynamic

code generation [Engler & Proebsting 94] to construct

o~timized call ~aths from the raiser to the handlers.

‘ The primar~ right to handle an event is restricted

to the default implementation module for the event,

which is the module that stat’icallv exnorts the ~roce-

dure named by the event. For e~am~le, the module

Console is the default implementation module for the

event Console. Openo shown in Figure 1. Other mod-

ules may reauest that the dis~atcher install additional

handler; or &en remove the p~imary handler. For each

request, the dispatcher cent acts the primary implemen-

tation module, ~assin~ the event name ~rovided bv the

installer. The irnplem&tation module c~n deny or ~llow

the installation. If denied, the installation fails. If al-

lowed, the implementation module can provide a guard

to be associated with the handler. The guard defines

a predicate, expressed as a procedure, that is evaluated

by the dispatcher prior to the handler’s invocation. If

the predicate is true when the event is raised, then the

handler is invoked; otherwise the handler is ignored.

Guards are used to restrict access to events at a man-

ularity finer than the event name, allowing events to be

dispatched on a per-instance basis. For example, the

SPIN extension that implements 1P layer processing de-

fines the event IP. PacketArrived(pkt: IP. Packet), which

it raises whenever an 1P packet is received. The 1P

module, which defines the default implementation of the

PacketArrived event, upon each installation, constructs

a guard that compares the type field in the header of

the incoming packet against the set of 1P protocol types
that the handler may service. In this wav, 1P does not

have to export a se~arate interface for ~ach event ill-

stance. A handler can stack additional mards on an
“

event, further constraining its invocation.

There may be any number of handlers installed on a

particular event. The default implementation module

1 The dispatcher also allows a handler to specify an additional

closure to be passed to the handler during event processing, The

closure allows a single handler to be used within more than one

context.

272

may constrain a handler to execute synchronously or

asynchronously, in bounded time, or in some arbitrary

order with respect to other handlers for the same event.

Each of these constraints reflects a different degree of

trust between the default implementation and the han-

dler. For example, a handler maybe bounded by a time

quantum so that it is aborted if it executes too long. A

handler may be asynchronous, which causes it to exe-

cute in a separate thread from the raiser, isolating the

raiser from handler latency. When multiple handlers

execute in response to an event, a single result can be

communicated back to the raiser by associating with

each event a procedure that ultimately determines the

final result [Pardyak & Bershad 94]. By default, the dis-

patcher mimics procedure call semantics, and executes

handlers synchronously, to completion, in undefined or-

der, and returns the result of the final handler executed.

4 The core services

The SP1iV protection and extension mechanisms de-

scribed in the previous section provide a framework for

managing interfaces between services within the ker-

nel. Applications, though, are ultimately concerned

with manipulating resources such as memory and the

processor. Consequently, SPIN provides a set of core

services that manage memory and processor resources.

These services, which use events to communicate be-

tween the system and extensions, export interfaces with

fine-grained operations. In general, the service inter-

faces that are exported to extensions within the kernel

are similar to the secondary internal interfaces found

in conventional operating systems; they provide simple

functionality over a small set of objects. In SPIN it

is straightforward to allocate a single virtual page, a

physical page, and then create a mapping between the

two. Because the overhead of accessing each of these

operations is low (a procedure call), it is feasible to pro-

vide them as interfaces to separate abstractions, and to

build up higher level abstractions through direct com-

position. By contrast, traditional operating systems ag-

gregate simpler abstractions into more complex ones,

because the cost of repeated access to the simpler ab-

stractions is too high.

4.1 Extensible memory management

A memory management system is responsible for the

allocation of virtual addresses, physical addresses, and

mappings between the two. Other systems have demon-

strated significant performance improvements from spe-

cialized or “tuned” memory management policies that

are accessible through interfaces exposed by the mem-

ory management system. Some of these interfaces have

made it possible to manipulate large objects, such as en-

tire address spaces [Young et al. 87, Khalidi & Nelson

93], or to direct expensive operations, for example page-

out [Harty & Cheriton 91, McNamee & Armstrong 90],

entirely from user level. Others have enabled control

over relatively small objects, such as cache pages [Romer

et al. 94] or TLB entries [Bala et al. 94], entirely from

the kernel. None have allowed for fast, fine-grained con-

trol over the physical and virtual memory resources re-

quired by applications. SPIN’s virtual memory system

provides such control, and is enabled by the system’s

low-overhead invocation and protection services.

The SPIN memory management interface decomposes

memory services into three basic components: physi-

cal storage, naming, and translation. These correspond

to the basic memory resources exported by processors,

namely physical addresses, virtual addresses, and trans-

lations. Application-specific services interact with these

three services to define higher level virtual memorv ab-

stractions, such as address spaces.

Each of the three basic components of the memory

system is provided by a separate service interface, de-

scribed in Figure 3. The physical address serwce con-

trols the use and allocation of physical pages. Clients

raise the Allocate event to request physical memory with

a certain size and an optional series of attributes that

reflect preferences for machine specific parameters such

as color or contiguity. A physical page represents a unit

of high speed storage. It is not, for most purposes,

a nameable entity and may not be addressed directly

from an extension or a user program. Instead, clients

of the physical address service receive a capability for

the memory. The vtrtual address service allocates ca-

pabilities for virtual addresses, where the capability’s

referent is composed of a virtual address, a length,

and an address space identifier that makes the address

uniaue. The translation servace is used to ex~ress the re-

lati~nship between virtual addresses and ph~sical menl-

ory. This service interprets references to both virtual

and physical addresses, constructs mappings between

the two, and installs the mappings into the processor’s

memory management unit (MMU).

The translation service raises a set of events that

correspond to various exceptional MMU conditions.

For example, if a user program attempts to access

an unallocated virtual memorv address. the Transla-.
tion, BadAddress event is raised. If it accesses an al-

located, but unmapped virtual page, then the Transla-

tion. PageNotPresent event is raised. Implementors of

higher level memory management abstractions can use

these events to define services, such as demand pag-

ing, copy-on-write [Rashid et al. 87], distributed shared

memory [Carter et al. 91], or concurrent garbage col-

lection [Appel & Li 91].

The physical page service may at any time re-

claim physical memory by raising the Ph ysAddr, R,eclazm

event. The interface allows the handler for this event to

volunteer an alternative page, which may be of less im-

portance than the candidate page. The translation ser-

vice ultimately invalidates any mappings to a reclaimed

page.

The SPIN core services do not define an address space

model directly, but can be used to implement a range

of models using a variety of optimization techniques.

273

INTERFACE PhysAddr;

TYPE T <: REFANY; (* PhysAddr .T is opaque *)

PROCEDURE Allocate (size: Size; attrib: Attrib) : T;

(* Allocate some physical memory with particular

attributes. *)

PROCEDURE Deallocate (p: T) ;

PROCEDURE Reclaim (candidate: T) : T;

(* Request to reclaim a candidate page. Clients

may handle this event to nominate

alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;

TYPE T <: REFANY; (* VirtAddr .T is opaque *)

PROCEDURE Allocate (size: Size; attrib: Attrib) : T;

PROCEDURE Deallocate (v: T) ;

EED VirtAddr.

INTERFACE Translat ion;

IMPORT PhysAddr, Virt Addr;

TYPE T <: REFAHY; (* Translation. T is opaque *)

PROCEDURE Createo : T;

PROCEDURE Destroy (context : T) ;

(* Create or destroy an addressing context *)

PROCEDURE AddMapping(context : T; v: VirtAddr .T;

p: PhysAddr. T; prot : Protection) ;

(* Add [V ,P] into the named translation context

with the specified protection. *)

PROCEDURE RemoveHapping(cont ext: T; v: Virt Addr. T) ;

PROCEDURE ExamineHapping(context: T;

v : Virt Addr .T) : Protection ;

(. A few events raised during *)

(* illegal translations *)

PROCEDURE PageEotPresent (v: T) ;

PROCEDURE BadAddress (v: T) ;

PROCEDURE Protect ionFault (v: T) ;

EIiD Translation.

Figure 3: The interfaces for managing physical addresses, virtual addresses, and translations.

For example, we have built an extension that imple-

ments UNIX address space semantics for applications.

It exports an interface for copying an existing address

space, and for allocating additional memory within one.

For each new address space, the extension allocates a

new context from the translation service. This context

is subsequently filled in with virtual and physical ad-

dress resources obtained from the memory allocation

services. Another kernel extension defines a memory

management interface supporting Mach’s task abstrac-

tion [Young et al. 87]. Applications may use these in-

terfaces, or they may define their own in terms of the

lower-level services.

4.2 Extensible thread management

An operating system’s thread management system pro-

vides applications with interfaces for scheduling, concur-

rency, and synchronization. Applications, though, can

require levels of functionality and performance that a

thread management system is unable to deliver. User-

level thread management systems have addressed this
mismatch [Wulf et al. 81, Cooper & Draves 88, Marsh

et al. 91, Anderson et al. 92], but only partially.

For example, Mach’s user-level C-Threads implemen-

tation [Cooper & Draves 88] can have anomalous be-

havior because it is not well-integrated with kernel ser-

vices [Anderson et al. 92]. In contrast, scheduler aci!~-

vations, which are integrated with the kernel, have high

communication overhead [Davis et al. 93].

In SPIN an application can provide its own thread

package and scheduler that executes within the kernel.

The thread package defines the application’s execution

model and synchronization constructs. The scheduler

controls the multiplexing of the processor across multi-

ple threads. Together these packages allow an applica-

tion to define arbitrary thread semantics and to imple-

ment those semantics close to the processor and other

kernel services.

Although SPIN does not define a thread model for

applications, it does define the structure on which an

implementation of a thread model rests. This structure

is defined by a set of events that are raised or handled

by schedulers and thread packages. A scheduler multi-

plexes the underlying processing resources among com-

peting contexts, called strands. A strand is similar to

a thread in traditional operating systems in that it re-

flects some processor context. Unlike a thread though,

a strand has no minimal or requisite kernel state other

than a name. An application-specific thread package

defines an implementation of the strand interface for its

own threads.

Together, the thread package and the scheduler im-

plement the control flow mechanisms for user-space con-

texts. Figure 4 describes this interface. The interface

contains two events, Block and Unblockj that can be

raised to signal changes in a strand’s execution state. A

disk driver can direct a scheduler to block the current

strand during an 1/0 operation, and an interrupt han-

dler can unblock a strand to signal the completion of the

1/0 operation. In response to these events, the sched-

uler can communicate with the thread package man-

aging the strand using Checkpoint and Resume events,

allowing the package to save and restore execution state.

274

INTERFACE Strand;

TYPE T <: REFAEY ; (* Strand. T is opaque *)

PROCEDURE Block(s :T) ;

(* Signal to a scheduler that s is not runnable. .)

PROCEDURE Unblock (s: T) ;

(* Signal to a scheduler that s is runnable. *)

PROCEDURE Checkpoint (s: T) ;

(* Signal that s is being rescheduled and that it

should save any processor state required for

subsequent rescheduling. *)

PROCEDURE Resume (s: T) ;

(* Signal that s is being placed on a processor and

that it should reestablish any state saved during

a prior call to Checkpoint *)

El?D Strand.

Figure 4: The Strand Interface. This interface describes the

scheduling events affecting control flow that can be raised within

the kernel. Application-specific schedulers and thread packages

install handlers on these events, which are raised on behalf of

particular strands. A trusted thread package and scheduler pro-

vide default implementations of these operations, and ensure that

extensions do not install handlers on strands for which they do

not possess a capability.

Application-specific thread packages only manipulate

the flow of control for application threads executing out-

side of the kernel. For safety reasons, the responsibil-

ity for scheduling and synchronization within the ker-

nel belongs to the kernel. As a thread transfers from

user mode to kernel mode, it is checkpointed and a

Modula-3 thread executes in the kernel on its behalf.

As the Modula-3 thread leaves the kernel, the blocked

application-specific thread is resumed.

- A global scheduler implements the primary pro-

cessor allocation policy between strands. Additional

application-specific schedulers can be placed on top

of the global scheduler using Checkpoint and Resume

events to relinquish or receive control of the Drocessor.

That is, an ap~lication-specific scheduler pres~nts itself

to the global scheduler as a thread package. The deliv-

erv of the Resume event indicates that the new sched-

uler can schedule its own strands, while Checkpoint sig-

nals that the processor is being reclaimed by the global

scheduler.

The Block and Unblock events, when raised on strands

scheduled by a~~lication-s~ecific schedulers. are routed

by the disp~tch~r to the a~propriate scheduling imple-

mentation. This allows new scheduling policies to be

implemented and integrated into the ~ernel, provided

that an application-specific policy does not conflict with
the global policy. lVhile the global scheduling policy is

replaceable, it cannot be replaced by an arbitrary appli-

cation, and its replacement can have global effects. In

the current implementation, the global scheduler imple-

ments a round-robin, preemptive, priority policy.

We have used the strand interface to implement as

kernel extensions a variety of thread management inter-

faces including DEC OSF/1 kernel threads [Dig 93], C-

Threads [Cooper & Draves 88], and Modula-3 threads.

The implementations of these interfaces are built di-

rectly from strands and not layered on top of others.

The interface supporting DEC OSF/ 1 kernel threads

allows us to incorporate the vendor’s device drivers di-

rectly into the kernel. The C-Threads implementation

supports our UNIX server, which uses the Mach C-

Threads interface for concurrency. Within the kernel,

a trusted thread package and scheduler implements the

Modula-3 thread interface [Nelson 91].

4.3 Implications for trusted services

The processor and memory services are two instances of

SPIN’s core services, which provide interfaces to hard-

ware mechanisms. The core services are trusted, which

means that they must perform according to their in-

terface specification. Trust is required because the ser-

vices access underlying hardware facilities and at times

must step outside the protection model enforced by the

language. Without trust, the protection and extension

mechanisms described in the previous section could not

function safely, as they rely on the proper management

of the hardware. Because trusted services mediate ac-

cess to physical resources, applications and extensions

must trust the services that are trusted by the SPIN

kernel.

In designing the interfaces for SPIN’s trusted services,

we have worked to ensure that an extension’s failure to

use an interface correctly is isolated to the extension

itself (and any others that rely on it). For example,

the SPIN scheduler raises events that are handled by

application-specific thread packages in order to start or

stop threads. Although it is in the handler’s best in-

terests to respect, or at least not interfere with, the

semantics implied by the event, this is not enforced.

An application-specific thread package may ignore the

event that a particular user-level thread is runnable,

but only the application using the thread package will

be affected. In this way, the failure of an extension is

no more catastrophic than the failure of code executing

in the runtime libraries found in conventional systems.

5 System performance

In this section we show that SPIN enables applications

to compose system services in order to define new kernel

services that perform well. Specifically, we evaluate the

performance of SPIN from four perspectives:

. System sue. The size of the system in terms of lines
of code and object size demonstrates that advanced

runtime services do not necessarily create an oper-

ating system kernel of excessive size. In addition,

the size of the system’s extensions shows that they

275

can be implemented with reasonable amounts of

code.

● Micro bench m arks. Measurements of low-level sys-

tem services, such as protected communication,

thread management and virtual memory, show that

SPIN’S extension architecture enables us to con-

struct communication-intensive services with low

overhead. The measurements also show that con-

ventional system mechanisms, such as a system call

and cross-address space protected procedure call,

have overheads that are comparable to those in con-

ventional systems.

● Networking. Measurements of a suite of network-

ing protocols demonstrate that SPIN’S extension

architecture enables the implementation of high-

performance network protocols.

● End-to-end performance. Finally, we show that

end-to-end application performance can benefit

from SPINS architecture by describing two appli-

cations that use system extensions.

We compare the performance of operations on three

operating systems that run on the same platform: SPIN

(VO.4 of August 1995), DEC OSF/1 V2.1 which is a

monolithic operating system, and Mach 3.0 which is a

microkernel. JVe collected our measurements on DEC

Alpha 133 MHz AXP 3000/400 workstations, which are

rated at 74 SPECint 92. Each machine has 64 MBs of

memory, a 512KB unified external cache, an HP C2247-

300 lGB disk-drive, a 10 Mb/see Lance Ethernet inter-

face, and a FORE TCA-1OO 155 Mb/see ATM adapter

card connected to a FORE ASX-200 switch. The FORE

cards use programmed 1/0 and can maximally deliver

only about 53 Mb/see between a pair of hosts [Brustoloni

& Bershad 93]. We avoid comparisons with operating

systems running on different hardware as benchmarks

tend to scale poorly for a variety of architectural rea-

sons [Anderson et al. 91]. All measurements are taken

while the operating systems run in single-user mode.

5.1 System components

SPIN runs as a standalone kernel on DEC Alpha work-

stations. The system consists of five main components,

sys, core, rt, lib and salj that support different classes

of service. Table 1 shows the size of each component

in source lines, object bytes, and percentages. The first

component, sys, implements the extensibility machin-
ery, domains, naming, linking, and dispatching. The

second component, core, implements the virtual mem-

ory and scheduling services described in the previous

section, as well as device management, a disk-based and

network-based file system, and a network debugger [Re-

dell 88]. The third component, rt, contains a version of

the DEC SRC hlodula-3 runtime system that supports

automatic memory management and exception process-

ing. The fourth component, kb, includes a subset of the

standard Modula-3 libraries and handles many of the

more mundane data structures (lists, queues, hash ta-

bles, etc.) generally required by any operating system

kernel. The final component, sal, implements a low-

level interface to device drivers and the MMU, offering

functionality such as “install a page table entry,” “get

a character from the console,” and “read block 22 from

SCSI unit O.” We build sai by applying a few dozen file

cliffs against a small subset of the files from the DEC

OSF/1 kernel source tree. This approach, while increas-

ing the size of the kernel, allows us to track the vendor’s

hardware without requiring that we port ,$PIN to each

new system configuration.

Component Source size Text size Data size

hnes Y] bytes I Y/ bytes \ Y

S’vs 1646 [2.:1 42182 I 5.; I 22397 I 5.;

Ed4klLu
10866 16.5 170380 21.0 89586 20.0

14216 21.7 176171 21.8 104738 23.4

37690 57.4 411065 50.7 227259 50.8

Total ke’rne(65652 100 810550 100 447274 100

Table 1: This table shows the size of different components of the

system. The sys, core and rt components contain the interfaces

visible to extensions. The column labeled “lines” does not include

comments. We use the DEC SRC Modula-3 compiler, release 3..5.

5.2 Microbenchmarks

Microbenchmarks reveal the overhead of basic system

functions, such a protected procedure call, thread man-

agement, and virtual memory. They define the bounds

of svstem performance and ~rovide a framework for

understanding larger operations. Times presented in

this section, measured with the Alpha’s internal cycle

counter, are the averaxe of a large number of iterations,

and may therefore be overly op~imistic regarding cache

effects [Bershad et al. 92a].

Protected communication

In a conventional operating system, applications, ser-

vices and extensions communicate using two protected

mechanisms: system calls and cross-address space calls.

The first enables applications and kernel services to in-

teract. The second enables interaction between appli-

cations and services that are not part of the kernel.

The overhead of using either of these mechanisms is the

limiting factor in a conventional system’s extensibility.

High overhead discourages frequent interaction, requir-

ing that a system be built from coarse-grained interfaces

to amortize the cost of communication over large oper-

ations.

SPIN’S extension model offers a third mechanism

for protected communication. Simple procedure calls,

rather than system calls, can be used for communica-

tion between extensions and the core system. Similarly,

simple procedure calls, rather than cross-address pro-

cedure calls, can be used for communication between

applications and other services installed into the kernel.

276

In Table 2 we compare the performance of the ilif-

ferent protected communication mechanisms when in-

voking the “null procedure call” on DEC OSF/1, Mach,

and SPIN. The null ~rocedure call takes no ar~uments. “

and returns no results; it reflects only the cost of con-

trol transfer. The protected in-kernel call in SPIN

is implemented as a procedure call between two do-

mains that have been dynamically linked. Although

this test does not measure data transfer, the overhead

of passing arguments between domains, even large ar-

guments, is small because they can be passed by ref-

erence. System call overhead reflects the time to cross

the user-kernel boundary, execute a procedure and re-

turn. In Mach and DEC OSF/ 1, system calls flow from

the trap handler through to a generic, but fixed, sys-

tem call dispatcher, and from there to the requested

system call (written in C). In SPIN, the kernel’s trap

handler raises a Trap. ,Syst em Call event which is dis-

patched to a Modula-3 procedure installed as a handler.

The third line in the table shows the time to perform

a protected, cross-address space procedure call. DEC

OSF/1 supports cross-address space procedure call us-

ing sockets and SUN RPC. Mach provides an optimized

path for cross-address space communication using mes-

sages [Draves 94]. SPIN’S cross-address space procedure

call is implemented as an extension that uses system

calls to transfer control in and out of the kernel and

cross-domain procedure calls within the kernel to trans-

fer control between address spaces.

Operation DEC OSF/1 Mach SPIN

Protected in-kernel call na na .13

System call 5 7 4

Cross-address s~ace call 845 104 89

Table 2: Protected communication overhead in microseconds.
Neither DE(2 OSF/1 nor Mach support protected in-l<ernel com-
munication.

The table illustrates two points about communication

and svstem structure. First, the overhead of ~rotected

com~unication in ,SPIN can be that of procjdure call

for extensions executing in the kernel’s address space.

SPIN’s protected in-kernel calls provide the same func-

tionality as cross-address space calls in DEC OSF/1 and

Mach, ~amely the ability ‘to execute arbitrary code in

remonse to an a~nlicat,ion’s call. Second. SPIN’s ex-

te~sible architect~~e does not preclude the ‘use of tradi-

tional communication mechanisms having performance

comparable to that in non-extensible svstems. However.

the disparity between the performance”of a protected in:

kernel call and the other mechanisms encourages the use.
of in-kernel extensions.

SPIN’S in-kernel protected procedure call time is con-

servative. Our Modula-3 compiler generates code for

which an intermodule call is roughly twice as slow as an

intramodule call. A more recent version of the Modula-3
compiler corrects this disparity. In addition, our com-

piler does not perform inlining, which can be an impor-

tant optimization when calling many small procedures.

These optimizations do not affect the semantics of the

language and will therefore not change the system’s pro-

tection model.

Thread management

Thread management packages implement concurrency

control operations using underlying kernel services. As

mreviouslv mentioned. SPIN’s in-kernel threads are im-

~lemente~ with a trusted thread package exporting the

Modula-3 thread interface. Application-specific exten-

sions also rely on threads executing in the kernel to im-

plement their own concurrent operations. At user level,

thread management overhead determines the granular-

ity with which threads can be used to control concurrent.
user-level operations.

Table 3 shows the overhead of thread management

operations for kernel and user threads using the differ-

ent systems. Fork-Join measures the time to create,

schedule, and terminate a new thread, synchronizing

the termination with another thread. Ping-Pong reflects

synchronization overhead, and measures the time for a

p“air of threads to synchronize with one another; the first

thread signals the second and blocks, then the second

simals the first and blocks.

JVe measure kernel thread overheads using the na-

tive primitives provided by each kernel (thread.sleep and

thread.wakeup in DEC OSF/1 and Mach, and locks with

condition variables in SPIN). At user-level, we measure

the performance of the same program using C-Threads

on Mach and SPIN, and P-Threads, a C-Threads super-

set, on DEC OSF/ 1. The table shows measurements for

two implementations of C-Threads on SPIN. The first

implementation, labeled “layered, ” is implemented as

a user-level library layered on a set of kernel extensions

that implement Mach’s kernel thread interface. The sec-

ond implementation, labeled “integrated, ” is structured

as a kernel extension that exports the C-Threads inter-

face using system calls. The latter version uses SPIN’S

strand interface, and is integrated with the scheduling

behavior of the rest of the kernel. The table shows

that SPIN’s extensible thread implementation does not,

incur a performance penalty when compared to non-

extensible ones, even when integrated with kernel ser-

vices.

DEC OSF/1 Mach SPIN
lernel user kernel user kernel user

Operation layered mtegrat e{

Fork-Join 198 1230 101 338 22 262 111

Ping-POng 21 264 71 115 17 159 85

Table 3: Thread management overhead in microseconds

Virtual memory

Applications can exploit the virtual memory fault path

to extend system services [Appel & Li 91]. For example,

277

concurrent and generational garbage collectors can use

write faults to maintain invariants or collect reference

information. A longstanding problem with fault-based

strategies has been the overhead of handling a page fault

in an application [Thekkath & Levy 94, Anderson et al.

91]. There are two sources of this overhead. First, han-

dling each fault in a user application requires crossing

the user/kernel boundary several times, Second, con-

ventional systems provide quite general exception inter-

faces that can perform many functions at once. As a

result, applications requiring only a subset of the inter-

face’s functionality must pay for all of it. SPIN allows

applications to define specialized fault handling exten-

sions to avoid user/kernel boundary crossings and im-

plement precisely the functionality that is required.

Table 4 shows the time to execute several commonly

referenced virtual memory benchmarks [Appel & Li

91, Engler et al. 95]. The line labeled Dirty in the

table measures the time for an application to query the

status of a particular virtual page. Neither DEC OSF/1

nor Mach provide this facility. The time shown in the

table is for an extension to invoke the virtual memory

svstem: an additional 4 microseconds [svstem call time),“

is required to invoke the service from user level, Tra~

measures the latency between a page fault and the time

when a handler executes. Fault is the perceived latency

of the access from the standpoint of the faultin~ thread.

It measures the time to refl~ct a page fault to in appli-

cation, enable access to the page within a handler, and

resume the faulting thread. Protl measures the time

to increase the protection of a single page. Similarly,

Prot100 and lJnm-of100 measure the time to increase.
and decrease the protection over a range of 100 pages.

Mach’s unprotection is faster than protection since the

o~eration is ~erformed Iazilv: SPIN’S extension does not

l~zily evalua\e the request, ~ut enables the access as re-

quested. Appell and “Appe12 measure a combination of

traps and protection changes. The Appell benchmark

measures the time to fault on a protected paxe, resolve-.
the fault in the handler, and protect another page in

the handler. Appe12 measures the time to protect 100

pages, and fault on each one, resolving the fault in the

handler (Appe12 is shown as the average cost per page).

SPIN outperforms the other systems on the virtual

memory benchmarks for two reasons. First, SPIN uses

kernel extensions to define application-specific system

calls for virtual memory management. The calls pro-

vide access to the virtual and physical memory inter-

faces described in the previous section, and install han-

dlers for Translation. Protecf~onFault events that occur

within the application’s virtual address space. In con-

trast, DEC! OSF/ 1 requires that applications use the

UNIX signal and mprotect interfaces to manage virtual

memory, and Mach requires that they use the exter-

nal pager interface [Young et al. 87]. Neither signals

nor external pagers, though, have especially efficient im-

plementations, as the focus of each is generalized func-

tionality [Thekkath & Levy 94]. The second reason for

SPIN’s dominance is that each virtual memory event,

which requires a series of interactions between the ker-

nel and the application, is reflected to the application

through a fast in-kernel protected procedure call. DEC

OSF’/l and Mach, though, communicate these events

by means of more expensive traps or messages.

Operation DEC OSF/1 Mach SPIN
Dirty na na 2

Fault 329 415 29

Trap 260 185 7

IPrO~l I 4.5

I

106 I 16

PrOt100 1041 1792 213 /

UnprOt100 1016 302 214

Appell 382 819 39

Appe12 351 608 29

Table 4: Virtual memory operation overheads in microseconds.

Neither DEC OSF/1 nor Mach provide an interface for querying

the internal state of a page frame.

5.3 Networking

We have used SPIN’S extension architecture to imple-

ment a set of network protocol stacks for Ethernet and

ATM networks [Fiuczynski & Bershad 96]. Figure 5 il-

lustrates the structure of the protocol stacks, which are

similar to the z-kernel’s [Hutchinson et al. 89] except

that SPIN permits user code to be dynamically placed

within the stack. Each incoming packet is “pushed”

through the protocol graph by events and “pulled” by

handlers. The handlers at the top of the graph can pro-

cess the message entirely within the kernel, or copy it

out to an application. The R,PC and A.M. extensions,

for example, implement the network transport for a re-

mote procedure call package and active messages [von

Eicken et al. 92]. The video extension provides a di-

rect path for video packets from the network to the

framebuffer. The UDP and TCP extensions support

the Internet protocols.2 The Forward extension pro-

vides transparent UDP/IP and TCP/IP forwarding for

packets arriving on a specific port. Finally, the HTTP

extension implements the HyperText Transport Proto-

col [Berners-Lee et al. 94] directly within the kernel,

enabling a server to respond quickly to HTTP requests

by splicing together the protocol stack and the local file

system.

Latency and Bandwidth

Table 5 shows the round trip latency and reliable band-
width between two applications using UDP/IP on DEC

OSF/1 and SPIN. For DEC OSF/1, the application

code executes at user level, and each packet sent in-

volves a trap and several copy operations as the data

moves across the user/kernel boundary. For SPIN, the

application code executes as an extension in the kernel,

where it has low-latency access to both the device and

2W. currently use the DEC OSF/1 TCP engine as a SPIN
extension, and manually assert that the code, which is written in

C, is safe.

278

.———, ,-.1—-..

~ICMP

1———,

Lance Fore ~

device driver I device driver I

Figure ~: This figure shows a protocol stack that routes incom-
ing network packets to application-specific endpoints within the

kernel. Ovals represent events raised to route control to handlers,
which are represented by boxes. Handlers implement the protocol
corresponding to their label.

data. Each incoming packet causes a series of events

to be generated for each layer in the UDP/IP proto-

col stack (Ethernet/ATM, 1P, UDP) shown in Figure 5.

For SPIN; protocol processing is done by a separately

scheduled kernel thre,ad outside of the interrupt handler.

We do not present networking measurements for Mach,

as the system neither provides a path to the Ethernet

more efficient than DEC OSF/ 1, nor supports our ATM

card.

Latency Bandwidth

DEc OSF /1 sPmJ DNC OSF/ 1 sPIm
Ethernet 789 565 8.9 8.9

ATM 631 421 27.9 33

Table 5: Network protocol latency in microseconds and receive
bandwidth in Mb/sec. We measure latency using small packets
[16 bytes), and bandwidth using large packets (1 500 for Ethernet
and 8132 for ATM).

The table shows that processing packets entirely

within the kernel can reduce round-trip latency when

compared to a system in which packets are handled in

user space. Throughput, which tends not to be latency

sensitive, is roughly the same on both systems.

We use the same vendor device drivers for both DEC

OSF/1 and SPIN to isolate differences due to system

architecture from those due to the characteristics of the

underlying device driver. Neither the Lance Ethernet

driver nor the FORE ATM driver are optimized for la-

tency [Thekkath & Levy 93], and only the Lance Ether-

net driver is optimized for throughput. Using different

device drivers we achieve a round-trip latency of 337
psecs on Ethernet and 241 psecs on ATM, while reli-

able ATM bandwidth between a pair of hosts rises to

41 Mb/sec. We estimate the minimum round trip time

using our hardware at roughly 250#secs on Ethernet and

100pecs on ATM. The maximum usable Ethernet and

ATM bandwidths between a pair of hosts are roughly 9

Mb/see and 53 Mb/see.

Protocol forwarding

SPIN’s extension architecture can be used to provide

protocol functionality not generally available in con-

ventional systems. For example, some TCP redirection

protocols [Balakrishnan et al. 95] that have otherwise

required kernel modifications can be straightforwardly

defined by an application as a SPIN extension. A for-

warding protocol can also be used to load balance ser-

vice requests across multiple servers.

In SPIN an application installs a node into the pro-

tocol stack which redirects all data and control packets

destined for a particular port number to a secondary

host. We have implemented a similar service using DEC

OSF/ 1 with a user-level process that splices together

an incoming and outgoing socket. The DEC OSF/ 1

forwarder is not able to forward protocol control pack-

ets because it executes above the transport layer. As

a result it cannot maintain a protocol’s end-to-end se-

mantics. In the case of TCP, end-to-end connection

establishment and termination semantics are violated.

A user-level intermediary also interferes with the proto-

col’s algorithms for window size negotiation, slow start,

failure detection, and congestion control, possibly de-

grading the overall performance of connections between

the hosts. Moreover, on the user-level forwarder, each

packet makes two trips through the protocol stack where

it is twice copied across the user/kernel boundary. Ta-

ble 6 compares the latency for the two implementations,

and reveals the additional work done by the user-level

forwarder.

TCP UDP

L)kic osF/ 1 SPIN L)k!x Osk ‘/1 sPiTJ-

Ethernet 2080 1420 1607 1344

ATM 1730 1067 1389 1024

Table 6: Round trip latency in microseconds to route 16 b.vte

packets through a protocol forwarder.

5.4 End-to-end performance

We have implemented several applications that, exploit

SPIN’s extensibility. One is a networked video system

that consists of a server and a client viewer. The server

is structured as three kernel extensions, one that uses

the local file system to read video frames from the disk,

another that sends the video out over the network, and a

third that registers itself as a handler on the SendPacket

event, transforming the single send into a multicast, to

a list of clients. The server transmits 30 frames ~er
second to each client. On the client. an extension aw;its

incoming video packets, decompresses and writes them

directly to the frame buffer using the structure shown

in Figure 5.

279

Because eachoutgoingpacket is pushed through the

protocol graph only once, and not once per client

stream, SPIN’S server can support a larger number of

clients than one that processes each packet in isolation.

To show this, we measure processor utilization as a func-

tion of the number of clients for the SPIN server and for

a server that runs on DEC OSF/1. The DEC OSF/1

server executes in user space and communicates with

clients using sockets; each outgoing packet is copied into

the kernel and is pushed through the kernel’s protocol

stack into the device driver. We determine processor

utilization by measuring the progress of a low-priority

idle thread that executes on the server.

Using the FORE interface, we find that both SPIN

and DEC OSF/ 1 consume roughly the same fraction of

the server’s processor for a given number of clients. Al-

though the SPIN server does less work in the protocol

stack, the majority of the server’s CPU resources are

consumed by the programmed 1/0 that copies data to

the network one word at a time. Using a network inter-

face that supports DMA, though, we find that the SPIN

server’s processor utilization grows less slowly than the

DEC OSF/1 server’s. Figure 6 shows server proces-

sor utilization as a function of the number of supported

client streams when the server is configured with a Dig-

ital T3PKT adapter. The “T3” is an experimental net-

work interface that can send 45 Mb/see using DMA. We

use the same clevice driver in both operating systems.

At 15 streams, both SPIN and DEC OSF/1 saturate

the network, but SPIN consumes only half as much of

the processor. Compared to DEC OSF/1, SPIN can

support more clients on a faster network, or as many

clients on a slower processor.

1’ I I I I I I

,
.’

SPIN T3 Driver —
,’

,-
DEC OSF/1 T3 Driver --- .’

,’
,,

.’
,’

.’
.’

.,

,’
,,

.“
,,

,“
,,

I I I I I I I I

2 4 6 8 10 12 14
Number of Clienfs

5’erver utilization as a function of the number of client
video streams. Each stream requires approximately 3 Mb/sec.

Another application that can benefit from SPIN’s

architecture is a web server, To service requests

quickly, a web server should cache recently accessed

objects, not cache large objects that are infrequently

accessed [Chankhunthod et al. 95], and avoid double

m

buffering with other caching agents [Stonebraker 81].

A server that does not itself cache but is built on top

of a conventional caching file system avoids the double

buffering problem, but is unable to control the caching

policy. In contrast, a server that controls its own cache

on top of the file system’s suffers from double buffering.

SPIN allows a server to both control its cache and

avoid the problem of double buffering. A SPIN web

server implements its own hybrid caching policy based

on file type: LRU for small files, and no-cache for large

files which tend to be accessed infrequently. The client-

side latency of an HTTP transaction to a SPIN web

server running as a kernel extension is 5 milliseconds

when the requested file is in the server’s cache. Oth-

erwise, the server goes through a non-caching file sys-

tem to find the file. A comparable user-level web server

on DEC OSF/1 that relies on the operating system’s

caching file system (no double buffering) takes about 8

milliseconds per request for the same cached file.

5.5 Other issues

Scalability and the dispatcher

SPIN’s event dispatcher matches event raisers to han-

dlers. Since every procedure in the system is effectively

an event, the latency of the dispatcher is critical. As

mentioned, in the case of a single synchronous han-

dler, an event raise is implemented as a, procedure call

from the raiser to the handler. In other cases, such as

when there are many handlers registered for a particular

event, the dispatcher takes a more active role in event

delivery. For each guard/handler pair installed on an

event, the dispatcher evaluates the guard and, if true,

invokes the handler. Consequently, dispatcher latency

depends on the number and complexity of the guards,

and the number of event handlers ultimately invoked.

In practice, the overhead of an event dispatch is linear

with the number of guards and handlers installed on

the event. For example, round trip Ethernet latency,

which we measure at 565 psecs, rises to about 585 psecs

when 50 additional guards and handlers register inter-

est in the arrival of some UDP packet but all 50 guards

evaluate to false. When all 50 guards evaluate to true,

latency rises to 637 psecs. Presently, we perform no

guard-specific optimizations such as evaluating common

subexpressions [Yuhara et al. 94] or representing guard

predicates as decision trees. As the system matures, we

plan to apply these optimizations.

Impact of automatic storage management

An extensible system cannot depend on the correctness

of unprivileged clients for its memory integrity. As pre-

viously mentioned, memory management schemes that

allow extensions to return objects to the system heap are

unsafe because a rogue client can violate the type system

by retaining a reference to a freed object, SPIN uses a

trace-based, lmostly-copying, garbage collector [Bartlett

88] to safely reclaim memory resources. The collector

280

serves as a safety net for untrusted extensions, and en-

sures that resources released by an extension, either

through inaction or as a result of premature termina-

tion, are eventually reclaimed.

Clients that allocate large amounts of memory can

trigger frequent garbage collections with adverse global

effects. In practice, this is less of a problem than might

be expected because SPIN and its extensions avoid allo-

cation on fast paths. For example, none of the measure-

ments presented in this section change when we disable

the collector during the tests. Even in systems with-

out garbage collection, generalized allocation is avoided

because of its high latency. Instead, subsystems imple-

ment their own allocators optimized for some expected

usage pattern. SPIN services do this as well and for the

same reason (dynamic memory allocation is relatively

expensive). As a consequence, there is less pressure on

the collector, and the pressure is least likely to be ap-

plied during a critical path.

Size of extensions

Table 7 shows the size of some of the extensions de-

scribed in this section. SPIN extensions tend to require

an amount of code commensurate with their functional-

ity. For example, the Null syscall and IPC extensions,

are conceptually simple, and also have simple imple-

mentations. Extensions tend to import relatively few

(about a dozen) interfaces, and use the domain and

event system in fairly stylized ways. As a result, we

have not found building extensions to be exceptionally

difficult. In contrast, we had more trouble correctly im-

plementing a few of our benchmarks on DEC OSF/1

or Mach, because we were sometimes forced to follow

circuitous routes to achieve a particular level of func-

tionality. Mach’s external pager interface, for instance,

required us to implement a complete pager in user space,

although we were only interested in discovering write

protect faults.

Component

NULL sysca//

IPC

CThreads
DEC OSF/1 threads

VM workload

1P

UDP

T(7P

HTTP

TCP Forward

UDP Forward

Video Client

Video Serve T

Source size

lines

19

127

219

305

263

744

1046

.5077

392

187

138

95

304

Text size

bytes

96

1344

2480

2304

5712

1900s

23968

69040

5712

4592

4.592

2736

9228

~
bytes

656

1568

1792

3488

1472

13088

16704

9840

4176

2080

2144

1952

3312

Table 7: This table .hown the size of some different s.wtem
extensions described in this paper.

6 Experiences with Modula-3

Our decision to use hIodula-3 was made with some care.

Originally, we had intended to define and implement a

compiler for a safe subset of C. All of us, being C pro-

grammers, were certain that it was infeasible to build

an efficient operating system without using a language

having the syntax, semantics and performance of C. As

the design of our safe subset proceeded, we faced the dif-

ficult issues that typically arise in any language design

or redesign. For each major issue that we considered

in the context of a safe version of C (type semantics,

objects, storage management, naming, etc.), we found

the issue already satisfactorily addressed by Modula-3.

Moreover, we understood that the definition of our ser-

vice interfaces was more important than the language

with which we implemented them.

Ultimately, we decided to use Modula-3 for both the

system and its extensions. Early on we found evidence

to abandon our two main prejudices about the language:

that programs written in it are slow and large, and that

C programmers could not be effective using another lan-

guage. In terms of performance, we have found nothing

remarkable about the language’s code size or execution

time, as shown in the previous section. In terms of pro-

grammer effectiveness, we have found that it takes less

than a day for a competent C programmer to learn the

syntax and more obvious semantics of Modula-3, and

another few days to become proficient with its more

advanced features. Although anecdotal, our experience

has been that the portions of the SPIN kernel written

in Modula-3 are much more robust and easier to under-

stand than those portions written in C.

7 Conclusions

The SPIN operating system demonstrates that it is pos-

sible to achieve good performance in an extensible sys-

tem without compromising safety. The system provides

a set of efficient mechanisms for extending services, as

well as a core set of extensible services. Co-location,

enforced modularity, logical protection domains and dy-

namic call binding allow extensions to be dynamically

defined and accessed at the granularity of a procedure

call.

In the past, system builders have only relied on

the programming language to translate operating sys-

tem policies and mechanisms into machine code. Us-

ing a programming language with the appropriate fea-

tures, we believe that operating system implementors

can more heavily rely on compiler and language run-

time services to construct systems in which structure

and performance are complementary.

Additional information about the SPIN project is
available at http://www-spzn. CS.Washington. edu, an Al-

pha workstation running SPIN and the HTTP extension

described in this paper.

281

Acknowledgements

Many people have contributed to the SPIN project.

David Dion has been responsible for bringing up the

system’s UNIX server. Jan Sanislo made it possible for

us to use the DE(2 OSF/1 SCSI driver from SPIN. An-

thony Lamarca, Dylan McNamee, Geoff l~oelker, and

Alec Wolman assisted in understanding system perfor-

mance on DEC OSF/1 and Mach. David Nichols, Hank

Levy, and Terri JVatson provided feedback on earlier

drafts of this paper. David Boggs provided us with the

T3 cards that we used in the video server experiment.

Special thanks are due to DEC SRC, who provided us

with much of our compiler infrastructure.

References

[Abrcminmv et al. 89] Abrmsinmv, V., Rozier, M., and Shapiro

M. Generic Virtual Memory Management for Operating

System Kernels. In Proceedin,qs of the Thirteenth A CM

Symposium on Operating Systems Principles, pages 123–

136, Litchfield Park, AZ, December 1989.

[Anderson et al. 91] Anderson, T. E., Levy, H. M., Bershad,

B. N., and Lazowska, E. D. The Interaction of Architecture

and Operating System Design. In Proceedings o.f the Fourth

International C:on.feTence on Architectural Support for Pro-

gramming Longtiages and Operating Systems (.4 SPLOS-

IV), pages 108–120, Santa Clara, CA, April 1991.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N., Lazowska,

E. D., and Levy, H. hf. Scheduler Activations: Effec-

tive Kernel Support for the User-Level Management of

Parallelism. AC!M Transact~ons on Computer Systems,

10(1):53–79, February 1992.

[Appel & Li 91] Appel, }V. and Li, K. Virtual Memory Primi-

tives for (lser Programs. In P~oceedings o,f the Fourth In-

ternational Conference on Arch~tectui-al Support .foT Pro-

gramming Languages and Ope.at,ng Syst~ms (A SPLOS-

IV), pages 96-107, Santa Clara, CA, April 1991.

[Bala et al. 9-I] Bala, K., Kaashoek, L1. F., and Weihl, W. E.

Soft ware Prefetching and Caching for Translation Looka-

side Buffers. In Proceedin.qs o,f the FZ rst USENI.Y Sym-

pos~um on Operating Systems Destgn and Implementation

(OSDI), pages 243-253, Monterey, CA, November 1994.

[Balakrishnan et al. 95] Balakrishnan, H., Seshan, S., Amir, E.,

and Katz., R. H. Improving TCP /IP Performance over

Wireless Networks. In Proceedings o.f the Ftrst A CA[Con-

ference O?L hfobzle Comput%n.q and Networking, November

1995.

[Barrera 91] Barrera, J. S. A Fast Mach Network IPC Imple-

mentation. In PToceedtng~ oj the Second USENIX Afach

Symposinrn, pages 1–11, Monterey, CA, November 1991.

[Bartlett 88] Bartlett, J. F. Compacting Garbage Collection with

Ambiguous Roots. Technical Report WRL-TR-88-2, Digi-

t al Equipment Corporation Western Research Labs, Febru-

ary 1988.

[Berners-Lee et al. 94] Berners-Lee, T., Cailliau, R., Luotonen,

A., Nielsen, H. F., and Secretr, A. The World-Wide Web.

Cornmunicatzons of the ACM, 37(8):76–82, August 1994.

[Bershad 93] Bershad, B. N. Practical Considerations for Non-

Blocking Concurrent Objects. In Proceedings o.f the Thir-

teenth International Conference on Distributed ~ornput~nq

Systems, pages ‘264-274, Pittsburgh, PA, May 1993.

[Bershad et al. 90] 13ershad, B. N., Anderson, T. E., Lazowska,

E. D., and Levy, El. M. Lightweight Remote Procedure

call. ACM Transactions on Computer Systems, 8(1):37-

55, February 199o.

[Bershad et al. 92a] Bershad, B. N., Draves, R. P., and Forin, A.

Using Microbenchmarks to Evaluate System Performance.

In Proceedings oj the Thtr-d Workshop on Workstation Op-

erating Systems, pages 148–153, Key Biscayne, FL, April

1992.

[Bershad et al. 92b] Bershad, B. N., Redell, D. Il., and Ellis, J. R.

Fast Mutual Exclusion for Uniprocessors. In Proceedings of

the Fifth International Conference on .4 TchiiectrlTa[S~Lp-

por-t for Programming Languages and Opemting Systems

(A SPLOS- V), pages 223-233, Boston, MA, October 1992.

[Black et al. 92] Black, D. L. et al. Microkernel Operating Sys-

tem Architecture and Mach. In Proceedings of the USENIX

Workshop on Micr-o-A’ervzels and Other- Kernel Architec-

tures, pages 11–30, Seattle, WA, April 1992.

[Bricker et al. 91] Bricker, A., Gien, LI., Guillemot, M., Lip-

kis, J., Orr, D., and Rozier, M. A New Look at Micro-

kernel-based UNIX Operating Systems: Lessons in Perfor-

mance and Compatibility. In Proceedings of the EurOpen

Spring ’91 Conje~en ce, Tromsoe, Norway, May 1991.

[Brockschmidt 94] Brockschmidt, K. Instde OLE .?. Lficrosoft

Press, 1994.

[Brustoloni & Bershad 93] Brmtolcmi, J. C. and Bershad, B, N.

Simple Protocol Processing for High-Bandwidth Low-

Latency Networking. Technical Report CMU-CS-93-1 32,

Carnegie Ivlellon University, March 1993.

[Cao et al. 94] Cao, P,, Felten, E. W., and Li, K. Implementation

and Performance of Application-Controlled File Caching.

In Proceedings oj the First USENIX Symposium on Oper-

ating Systems Destgn and Implementation (OSDI), pages

165–177, h~onterey, CA, November 1994.

[Carter et al. 91] Carter, J. B., Bennett, J. K., and Zwaenepoel,

W. Implementation and Performance of Munin. In Pro-

ceed~ngs o.f the Thirteenth ACM Symposium on Operating

Systems Principles, pages 152–64, Pacific Grove, CA, Oc-

tober 1991.

[Carter et al. 94] Carter, N. P., Keckler, S. It’., and Dally, \V. J.

Hardware Support for Fast Capability-Based .4ddressing.

In Proceedings of the Sixth Inter-national C:onjemnce on

Architectural SuppoTt ,for Programming Languages and Op-

erating Systems (A SPLOS- VI), pages 319–327, San Jose,

CA, October 1994.

[Chankhunthod et al. 95] Chankhunthod, A,, Danzig, P., Neer-

daels, C., Schwartz, M., and Worrell, K. A Hierarchical

Internet Object Cache. Technical Report CU-CS-766-95,

DCS University of Colorado, July 1995.

[Chen & Bershad 93] Chen, J. B. and Bershad, B. N. The Im-

pact of Operating System Structure on LIemory System

Performance. In Proceedings of the Fourteenth ACM Sym-

posium on Operating Systems Pnnc!ples, pages 120–133,

Asheville, NC, December 1993.

[Cheriton & Duda 94] Cheriton, D. R. and Duds, K. J. A

Caching L’lodel of Operating System Kernel Functionalist y.

In Proceedings o.f the FtTst USENI.Y Sympostnrn on Oper-

attng Systems Destgn and Implementation (O SD I), pages

179–194, Monterey, CA, November 1994.

[Cheriton & Zwaenepoel 83] Cheriton, D. R. and Zwaenepoel.

W. The Distributed V Kernel and its Performance for Disk-

less Workstations. In PTorcedings of the Ninth ACM Sym-

posium on Operattng Systems PTznczplcs, pages 129–140,

Bretton Woods, NH, October 1983,

[Colwell 85] Colwell, R. The Performance Effects of Func-

tional Migration and Architectural Complexity in Object-

Oriented Systems. Technical Report CLI{J-CS-8.5-159,

Carnegie Mellon University, August 1985.

[Cooper & Draves 88] Cooper, E. C. and Ilra”es, R. P. C

Threads. Technical Report CMU-CS-88-1 5-t, Carnegie M.l-

lon University, June 1988.

282

[Cooper et al. 91] Cooper, E., Harper, R., and Lee, P. The

Fox Project: Advanced Development of Systems Software.

Technical Report CMU-CS-91-1 78, Carnegie Mellon Uni-

versit y, August 1991.

[Davis et al. 93] Davis, P.-B., McNamee, D., Vaswani, R., and

Lazowska, E. Adding Scheduler Activations to Mach 3.o.

In Proceedings of the Third USENIX Mach Symposium,

pages 119–136, Santa Fe, NM, April 1993.

[Dig 93] Digital Equipment Corporation. DEC OSF/1 Wrtting

Deuice DTiVeTS: Advanced Topics, 1993.

[Draves 93] Draves, R. The Case for Run-Time Replaceable Ker-

nel Modules. In Proceedings o,f the Fourth IJ’or!tsh Op on

Workstation Operat?ng Systems% pages 160-164, Napa, CA,

October 1993.

[Draves 94] Draves, R. P. Control Transfer in Operating System

Kernels. Technical Report CMU-CS-94-142, Carnegie Mel-

lon University, May 1994.

[Draves et al. 91] Draves, R. P., Bershad. B. N., Rashid, R. F.,

and Dean, R. W. Using Continuations to Implement

Thread Management and Communication in Operating

Systems. In Proceedings o.f the Thirteenth A Ch4 Sympo-

sium on Operatzng Systems PTinczples, pages 122–136, Pa-

cific Grove, CA, October 1991.

[Engler & Kaashoek 95] Engler, D. and Kaashoek, M. F. Exter-

minate All Operating System Abstractions. In Proceedings

o.f the Fifth Workshop on Hot Topics in Ope Tating Systems,

pages 78–83, Orcas Island, WA, May 1995.

[Engler & Proebsting 94] Engler, D. R. and Proebsting, T. A.

DCG: An Efficient, Retargettable Dynamic Code Genera-

tion System. In Proceedings of the Smth International Con-

ference on .4rchztectural Support for Programming Lan-

guages and Operatzng Systems (A SPLOS- VI), pages 263–

272, San Jose, CA, October 1994.

[Engler et al. 94] Engler, D., Kaashoek, M. F., and O’Toole, J.

The Operating System Kernel as a Secure Programmable

Machine. In Proceedings of the 1994 ACM European

SIGOPS tt’o rksh op. September 1994.

[Engler et al. 95] Eugler, D. R., Kaashoek, LT. F., and Jr,

J. O. Exokernel: An Operating System Architecture for

Application-Level Resource Management. In Proceedings

oj the Fifteenth ACM Sympostum on Operating Systems

Princip/ts, Copper Mountain, CO, December 1995.

[Fall & Pasquale 94] Fall, K. and Pasquale, J. Improving

Continuous-Media Playback Performance with In-Kernel

Data Paths. In Proceedings o,f the Fzrst IEEE Interna-

tional Conference oa Multimedia Computing and Systems,

pages 100–109, Boston, MA, May 1994.

[FeIten 92] Felten, E. W. The Case for Application-Specific Com-

munication Protocols. In Intel Supercomp uter Systems

Technology Focus Conference, pages 171-181, April 1992.

[Fiuczynski & Bershad 96] Fiuczynski, M. and Elershad, B. An

Extensible Protocol Architecture for Application-Specific

Networking. In Proceedings of the 1996 Winter USENI.Y

Conference, San Diego, CA, January 1996.

[Forin et al. 91] Forin, A., Golub, D., and Bershad, B. N. An

1/0 System for Mach 3.0. In Proceedings of the Second

USENIX Mach Symposium, pages 163–176, Monterey, CA,

No\,ember 1991.

[Geschke et al. 77] Geschke, C., LIorris, J., and Satterthwaite,

E. Early Experiences with hIesa. Comm unzcat%ons of the

A CM, 20(8) :540-553. August 1977.

[Golub et al. 90] Golub. D., Dean, R., Forin, A., and Rashid,

R. Llnix as an Application Program. In Proceedings of

the 1990 S71 mmf T USEN1.Y Co njeTence, pages 87–95, June

1990.

[Hamilton& Kougiouris 93] Hamilton, G. and Kougiouri.. P.

The Spring Nucleus: A Microkernel for Objects. In Pro-

ceedings o,f the 1 i/!J3 Summ e~ USENIX C~onference, pages

147–159, Cincinnati, OH. June 1993.

[Harty & Cheriton 91] Harty,

K. and Cheriton, D. R. Application-Controlled Physical

Memory using External Page-Cache Management. In Pro-

ceedings oj the Fourth International Conference on Archi-

tectural Support for Programming Languages and Operat-

ing Systems (A SPLOS-IV), pages 187–197, Santa Clara,

CA, April 1991.

[Heidemann & Popek 94] Heidemann, J. and Popek, G. File-

System Development with Stackable Layers. Communi-

cations of the ACM, 12(1):58–89, February 1994.

[Hildebrand 92] Hildebrand, D. An Architectural Overview of

QNX. In Proceedings of the USENI.Y Workshop on MzcTo-

Kernels and Other Kemtel Architectures, pages 113-126,

Seattle, WA, April 1992.

[Hutchinson et al. 89] Hutchinson, N. C., Peterson, L., Abbott,

M. B,, and O’Malley, S. RPC in x-kernel: Evaluating New

Design Techniques. In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Prtncipies, pages 91–

101, Litchfield Park, AZ, December 1989.

[Int 81] Intel Corporation. Tntroductton to the iAPX 43.2 A.cht-

tectu-ce, 1981.

[Int 90] Intel Corporation. i486 Microprocessor Programmer’s

Reference Manual, 1990.

[Khalidi & Nelson 93] Khalidi, Y. A. and Nelson, M. An Im-

plementation of UNIX on an Object-Oriented Operating

System. In Proceedings oj the 1993 Winter USENIX Con-

ference, pages 469-480, San Diego, CA, January 1993.

[Lazowska et al. 81] Lazowska, E. D., Levy, H. M., Almes, G. T.,

Fischer, ht., Fowler, R., and Vestal, S. The Architecture

of the Eden System. In Proceedings oj the Etghth ACM

Symposium on OpeTating Systems Principles, pages 148—

159, December 1981.

[Lee et al. 94] Lee, C. H., Chen, M. C., and Chang, R. C. HiPEC:

High Performance External Virtual Memory Caching. In

Proceedings oj the Ftrst l[SENI.Y Sympostum on Operating

Systems Design and Implementation (O SDI), pages 153-

164, Monterey, CA, November 1994.

[Liedtke 92] Liedtke, J. Fast Thread Management and Com-

munication Without Continuations. In Proceedings oj the

USENIX Workshop on Micro-~{ erne[s and Other I{ernel

Architectures, pages 213-221, Seattle, WA, April 1992,

[Liedtke 93] Liedtke, J. Improving IPC by Kernel Design. In

Proceedings o.f the Fotmteenth ACM Symposzum on OpeT-

ating Systems Principles, pages 175–188, Asheville, NC,

December 1993.

[Lucco 94] Lucco, S. High-Performance Microkernel Systems. In

Proceedings of the First USENI.T Symposium on Opevat -

zng Systems Deszgn and Implementation (OSDI), page 199,

hlonterey, CA, November 1994.

[Maeda & Bershad 93] Maeda, C. and Bershad, B. N. Protocol

Service Decomposition for High-Performance Networking.

In Proceedings oj the Fourteenth ACM Symposium on Op-

erating Systems Principles, pages 244–255, Asheville, NC,

December 1993.

[Marsh et al. 91] Marsh, B., Scott, M., LeBlanc, T., and

Markatos, E. First-Class User-Level Threads. In Proceed-

ings of the Thirteenth ACM Sympostum on Operating Sys-

tems Principles, pages 110–121, Pacific Gro\,e, CA, Octo-

ber 1991.

[McNamee & Armstrong 90] McNamee, D. and Armstrong, K.

Extending the Mach External Pager Interface to Accommo-

date User-Level Page Replacement Policies. In Proceedings

oj the USENIX Mach Sympostum, pages 17–29, Burling-

ton, VT, October 1990.

[Mogul et al. 87] Mogul, J., Rashid, R., and Accetta, M. The

Packet Filter: An Efficient Mechanism for User-level Net-

work Code. In Pr-oceedzngs oj ihe Ele,enth .4 CJf Synz-

poszum on Operating Systems PTinctples, pages 39–51,

Austin, TX, November 1987.

283

[Mossenbock 94] Mossenbock, H. Extensibility in the Oberon

System. Nordic .Jotirnal of Computing, 1(1):77–93, Febru-

ary 1994.

[Mullender et al. 90] Mullender, S. J., Rossum, G. V., Tanen-

baurn, A. S., Renesse, R. V., and van Staveren, H. Amoeba

– A Distributed Operating System for the 1990’.. IEEE

Computer, pages -P–54, May 1990.

[Nelson 91] Nelson, G., editor. System Programming tn Modula-

3. Prentice Hall, 1991.

[Organick 73] Organick, E., editor. Computer System OrganLza-

trion: The B5700/B6700 .?emes. Academic Press, 1973.

[Pardyak & Bershad 94] Pardyak, P. and Bershad, B. A Group

Structuring Mechanism for a Distributed Object Oriented

Language Objects. In Proceedings of the Fourteenth Inter-

national Conference on Dtstrtbuted Computing Systems,

pages 312–219, Poznan, Poland, June 1994.

[Rashid et al. 87] Rashid, R., Tevanian, Jr., A., Young, M.,

Golub, D., Baron, R.. Black, D., Bolosky, W., and Chew,

J. Machine-Independent Virtual Memory Management for

Paged Uniprocessor and Multiprocessor Architectures. In

PToceedtn,gs oj the Second International Conference on Ar-

chitectural Support for Programming Languages and Oper-

ating Systems (A SPLOS-11), pages 31–39, Palo Alto, CA,

April 1987.

[Redell 881 Redell, D. Experience with Topaz Teledebugging. In

Proceedings oj the ACM SIGPLAN and SIGOPS WoTk-

shop on Parallel and Distributed Debugging, October 1988.

[Redell et al. 80] Redell, D. D., Dalal, Y. K., Horsley, T. R.,

Lauer, H. C., Lynch, W. C., M. Jones, P. R., Murray, H. G.,

and Purcell, S. C. Pilot: An Operating System for a Per-

sonal Computer. Communications of the ACM, 23(2) :81–

92, February 1980.

[Rome. et al. 94] Rome., T. H., Lee, D., and Bershad, B. N. Dy-

namic Page Mapping Policies for Cache Conflict Resolu-

tion on Standard Hardware. In Proceedings of the Fzrst

USENI.Y Sympostum on Operattng Systems Design and

Implementation (OSDI), pages 255–266, Monterey, CA,

November 1994.

[Rome. et al. 9.5] Rome., T., Ohlrich, W., Karlin, A., and Ber-

shad, B. Reducing TLB and Memory Overhead Using On-

line Superpage Promotion. In Proceedings oj the Twenty-

ThtTd International Symposium on Computer Architecture,

pages 176–18’7, 1995.

[Rozier et al. 88] Rozier, LI., Abrossimov, V., Armand, F., Boule,

1,, Giend, M.. Guillemot, ‘M., Herrmann, F., Leonard,

P., Langlois, S., and Neuhauser, W. The Chorus Dis-

tributed Operating System. Computing Systems, 1 (4) :305–

370, 1988.

[Schroeder & Burrows 90] Schroeder, hf. D. and Burrows, M,

Performance of Firefly RPC. ACM Transactions on Com-

puteT Systems, 8(1):1–17, February 1990.

[Schulman et al. 92] Schulman, A., Maxey, D., and Pietrek, M.

Undocumented 11’zndows. Addison-Wesley, 1992.

[Small & Seltzer 9-I] Small. C. and Seltzer, L’f. VINO: An Inte-

grated Platform for Operating System and Database Re-

search. Technical Report TR-30-94, Harvard University,

1994.

[Stevenson & .Julin 9.5] Stevenson, J, M. and Julin, D. P. Mach-

US: Unix On Generic OS Object Servers. In P~oceedings oj

the 199.5 tV???ter USENI.Y Conference, New Orleans, LA,

January 1995.

[Stodolsky et al. 93] Stodolsky, D., Bershad, B. N., and Chen, B.

Fast Interrupt Priority Management for Operating System

Kernels. In Proce.dzngs of the Second USENIX Workshop

on A!ltcrokernels and Othe T I<ernel Architectures, pages

105–110, San Diego, CA, September 1993.

[Stonebraker 81] Stonebraker, 11. operating System Support

for Database Management. Co mmuntcations of the A CM,

24(7):412-418, July 1981.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C., and Satterth-

waite, Jr., E. H. Firefly: a Multiprocessor Workstation.

IEEE Transactions on Computers, 37(8) :909–920, August

1988.

[Thekkath & Levy 93] Thekkath, C. A. and Levy, H. M. Limits

to Low-Latency RPC. ACM Transactions on Computer

Systems, 11(2):179–203, May 1993.

[Thekkath & Levy 94] Thekkath, C. A. and Levy, H. M. Hard-

ware and Software Support for Efficient Exception Han-

dling. In Proceed~ngs oj the Sixth International Confer-

ence on Architectural Support for PTogTamming Languages

and Operating Systems (A SPLOS- VI), pages 145–156, San

Jose, CA, October 1994.

[von Eicken et al. 92] von Eicken, T., Culler, D. E., Goldstein,

S. C., and Schauser, K. E. Active Messages: A Mecha-

nism for Integrated Communication and Computation. In

Proceedings oj the Nineteenth International Symposium on

ComputeT Architecture, pages 256–266, Gold Coast, Aus-

tralia, May 1992.

[Wahbe et al. 93] Wahbe, R., Lucco, S., Anderson, T, E., and

Graham, S. L. Efficient Software-Based Fault Isolation. In

Proceedings oj the Fourteenth ACM Symposium on OpeT-

ating Systems Principles, pages 203–216, Asheville, NC,

December 1993.

[Waldspurger & Weihl 94] Waldspurger, C. A. and Weihl, W. E.

Lottery Scheduling: Flexible Proportional-Share Resource

Management. In PToceed%ngs of the First USENIX Sym-

posium on Operating Systems Destgn and Implementation

(OSDI), pages 1-11, Monterey, CA, November 1994.

[Wheeler & Bershad 92] \Vheeler, B. and Bershad, B. N. Consis-

ten. y Management for Virtually Indexed Caches. In Pro-

ceedings oj the Fifth Intemtatzona[ConjeTence on Archztec-

tura[Snpport for PTog?”amming Languages and OpeTating

Systems (A SPLOS- V), pages 124–136, Boston, MA, Octo-

ber 1992.

[Wulf et al. 81] Wulf, W. A., Levin, R., and Harbison, S. P.

Hydra /C. romp: An ErpeTimental CompwteT System.

McGraw–Hill, 1981.

[Young et al. 87] Young, M., Tevanian, A., Rashid, R., Golub,

D., Eppinger, J., Chew, J., Bolosky, W., Black, D., and

Baron, R. The Duality of Memory and Communication

in the Implementation of a Multiprocessor Operating Sys-

tem. In Proceedings oj the Eleventh ACM Symposium on

OpeTating Systems Principles, pages 63-76, Austin, TX,

November 1987.

[Yuhara et al. 94] Yuhara, M., Bershad, B. N., Maeda, C., and

Moss, J. E. B. Efficient Packet Demultiplexing for Mul-

tiple Endpoints and Large Messages. In Proceedings oj

the 1994 W~nter USENIX Conference, pages 153–165, San

Francisco, CA, January 1994.

284

