
K. Olukotun
Spring 05/06

Handout #7
CS315a

1

CS315A Lecture 5© 2006 Kunle Olukotun 1

CS315A/EE386A: Lecture 5

Parallel Programming Tips and
Analysis of Parallel Applications

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

CS315A Lecture 5© 2006 Kunle Olukotun 2

Announcements

• PA1

– Due Mon April 24

• PS1

– Out today

– Due Wed April 26

• New information sheet

– Change in one of readings

K. Olukotun
Spring 05/06

Handout #7
CS315a

2

CS315A Lecture 5© 2006 Kunle Olukotun 3

Today’s Outline: Tips and Analysis

• Some common parallel programming issues

– Sharing & memory allocation
– False sharing

– Locking & deadlock

• Basic parallel application analysis

– Speedup & Timing

– Overheads & Efficiency

• Analysis of sequential and communication overheads

• Scalability of applications

– How do you vary your dataset as num_procs increases?

CS315A Lecture 5© 2006 Kunle Olukotun 4

Parallel Programming is Tough!

• A lot is happening simultaneously in any parallel program

– Computation
– Data communication

– Locking & synchronization

– It’s easy to develop race conditions among all of these

• Bugs are hard to track down & find

– Are often dependent upon runtime alignment of CPUs
• So they can appear & disappear

– Almost always differs from run to run
• OS activity & interrupts occur at varying times

– Even reproducing an error may be difficult

K. Olukotun
Spring 05/06

Handout #7
CS315a

3

CS315A Lecture 5© 2006 Kunle Olukotun 5

Being Systematic is Crucial

• Get your program to work on one processor

– Make sure the algorithm, math, etc. is correct
– Don’t forget calculations based on num_procs!

• Insert synchronization

– Lock/unlock pairs

– Barriers (as many as possible, at first)
• Test carefully, with lots of printfs

– Most debuggers only work on one thread at a time
• Causes “debugged” thread to run “slowly” compared with others

– So you need to print your own messages from all of them
• Arriving at barriers (to make sure we all get there)

• Around critical regions (check for deadlock)

• Key data values (make sure they’re reasonable)

CS315A Lecture 5© 2006 Kunle Olukotun 6

Memory Sharing

• Be careful about what is implicitly shared or private

• All variables are implicitly private in heavyweight thread models

• Globals are implicitly shared in lightweight-thread models

– Both pthreads and OpenMP are this way

• Stack-allocated variables can vary

– pthreads: Implicitly private stacks, sharing is dangerous!

– OpenMP: Depends on parallel region & default settings

• Heap-allocated variables are implicitly shared

– Your control of pointers controls actual sharing

K. Olukotun
Spring 05/06

Handout #7
CS315a

4

CS315A Lecture 5© 2006 Kunle Olukotun 7

Memory Deallocation Hazards

• Be very wary of &(stack_variable) in threaded code

– Never pass this pointer-to-the-stack to another thread
– If original thread hits a return, variable will be deallocated

– But other threads won’t know about deallocation!

• Use the C free or C++ delete very carefully

– Need to make sure all threads are done with memory first

– . . . Or some may continue to use after the deallocation

– Best to wait until after a barrier into a new phase
• If the variable can’t be accessed during the new phase

– But can do while under “lock” protection
• Make sure that you’ve locked all pointers to the memory block

• One of the reasons why Java is popular for threaded programs

CS315A Lecture 5© 2006 Kunle Olukotun 8

False Sharing

• Your program works, but seems slow. What’s happening?

• You can get communication when you don’t expect it!

– Shared memory machines group variables into cache lines

– All of these variables “act” like one larger variable

• A quick introduction to cache coherence:

– Hardware acts as if it has a “R/W lock” on each line

– Private, exclusive use is OK

– Sharing read-only data is OK

– ONLY ONE writer at a time!

• So we MUST isolate actively written variables

– If not, other variables in the line will be “written” too!
• At least as far as communication overhead is concerned

K. Olukotun
Spring 05/06

Handout #7
CS315a

5

CS315A Lecture 5© 2006 Kunle Olukotun 9

Which is better?

int sum[NUM_PROCS];
int product[NUM_PROCS];
. . .
int myData[NUM_PROCS];

. . .

sum[myNum]++;
product[myNum]*=2;

typedef struct
{

int sum;
int product;
. . .
int myData;

} Proc;
Proc x[NUM_PROCS];

. . .

x[myNum].sum++;
x[myNum].product*=2;

CS315A Lecture 5© 2006 Kunle Olukotun 10

Avoiding False Sharing I

• Want variables written by different processors on different lines

• Want variables written by one processor together

• For known private variables:

– Sort them into groups by processor

– Allocating variables on different stacks is GOOD

– “Struct” of variables/processor is GOOD

– Allocating arrays by [num_proc] is BAD

BAD:

GOOD:

Arrays of variables alternating by processor

Variables grouped together by processor

K. Olukotun
Spring 05/06

Handout #7
CS315a

6

CS315A Lecture 5© 2006 Kunle Olukotun 11

Avoiding False Sharing II

• Similar rules apply to other, more global data structures

– Group variables read/written simultaneously together
– Keep variables read/written at different times apart

– Use arrays-of-structs, and not many arrays:

• Note that these tactics also help increase spatial locality, too!

– Can even speed up single-processor code

typedef struct

{

 unsigned char R, G, B;

 int alpha;

} Pixel;

Pixel frame[Y_SIZE][X_SIZE];

unsigned char R[Y_SIZE][X_SIZE];

unsigned char G[Y_SIZE][X_SIZE];

unsigned char B[Y_SIZE][X_SIZE];

int alpha[Y_SIZE][X_SIZE];

CS315A Lecture 5© 2006 Kunle Olukotun 12

Variable Padding

• Simply grouping variables may not be enough

– May still have false sharing at struct borders

• In these cases, we need padding in our structs:

– Or convert simple arrays to structs (now size-expensive!)

typedef struct
{

int value;

char pad[LINE_SIZE];
} PaddedInt;

PaddedInt sum[NUM_PROCS];
PaddedInt product[NUM_PROCS];

typedef struct {
int sum;
int product;

. . .
int myData;
char pad[LINE_SIZE];

} Proc;
Proc x[NUM_PROCS];

K. Olukotun
Spring 05/06

Handout #7
CS315a

7

CS315A Lecture 5© 2006 Kunle Olukotun 13

Variable Alignment-and-Padding I

• Simple padding can waste a lot of space

– Extra cache-line size block per variable/struct

• Aligning variables can allow us to minimize waste

– Make sure that variables start at start of cache lines

– Pad is now only LINE_SIZE – sizeof(variable)

– Can save lots of space with structs just smaller than lines

CS315A Lecture 5© 2006 Kunle Olukotun 14

Variable Alignment-and-Padding II

Declaration:
typedef struct
{

int x, y, z;
char pad[LINE_SIZE - 3*sizeof(int)];

} AlignVar;
char *varBuffer; AlignVar *alignArray;

Allocation:
varBuffer = malloc(SIZE*sizeof(AlignVar) + LINE_SIZE);
alignArray = (varBuffer & ~(LINE_SIZE-1)) + LINE_SIZE;

Use as: alignArray[i]
Deallocation: delete(varBuffer);

varBuffer alignArray

K. Olukotun
Spring 05/06

Handout #7
CS315a

8

CS315A Lecture 5© 2006 Kunle Olukotun 15

Using Locks Effectively

• We need to be careful to avoid over- or under- locking

– Too few locks will increase contention
• More processor time will be spent stalled waiting for locks

– Too many locks will increase overhead
• More memory delay to load in lock structures

• More overhead code to lock

– Need to balance between these
• Rule of Thumb: # locks proportional to # of processors

• Exact numerical relationship depends upon:
– % of time that locks are locked

– Size of locked regions

• Put locks in the same struct as the “protected” variables

– Typically will be accessed together

CS315A Lecture 5© 2006 Kunle Olukotun 16

Avoiding Deadlock I

• Locks are simple when used one at a time

– Contention simply causes queueing for lock
– Need to minimize lock critical regions or use more locks

• Locking 2 locks at once can risk deadlock!

– Generally nest locking of second within first
• Non-nested critical regions are a messy topic . . .

– Can cross-lock if we lock in opposite order

Processor 2:

LOCK(lockTwo);
LOCK(lockOne);

. . .

Processor 1:

LOCK(lockOne);
LOCK(lockTwo);

. . .

K. Olukotun
Spring 05/06

Handout #7
CS315a

9

CS315A Lecture 5© 2006 Kunle Olukotun 17

Avoiding Deadlock II

• First line of defense: single locking order

– Keep a list of your locks as you program
– Always do nested lock-acquires in order of your list

• Second line of defense: backing off locks
– May not be able to globally order some locks

• Example: Locks on parts of irregular graph structures

– Have to use code that can escape deadlock:
locked = FALSE;

while (!locked) {
LOCK(lockOne);
if (TRY_LOCK(lockTwo)) locked = TRUE;

else { UNLOCK(lockOne); delay(BACKOFF_TIME); }
}

CS315A Lecture 5© 2006 Kunle Olukotun 18

Avoiding Deadlock III

• Make sure that your locks are nested properly

– We recommend that you use just like {}s

• Beware of “forgotten locks”

– Make sure that you don’t break out of a locked region!
– Beware of: break, return, longjmp, goto
– Can leave you with a “forgotten” set lock

– Next use of lock will cause deadlock
• May be MUCH later in the program’s execution

• VERY difficult to debug!

– May want to search for these words in locked region

K. Olukotun
Spring 05/06

Handout #7
CS315a

10

CS315A Lecture 5© 2006 Kunle Olukotun 19

I’ve got execution times. Now what?

• Plot speedups: S = Tserial/Tparallel = TS/TP vs. p = # of processors

– Results are “mortar shot” speedup plots
– Linear: Perfectly scalable application

– Sublinear: Not infinitely scalable (usual case)

– Superlinear: Occasional effect of more cache

Linear

Sublinear

Superlinear

Speedup

p

CS315A Lecture 5© 2006 Kunle Olukotun 20

Or just plot times . . .

• Speedup is usually most interesting . . .

• . . . But times can show useful information, too
– Plot times as a line vs. p

– Plot useful execution as a known 1/p line

– Space in between is parallel overhead time!

Time

p

Overhead

Useful Time
1/p

Observed Execution Time

K. Olukotun
Spring 05/06

Handout #7
CS315a

11

CS315A Lecture 5© 2006 Kunle Olukotun 21

Overhead Analysis

• Parallel overhead (TO) is our enemy

– Represents wasted time on parallel processors
– Difference between perfect linear & sublinear speedup

• Can also view in terms of parallel efficiency (E = S/p)

– Represents % of time used usefully

– Slope of line in speedup plot, when linear

Speedup

p

High Efficiency

Low Efficiency

CS315A Lecture 5© 2006 Kunle Olukotun 22

What is Overhead?

• Overhead (TO) consists of two components

• “Sequential” code time (ts)

– Some processors are idling

– Time spent on non-parallel code

– Time spent repeating code on all processors

– Time spent waiting at locks, barriers, etc.

– Low-concurrency code (load imbalance)

• Communication overhead time (tc)

– Time wasted waiting for remote data to arrive

– Scales in a system- and algorithm-dependent manner

K. Olukotun
Spring 05/06

Handout #7
CS315a

12

CS315A Lecture 5© 2006 Kunle Olukotun 23

Sequential Overhead

• Sequential overhead can be deadly

– With large p, even a small sequential region can kill speedup
– Amdahl’s Law!

€

Speedup =
1

fs +
1− f s
p

€

fs =

1
Speedup

−
1
p

1− 1
p 0

4

8

12

16

20

24

28

32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Processors

S
p

e
e
d

u
p

0
0.003
0.01
0.03
0.1

CS315A Lecture 5© 2006 Kunle Olukotun 24

Communication Overhead

• Communication time is another parallel overhead

– Two components in message passing:
• Time to send/receive a message

• Time spent stalled waiting at receive

– Appears as “memory latency” in shared memory
• Extra main memory accesses in UMA systems

– Must determine lowering of cache miss rate vs. uniprocessor

• Some accesses have higher latency in NUMA systems
– Only a fraction of a % of these can be significant!

Register, < 1ns

L1 Cache, ~ 1ns

L2 Cache, ~ 3-10ns

Main Memory, ~ 50-100ns

Remote, ~ 300-1000ns

Register, less register alloc.

L1 Cache, lower hit rate

L2 Cache, lower hit rate

Main, can “miss” in NUMA

Remote, extra long delays

K. Olukotun
Spring 05/06

Handout #7
CS315a

13

CS315A Lecture 5© 2006 Kunle Olukotun 25

Computation-to-Communication Ratio

• Basic sequential overhead is fairly constant

– Uniprocessor & replicated code times not a function of p
– Must minimize these code blocks!

• Rest of sequential overhead can often be tuned away
– Adjust static and dynamic tasks to balance load

– Adjust locking structure to eliminate contention

– Both may be affected by p

• But communication is inherent in an algorithm

– Cannot be tuned away . . . only algorithm change can help

– Thus C-to-C ratio = TP/tc is important for any algorithm

CS315A Lecture 5© 2006 Kunle Olukotun 26

Some Sample C/C Ratios

• Dominant orders shown (n = total data size):

1-D FFT (using
2-D transpose)

LU

Ocean (blocked)

Ocean (striped)

Matrix Multiply
(blocked)

Matrix Multiply
(striped)

Scaling of
C/C Ratio

Scaling of
Communication

Scaling of
Computation

Application

€

n
p

€

n
p

€

n
p

€

n

€

n
p

€

n
p

€

n
p

€

n
p

€

n
p

€

n logn
p

€

n
p

€

logn

€

n
3
2

p

€

n

€

n
p

€

n
p

€

n
3
2

p

€

n
p

K. Olukotun
Spring 05/06

Handout #7
CS315a

14

CS315A Lecture 5© 2006 Kunle Olukotun 27

Using Computation/Communication Ratios

• Larger C/C ratios are usually better

– More computation for every value communicated
– More work to help “hide” communication latencies

– Less likely for communication to be significant

– Advantage of blocking is evident

• But be careful with small n

– C/C ratio only approaches these asymptotically

– Other factors may have more effect with small n

– Less “scalable” algorithm may be better with small n

CS315A Lecture 5© 2006 Kunle Olukotun 28

Comparison of Competing Algorithms

• FFT shows such a tradeoff

– Binary exchange best with very small n
– 3-D and then 2-D transpose best with larger n

0

10

20

30

40

50

60

0
75

0
15

00
22

50
30

00
37

50
45

00
52

50
60

00
67

50
75

00
82

50
90

00
97

50

10
50

0

11
25

0

12
00

0

12
75

0

13
50

0

14
25

0

15
00

0

15
75

0

16
50

0

17
25

0

18
00

0

18
75

0

19
50

0

Number of Dataset Points

S
p

e
e
d

u
p

Binary Exchange
2-D Transpose
3-D Transpose

K. Olukotun
Spring 05/06

Handout #7
CS315a

15

CS315A Lecture 5© 2006 Kunle Olukotun 29

Scalability: What is it?

• Over Time:

– Computer systems become larger and more powerful
• More & more powerful processors

• Also range of system sizes within a product family

– Problem sizes become larger
• Simulate the entire plane rather than the wing

– Required accuracy becomes greater
• Forecast the weather a week in advance rather than 3 days

• Scaling:

– How do algorithms and hardware behave as systems, size,
accuracies become greater?

© 2004 Mark Hill

CS315A Lecture 5© 2006 Kunle Olukotun 30

Measuring “Scalability”

• We need to measure a “scaling performance”

• How do we measure it?

– Depends upon how we define it

– Need to measure “parallel speedup” for our definition of work

– Different versions vary parallel work W(p) differently

• Several common ways to measure scalability:

– Constant dataset (“Problem-constrained”)

– Dataset scaled by p (“Memory-constrained”)

– Constant time (“Time-constrained”)

– Constant efficiency (“Isoefficient”)

K. Olukotun
Spring 05/06

Handout #7
CS315a

16

CS315A Lecture 5© 2006 Kunle Olukotun 31

Constant Dataset (“Problem Constrained”)

• This is the usual baseline used for speedup

– Work is constant, W(n, p) = K
– Execution time decreases by up to 1/p

• Pros:
– Very simple to perform

– Shows how parallel processors improve upon uniprocessors

• Cons:

– Can run out of useful parallel work with large p

– More hardware, so caches can cause superlinear speedup

– Large parallel machines are rarely used as simple
uniprocessor replacements

p

W

TP

CS315A Lecture 5© 2006 Kunle Olukotun 32

Scaled Dataset (“Memory Constrained”)

• Multiply the “base” data set size by p

– Work function W(np,p) increases, algorithm-dependent order
– Time increases with W(np,p)/p

• Pros:
– Often easy to do

• Just multiply some constants by p

– Cache effects are essentially eliminated

– Well-matched to most NUMA systems
• Memory size scales with the processor count in these systems

• Cons:

– Can result in loooong runs with high-order W(p) functions

– Not as good with UMA systems, could be unrealistic

p

W

TP

K. Olukotun
Spring 05/06

Handout #7
CS315a

17

CS315A Lecture 5© 2006 Kunle Olukotun 33

Constant Time (“Time Constrained”)

• Keep the execution time TP constant

– Work function W(n, p) increases, algorithm-dependent order
– Time stays constant

• Pros:
– Cache effects are reduced dramatically

– Useful in many useful contexts:
• Hard limits on execution time, such as MPEG frame rate

• How long “average user” will wait for results

• Cons:

– “n” must be varied by inverting the work function

– How do we do this? (vary data, timesteps, etc. . . . ?)

p

W

TP

CS315A Lecture 5© 2006 Kunle Olukotun 34

Constant Efficiency (“Isoefficient”)

• Keep the efficiency linear and constant

– Work function W(n, p) increases, algorithm-dependent order
– Time usually increases, algorithm-dependent order

• Pros:

– Cache effects are reduced dramatically

– Good scaling technique, in general
• Can pick any desired efficiency level

• Cons:

– Can result in loooong runs with high-order W(p) functions

– “n” must be varied by inverting the work function

– Must solve the equation:

€

W (n, p) =
E

1− E





TO (n, p)

p

W

TP

K. Olukotun
Spring 05/06

Handout #7
CS315a

18

CS315A Lecture 5© 2006 Kunle Olukotun 35

0

4

8

12

16

20

24

28

32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Processors

S
p

e
e
d

u
p

Isoefficiency Interpretation

• Draw speedup curves for different datasets together

• Draw a line through them, slope = E
• Intersections indicate isoefficient data set sizes

E=0.5 line

n=50, p≈4
n=75, p≈7

n=100, p≈11

n=200, p≈21E=1.0 line

CS315A Lecture 5© 2006 Kunle Olukotun 36

“Serial” Execution Time

• WARNING: Even “serial time” definition can vary

– TS is generally obtained by running parallel code on 1 CPU
– Good for showing speedup trends

– But bad for making parallel-vs.-serial choices

• Really need to run serial code on uniprocessor

– No synchronization code overhead

– Perhaps a better serial algorithm (like quick-vs.-bubble sort)

Speedup over 1
Processor

p

> 1

min pparallel min pserial

Using all parallel code

Using serial baseline

K. Olukotun
Spring 05/06

Handout #7
CS315a

19

CS315A Lecture 5© 2006 Kunle Olukotun 37

Summary & A Look Ahead

• We have examined some common sources of errors

– Inter-thread memory access errors
– False sharing

– Problems with locking

• We went through the process of analyzing speedups

– Determine speedup & efficiency

– Examine sources of overhead

– Look at scalability of applications

• Will next look at some real applications in more detail

