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Review: “Lightweight” Thread Model

• Each thread is just a PC, registers, and stack
– Often made with pthread_create()

• Usually all memory shared
– Same page table, so no separation
– Globals are completely shared

• Pros:
– Easier sharing

• No need for separate malloc() calls
• Now pointer usage controls sharing

– Much less OS overhead!!!
• Con: Non-shared data just by copying vars

– Pointer errors may be able to corrupt
other processors’ data (ouch!)

Common Area

Pn Stack+

P0 Stack+

P1 Stack+

P2 Stack+

Common Virtual Address Space

Shared

Private-2

Private-1

Shared

Private-0

Private-2

Shared

Copies
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Review: So how do we use them?

• First, figure out where there is parallel work in an application
– Main topic of the next two lectures

• Next, choose a programming model
– Pthreads: Low-level threading library

• Uses fork-join model, like processes
• Allows arbitrary code division

– OpenMP: Compiler directives for parallel programming
• Uses “parallel region” model to simplify threads
• Higher-level, “parallel for”
• Is often much easier to use, but not as general
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Review: Coordinating Access to Shared Data:
Locks

• We must be able to control access to shared memory
– Unpredictable results can happen if we don’t (Ex. x++)

• Locks are a simple primitive to assert control

– Put lock/unlock (acquire/release) pair around each critical region

– Basis of all more complex variable control & synchronization
• Semaphores, monitors, condition variables

CPU 1

ld r1, x

add r1, r1, 1

—

—

st r1, x

CPU 2

. . .

ld r1, x

add r1, r1, 1

st r1, x

. . .

CPU 1

LOCK X

ld r1, x

add r1, r1, 1

st r1, x

UNLOCK X

CPU 2

. . .

LOCK X

stall

stall

unstall

ld r1, x

etc.
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Review: Locks: Performance vs. Correctness

• Few locks
– Coarse grain locking
– Easy to write parallel program
– Processors spend a lot of time stalled waiting to acquire

locks
– Poor performance

• Many locks
– Fine grain locking
– Difficult to write parallel program
– Higher chance of incorrect program (deadlock)
– Good performance

• Make parallel programming difficult
– How do you know what level of lock granularity to use?
– Will discuss further in upcoming lectures . . . .
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Review: Coordinating Access to Shared Data:
Synchronization

• We often want to control sequencing of parts of threads:

– To impose a sequential order on a code block
• When a few lines just can’t be parallelized

– To wake up stalled threads
• When stalled at a lock, for example

– To control producer-consumer access to data
• Producer signals consumer when output is ready

• Consumer signals producer when it needs more input

– To globally get all processors to the same point in the program
• Divides a program into easily-understood phases

• Generally called a barrier
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Pthreads Synchronization: Condition Variables

• Pthreads offers a lower-level interface to synchronization:
Condition Variables

– Provide simple “can I go?” and “go now” signaling calls
• Should be thought of as “go if X” and “X has changed”

– Can be used to build:
• Barriers

• Producer-consumer queues

• Read-write locks

• And just about any other communication primitive . . . .

• Is tied implicitly to a single lock & flag variable

– Lock protects the condition variable during use

– Flag allows condition to be tested independently
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CV API

• pthread_cond_wait(CV, lock) to say “can I go?”
– Always use inside the associated lock
– Always use in a while loop that tests the flag variable

• pthread_cond_signal(CV) to say “next CPU go!”
– Always use within the lock (writing to CV!)
– Always set the flag variable before leaving the lock

• pthread_cond_broadcast(CV) to say “all CPUs go!”
– Same restrictions as above
– Useful for building barriers, but . . .
– Still a delay after broadcast due to readers getting lock

• All broadcast receivers must serialize on the lock acquisition
• Could be lengthy if a lot of receivers
• May want to consider a single-writer model in this case
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Condition Variables in Action

while(!flag)
pthread_cond_wait(&my_cv, &my_cv_lock);

• pthread_cond_timedwait(CV, lock, time) limits waits

– Allows you to do something else after awhile

CPU 1

pthread_cond_wait

. . . waiting . . .

CV Released!

. . . stalled . . .

Acquire lock

Oops! flag is FALSE

CPU 2

. . .

Acquire lock

flag = FALSE

Release lock

. . .

CPU 0

Acquire lock

flag = TRUE

pthread_cond_signal 

Release lock

. . .
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Summary & A Look Ahead

• Three main portions of parallel  programming models
– Threads to divide up work
– Locks to protect shared data
– Synchronization primitives for sequencing/scheduling

threads

• These constructs are the basis of shared memory programming
– All programming assignments will build upon this
– Some assignments will have you examine details

• We will  see how these concepts get used in full applications
– Dividing up applications into threads
– Dividing up data to minimize communication and

synchronization
– Avoiding common bugs
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The Two Sides of Parallelization

• Dividing Work: Need to chop computation into parallel tasks

– What are smallest independent units in a program?

– How must they be sequenced?

• Partitioning Data: Localizing data onto processors

– Required on message passing machines
– Very helpful on shared-memory machines

– Need to minimize expensive interprocessor communication

Parallel Programmers Must Balance These
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Today’s Outline: Tasks

• Fixed task breakdown

– Regular patterns
– Graph patterns

• Dynamic task management
– Unknown number of tasks

– Unknown size of tasks

– Task queues

– Master-slave tasking

• Pipeline parallelism: Intra-task parallelism

– Feedback loops within tasks

– Stream parallelism
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Static Task Decompositions

• Many applications decompose into tasks easily

– Fixed-size tasks
– Known number of tasks

– Both are important!

Regular Arrays

Fixed Irregular Data Structures
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Dividing Up the  Work

• Easy to allocate to processors
– Fork off n_procs looping pthreads or use a parallel for
– Allocate by:

• Loop iteration (many tasks!)

• Chunks of loop iterations (medium)
• 1/n_procs iterations/processor (fewest)

– Decide allocation based on algorithm and architecture
• Does it have a “natural” chunk size?

• Does it have a particular communication pattern btw. iterations?

• How expensive is communication?

0,4,…
1,5,…

2,6,…
3,7,…

0-3,…
4-7,…

8-11,…
12-15,…

0–N/4-1
N/4–N/2-1

N/2–3N/4-1
3N/4–N-1
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Static Task Synchronization

• Barriers are great!

– Barriers at the end of each parallel region
• Sync up before back-to-serial

– Barriers in the middle of parallel regions for “phasing”
• Sync up after each global data exchange

• Can dramatically reduce the number of locks needed!

• Create “private” data within each phase

– Efficient because all processors execute ~same work

Computation w/ “private”

Computation w/ “private”

Exchange Data
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Static Partitioning with OpenMP & pthreads

• Do it manually with pthreads

– Choose how to pass iterations to threads

• OpenMP offers simple options for loops
– schedule(static, size) distributes size iterations/CPU

• Simple and clear

• Nesting works in some environments
– Works under Solaris 10

– Usually use entire rows/columns of multi-D arrays

• Can get stuck if you (# iterations)/(size•n_procs) not an integer
– Some “extra” processors during last batch of blocks

– This covers most common cases
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Static Partitioning Comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

THREAD 1 THREAD 2 THREAD 3 THREAD 4

THREAD 1 THREAD 2 THREAD 3 THREAD 4

STATIC
No chunksize

STATIC
size=1
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Problems with Static Partitioning

• Sometimes static task partitioning just won’t work:

– Unknown number of tasks
• Dependent upon a complex data structure

• Tasks generated dynamically, as we work

– Unknown size of tasks
• Data-dependent execution time

• Need to balance among processors at runtime
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Solution: Dynamic Partitioning

• Use real threads (pthreads) for large parallel tasks

– Examples: Entire database queries, web page lookups
– Let the underlying thread system handle scheduling

• Pthreads includes many routines to control scheduling

• Saves you a lot of work

• Allows pre-emption of long running tasks

• Use hand-built task queues for smaller parallel tasks

– Examples: Tree nodes, blocks of pixels, etc.

– Avoids often overly general thread schedule model

– You can custom-build a queue to hold your tasks efficiently

LockNew Task Running TaskLock
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Kinds of Task Queues I: Global

• Global task queues: One per application

– Pro: Excellent load balancing
– Con: Can get “any” task . . . more communication!

– Con: Contention for the lock protecting the queue
• Not scalable beyond Ttask/Tdequeue processors

Lock

Processor 1

Task

Processor 2

Task

Processor 3

Task
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Kinds of Task Queues II: Distributed

• Could also have one queue per processor:

– Pro: No lock contention, since it’s private
– Pro: Infinitely scalable

– Pro: Can selectively put “related” items in the same queue

– Con: Doesn’t solve our load balancing problem!

Lock
Processor 1

Task

Processor 2

Task

Processor 3

Task

Lock

Lock
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Task “Stealing”

• Solution: Allow processors to borrow from other queues

– Should only need to do occasionally
– Can grab from the queue tail

• Usually a different lock from the head, avoids contention

Lock

Step 1: Processor 2
Lock

Lock

Task

Lock

Step 2: Processor 2

Nothing!
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Other Queue Details

• Hybrid queues: Subset of processors sharing

– Splits pros and cons between two basic models

• Dynamic task generation

– Generate tasks as we compute
– Common with large, graph-like structures of variable size

– Must be careful how we add to distributed queues
• Probably want to add to our own queue the most

– Improves locality, reduces cache misses

• But need to “fill in” short queues when ours is long
– Algorithm for finding short queues needs to be scalable!
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Things to Avoid

• Barriers!

– Minimize, since they eliminate advantage of queues
– Exacerbate load imbalance

• Explicit inter-task sequencing

– Order of tasks is hard to determine
– Don’t make your program dependent upon it

Longer than 1-barrier case
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Dynamic Tasking with OpenMP & pthreads

• Pthreads lets you make your own
– Can easily customize to fit your application
– Use locks and (optional) condition variables
– Or just fork off new threads if tasks are large

• Also, tasks should be safely pre-emptable

• OpenMP is a mixed bag
– schedule(dynamic, size) is a dynamic equivalent to

the static directive
• Master passes off values of iterations to the workers of size

size
• Automatically handles dynamic tasking of simple loops

– Otherwise must make your own
• Includes many commonly used cases, unlike static
• Just like pthreads, except must be lock-only
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 OpenMP Guided Scheduling
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• schedule(guided, size)
• Guided scheduling is  a

compromise
• Iteration space is divided up into

exponentially decreasing chunks
• Final size is usually 1, unless set

by the programmer

• Chunks of work are dynamically
obtained

• Works quite well provided work per
iteration is constant – if unknown
dynamic is better
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Pipeline Parallelism: Another Approach

• There are two common ways to parallelize:
– Execute same task on different processors

• Processor executes whole task on different data (data parallelism)

– Pipeline task across processors
• Processor executes a piece of a task (functional parallelism)

Processors

time
A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D
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How to Pipeline

• You can pipeline in two ways

– Asynchronous: Producer-consumer buffers/queues
• More overhead, but localized — generally best

– Synchronous: Barriers between pipe stages
• Usually less overhead/sync, but global — use seldom

• Need to be careful to keep pipe stages ~same length

LockLock
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When to Use Pipelining

• Loop carried dependencies are the main reason:

• Can also sometimes be more natural with streaming data

– Data arrives over time

– As new data arrives, old moves on through
– Code, constants & loop carried information doesn’t move!

Use j(n-1)

Produce j(n)

Code & Consts

Code & Consts

Code & Consts

Code & Consts

Data

Data

Data

Data
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MPEG: A Good Pipeline Example

• Most stages have obvious task parallelism . . .

• . . . But final/first stage is hard-to-parallelize stream compression

Motion Estimate Motion Estimate Motion Estimate

Variable-Length
Coding

DCT/Quantize DCT/Quantize

I-Quantize/IDCT I-Quantize/IDCT

Variable-Length
Decoding

Motion Compensate Motion Compensate

Encode

Decode

lots of processors

fewer 
processors

1 processor
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Pipeline Parallelism: Example

#pragma omp parallel for private(i) num_threads(4) \

ordered

for (i = 0; i < n; i++) {

a[i] = foo(i);

b[i] = bar(i);

if (b[i] < 0.0) b[i] = 0.0;

#pragma omp ordered

c[i] = c[i] + c[i-1]

}

• Poor performance
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Pipeline Parallelism: Example Improved

#pragma omp parallel sections private(i) num_threads(4)

#pragma parallel section
for (i = 0; i < n; i++)

a[i] = foo(i);
#pragma parallel section

for (i = 0; i < n; i++){
b[i] = bar(i);

b_flag[i] = TRUE;

}
#pragma parallel section

for (i = 0; i < n; i++)
while(b_flag[i]);

if (b[i] < 0.0) b[i] = 0.0;
#pragma parallel section

for (i = 0; i < n; i++)
c[i] = c[i] + c[i-1];

• Better performance
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Summary & A Look Ahead

• Often have “regular” tasks

– Schedule statically among processors

• But must often deal with “irregular” tasks

– Use work queues to dynamically schedule

• Use pipelining to avoid serialization or for “streams” of data

• Will next examine how data affects parallelism

– Ways to divide regular arrays

– How data in trees affects tasking

– Minimizing communication
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Appendix 1

/***************************************************************************

 *                   SAMPLE DYNAMIC TASK QUEUEING CODE
 *

 *                        by Lance Hammond, 4/4/05
 *

 *  A brief demonstration of dynamic tasking with both pthreads and OpenMP.
 *  This just divides up a numbered series of tasks into a set of even-sized

 *  "queues" of tasks, while allowing the processors to "steal" from the

 *  other queues as necessary to allow dynamic load balancing.  More complex
 *  "queues" can be constructed to contain more complex sets of tasks, but

 *  the basic idea should stay the same.
 *

 *  This is done with pthreads.  The equivalent version with OpenMP is much
 *  simpler, just requiring the use of the "schedule(dynamic [, chunk_size])"

 *  flag on the #pragma statement.
 ***************************************************************************/
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Appendix 2
#include <pthread.h>

/* System Constants */

#define NUM_PROCESSORS 8 /* Number of processors to use */
#define CACHE_LINE_SIZE 64 /* Size of system's cache lines, in

bytes */
#define NUM_TASKS 10000 /* Number of tasks to divide up */

#define CHUNK_SIZE 5 /* Number of tasks to pull from queue
at once */

#define STEP_SIZE NUM_TASKS/NUM_PROCESSORS

/* Global type and variable definitions */

typedef struct ProcQueueStruct

{
int procID; /* Processor ID # */

int nextItem; /* Next item # on the queue */
int endOfQueue; /* One past end of this processor's queue */

int emptyFlag; /* This queue has emptied */
pthread_mutex_t queueLock; /* Lock to protect this queue */

char padding[CACHE_LINE_SIZE]; /* Anti-false sharing padding */

} ProcQueue;
ProcQueue procQueues[NUM_PROCESSORS];
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Appendix 3

/* work_from_queue function
 *
 * This pulls chunks of items off of the work queue and processes them until
 * the given work queue is emptied.  */

void work_from_queue(ProcQueue *q)
{

int currentItem, lastItem, i;

/* Take initial set of tasks off of the queue */
pthread_mutex_lock(&(q->queueLock));
currentItem = q->nextItem;
q->nextItem += CHUNK_SIZE;
lastItem = q->nextItem;
pthread_mutex_unlock(&(q->queueLock));

/* Eat through tasks until queue emptied */
while (currentItem < q->endOfQueue)
{

/* Do a chunk of my own work */
for (i=currentItem; (i < lastItem) && (i < q->endOfQueue); i++)
{

/* Do something useful here with item "i" */

}



K. Olukotun
Spring 05/06

Handout #4
CS315a

19

CS315A Lecture 3(C) 2006 Kunle Olukotun 37

Appendix 4

/* Get another chunk of work */
pthread_mutex_lock(&(q->queueLock));
currentItem = q->nextItem;
q->nextItem += CHUNK_SIZE;
lastItem = q->nextItem;
pthread_mutex_unlock(&(q->queueLock));

}

/* Set the "empty" flag for this queue */

pthread_mutex_lock(&(q->queueLock));
q->emptyFlag = 1;
pthread_mutex_unlock(&(q->queueLock));

}

/* worker_function function
 *
 * This works on tasks from this processor's work queue, and then
 * steals from others, completing only after it has verified that *all*
 * work queues are completely empty.  For simplicity, each processor only
 * steals from one other queue at a time, instead of trying to steal in
 * more "fair" fashion across processors.  */
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Appendix 5

void *worker_function(void *input)
{

ProcQueue *myQueue;
int i;

myQueue = (ProcQueue*) input;

/* Use my own queue to do work, initially */
work_from_queue(myQueue);

/* Done with my work, loop through other queues and try to steal */
/* NOTE: This algorithm is very simple, and could be improved */
for (i = (myQueue->procID + 1) % NUM_PROCESSORS;

i != myQueue->procID;  i = (i + 1) % NUM_PROCESSORS)
{

/* Work on this queue if not empty (no lock, OK if we misread since
 * it's just a performance optimization and will work anyway) */
if (procQueues[i].emptyFlag != 1) work_from_queue(&(procQueues[i]));

}
/* Now done -- we've checked all other queues for work */

}
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Appendix 6

/* main function
 * This initializes the work queues and then forks/joins the worker threads.
 * This program uses the "master thread sleeps during parallel region" model. */

void main(){
int i, start;
pthread_t myThreads[NUM_PROCESSORS];
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* Set up the thread queues */
for (i=0, start=0; i < NUM_PROCESSORS; i++){

procQueues[i].procID = i;
procQueues[i].nextItem = start;
start += STEP_SIZE;

if (i == NUM_PROCESSORS - 1) start = NUM_TASKS;
procQueues[i].endOfQueue = start;
procQueues[i].emptyFlag = 0;
pthread_mutex_init(&(procQueues[i].queueLock), NULL);

}
/* And start/join the parallel threads */
for (i=0; i < NUM_PROCESSORS; i++)

pthread_create(&myThreads[i], &attr, worker_function, (void*) &procQueues[i]);
for (i=0; i < NUM_PROCESSORS; i++)

pthread_join(myThreads[i], NULL);
}


