K. Olukotun Handout #19
Spring 05/06 CS315a

CS315A/EE382B: Lecture 11

Memory Consistency & CMP Introduction

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun CS315A Lecture 11

Announcements

* PA2 due Wed May 17
+ Midterms back today

© 2006 Kunle Olukotun CS315A Lecture 11

Handout #19

K. Olukotun
CS315a

Spring 05/06

Today’s Outline

* Memory Consistency
+ CMPs

© 2006 Kunle Olukotun CS315A Lecture 11

Synchronization Summary

+ Interaction of hardware-software tradeoffs
* Must evaluate hardware primitives and software algorithms
together
— primitives determine which algorithms perform well
+ Simple software algorithms with common hardware primitives do
well on bus

© 2006 Kunle Olukotun CS315A Lecture 11

K. Olukotun Handout #19
Spring 05/06 CS315a

Coherence vs. Consistency

+ Intuition says loads should return latest value
— what is latest?
» Coherence concerns only one memory location
» Consistency concerns apparent ordering for all locations
* A Memory System is Coherent if
— can serialize all operations to that location such that,

— operations performed by any processor appear in program
order

» program order = order defined program text or assembly code

— value returned by a read is value written by last store to that
location

©2006 Kunle Olukotun CS315A Lecture 11 5

Why Coherence != Consistency

/* initial A=B =flag=0*/

P1 P2

A=1; while (flag == 0); /* spin */
B =1; print A;

flag = 1; print B;

Intuition says printed A=B =1
Coherence doesn’t say anything, why? l
Consider a coalescing write buffer

©2006 Kunle Olukotun CS315A Lecture 11 6

K. Olukotun Handout #19
Spring 05/06 CS315a

Why Coherence != Consistency

/* initial A=B =flag=0*/

P1 P2
A=1; while (flag == 0); /* spin */
B =1; print A;
flag = 1; print B;
Intuition says printed A=B =1
Coherence doesn’t say anything, why? l
. . . B
Consider a coalescing write buffer
A
flag

©2006 Kunle Olukotun CS315A Lecture 11 7

Memory Consistency Model

Interface between programmer and system

What levels of the system do you need a memory consistency
model?

©2006 Kunle Olukotun CS315A Lecture 11 8

K. Olukotun Handout #19
Spring 05/06 CS315a

Sequential Consistency

* Lamport 1979
» A multiprocessor is sequentially consistent if:

— The result of any execution is the same as if the operations
of all the processors were executed in some sequential order

— The operations of each individual processor appear in this
sequence in the order specified by its program

* What a moderately sophisticated software person would
assume of shared memory

©2006 Kunle Olukotun CS315A Lecture 11 10

Sequential Consistency (SC)

sequential
processors
issue
memory ops

in program
order

switch randomly set

4 < after each memory op
provides single sequential
order among all operations

Memory

©2006 Kunle Olukotun CS315A Lecture 11 "

K. Olukotun
Spring 05/06

Definitions and Sufficient Conditions

» Sequentially Consistent Execution

— result is same as one of the possible interleavings on
uniprocessor

+ Sequentially Consistent System
— All execution is sequentially consistent

— Not possible to get execution that does not correspond to
some possible total order

© 2006 Kunle Olukotun CS315A Lecture 11

Memory Consistency Definitions

* Memory operation

— execution of load, store, atomic read-modify-write access to memory

location
* Issue

— operation is issued when it leaves processor and is presented to memory

system (cache, write-buffer, local and remote memories)
+ Perform

— A store is performed wrt to a processor p when a load by p returns value

produced by that store or a later store

— Aload is performed wrt to a processor when subsequent stores cannot

affect value returned by that load
» Complete
— memory operation is performed wrt all processors.

© 2006 Kunle Olukotun CS315A Lecture 11

Handout #19
CS315a

K. Olukotun Handout #19
Spring 05/06 CS315a

Sufficient Conditions for Sequential Consistency

» Every processor issues memory ops in program order
* Processor must wait for store to complete before issuing next
memory operation
+ After load, issuing proc waits for load to complete, and store that
produced the value to complete before issuing next op
— Ensures write atomicity (2 conditions)
* Writes to same location are serialized
+ Can’t read result of store until all processors will see new value
« Easily implemented with shared bus

© 2006 Kunle Olukotun CS315A Lecture 11

Impact of Sequential Consistency (SC)

+ Literal implementation: one memory module and no caches
» High performance implementations
— Coherent caching
* How do you maintain write atomicity with invalidates?
— Non binding prefetch
* Whatis this?
— Multithreading
* Is write atomicity a problem?
+ Compilers
— No reordering of shared memory operations
* What simple optimizations does this disallow?
— Why is register allocation of shared memory bad?
* Why are’nt most modern systems sequentially consistent?

© 2006 Kunle Olukotun CS315A Lecture 11

K. Olukotun Handout #19
Spring 05/06 CS315a

Relaxed Memory Models

» Moativation is increased performance
— Overlap multiple reads and writes in the memory system
— Execute reads as early as possible and writes as late as possible

* Rely on “synchronized” programs to get same behavior as SC
— What is a synchronized program?
* Recall SC has

— Each processor generates at total order of its reads and writes
R>RR>WW->W,&W > R)

— That are interleaved into a global total order
* (Most) Relaxed Models
» Processor consistency (PC):

— Relax ordering from writes to (other proc’s) reads
* Relaxed consistency (RC):

— Relax all read/write orderings (but add “fences”)

© 2006 Kunle Olukotun CS315A Lecture 11

Relax Write to Read Order

[*initial A=B=0"%
P1

A=1 B

; 1;
rl = B; r2

A;

I |'U
I N

Processor Consistent (PC) Models
Allow r1==r2==0 (precluded by SC, why?)
Examples: IBM 370, Sun’s Total Store Order, & Intel 1A-32
Why do this?

© 2006 Kunle Olukotun CS315A Lecture 11

K. Olukotun
Spring 05/06

Write Buffers w/ Read Bypass

P1 P2

Flag 2 Write Flag 1] 13 Flag 1 t4

t1 Y t2 v
| Shared Bus |

Write buffers violate SC

o Flag 1: 0
How do you fix this code?
Flag2:0 | Memory

Pl

P2
Flag 1 =1 Flag 2 =1
if (Flag == () if (Flag 1 == 0)

critical section critical section

©2006 Kunle Olukotun CS315A Lecture 11 19

Why Not Relax All Orders?

/* initially all 0 */

P1 P2

A=1; while (flag == 0); /* spin */
B =1; rl = A;

flag = 1; r2 = B;

Reorder of ‘A=1""B=1"or “r1 = A”,*r2 =B

Via OOO processor, non-FIFO write buffers, delayed invalidation
acknowledgements, etc.

But Must Order
“A=1""B = 1" before “flag =1"
“flag 1= 0” before “r1 = A”,“r2 = B”

©2006 Kunle Olukotun CS315A Lecture 11 20

Handout #19
CS315a

Handout #19

K. Olukotun
Spring 05/06 CS315a
Order with “Synch” Operations
“‘Safety Nets”
/* initially all 0 */
P1 P2
A =1; while (SYNCH flag == 0);
B =1; rl = A;
SYNCH flag = 1; r2 = B;
Called “weak ordering” of “weak consistency” (WC)
Alternatively, relaxed consistency (RC) specializes
Acquires: force subsequent reads/writes after
Releases: force previous reads/writes before
©2006 Kunle Olukotun CS315A Lecture 11 21
Sequential Consistency and
Processor Consistency
a sc N PCITSO N\
= A = A
acquibrg) acquibrg)
™

release \(NS)
F F

Normal orderings: R>R, R>W, W>R, W>W Normal orderings: R>R, R>W, W>W
Synch. orderings: SR, S>W, R>S, W->S, Synch. orderings: SR, S>W, R>S, W->§S,

S S$>S J U S$>S)

22

© 2006 Kunle Olukotun CS315A Lecture 11

K. Olukotun Handout #19
Spring 05/06 CS315a

Weak Ordering and
Release Consistency

4 wo N RC N
=A =A
B.= B =
acquire) acquire (S)
£ / &=
\L= D =D
release (S) release \(§$)
Eé E =
F = F =
Synch. orderings: SR, S>W, R>S, W->S, Synch. orderings: Sy>R, S,>W, R>Sg,
\ S->8 / \WQSR, Sp2SA, Sp2S,, S;28,, SR> Sk /

©2006 Kunle Olukotun CS315A Lecture 11 23

Commercial Models use “Fences’

/* initially all 0 */

P1 P2

A=1; while (flag == 0);
B =1; FENCE;

FENCE; rl = A;

flag = 1; r2 = B;

Examples: Compaq Alpha, IBM PowerPC,& Sun RMO

Can specialize fence: write fences and read fences (e.g., RMO)

©2006 Kunle Olukotun CS315A Lecture 11 24

11

K. Olukotun Handout #19
Spring 05/06 CS315a

The Programming Interface

* WO and RC require synchronized programs
— All access to shared data separated by a pair of sync. ops.
— Data-race free
write (x)
J.féiease (s)
€;1<.:c.1uire (s)
{llc;c':ess (x)
« All synchronization operations must be labeled and visible to the
hardware
— easy if synchronization library used

— must provide language support for arbitrary Id/st
synchronization (event notification, e.g., flag)

* Program that is correct for TSO portable to WO & RC

©2006 Kunle Olukotun CS315A Lecture 11 25

Implementing Relaxed Models

* Processor consistency
— Read misses bypass pending writes
— Write-buffer with tag check
— Memory and bus that supports two outstanding misses
— Hide latency of write misses

* Release consistency

— Allow multiple outstanding writes
Read misses bypass writes
Processor must have nonblocking (lockup free) cache
Memory and bus that supports multiple outstanding misses
Hide more write latency and read latency

©2006 Kunle Olukotun CS315A Lecture 11 28

12

K. Olukotun Handout #19
Spring 05/06 CS315a

SC and RC Performance Gap

» Relaxed models offer more implementation options
— Write buffers
— Nonblocking caches
* Improving SC performance
— Don'’t serialize coherence permission operations
» How do you execute read A, write B, read C, write D?
— Speculative execution
+ Allows SC implementations to hide read latency
* How does this work?
* Read A (miss), read B (hit)
* Closes gap between SC and RC

©2006 Kunle Olukotun CS315A Lecture 11 21

Do We Need Relaxed Models?

* Mark Hill says we don'’t

» SC restricts compiler optimizations

+ Sequential consistency (SC) is enough mec
. o 120F ERC
— processor consistency OK b Osc
— Need speculative execution (SE) g 100 o — .
. [
» Speculation already a core part of S N sof
microprocessor design g g aal
+ SC+SE within 16% of relaxed models & 8
on scientific benchmarks 9 4or
— What is impact on commercial =)
apps? :
* Makes life simpler for the parallel 80.& S URIRED mER
programmer g - g
2 z
v

©2006 Kunle Olukotun CS315A Lecture 11 28

13

K. Olukotun
Spring 05/06

Handout #19
CS315a

Single Thread Performance has Reached Limits

This has been said before, but it is really happening now!
ILP and deep pipelining have run out of steam:
— ILP parallelism in applications has been mined out
— Communication delays are hurting complex microarchitectures
— Frequency scaling is now technology-driven (minimal pipe stages)

— The power and complexity of microarchitectures taxes our ability to
cool and verify

Latest evidence
— Intel cancels Tejas: projected 180 W
— Sun cancels Millennium : 4 years late

— Comparable performance

Intel, IBM, Sun pursuing multicore designs

© 2006 Kunle Olukotun CS315A Lecture 11

Shared Cache Advantages

Cache placement identical to single cache
— Only one copy of any cached block
Fine-grain sharing
— Communication latency determined level in the storage
hierarchy where the access paths meet
— 10— 20 cycles for L2 cache meeting

Potential for positive interference Switch

— One proc. prefetches data for another
Smaller total storage 1 1

— Only one copy of code/data used by both proc. | | amececs |

Can share data within a line without “ping-pong” L

— Also, long lines without false sharing

© 2006 Kunle Olukotun CS315A Lecture 11

30

14

K. Olukotun
Spring 05/06

Shared Cache Disadvantages

Fundamental BW limitation
Increases latency of all accesses
— Must go through crossbar

— Larger cache ° oo °

Switch

— L1 hit time determines proc. cycle time Il I—___Swieh 47
Potential for negative interference
— One proc flushes data needed by another T 1
— Bad for completely independent tasks D (nerdaved) |

Main Memory |

Many L2 caches are shared today
— IBM Power5, Sun Niagara
— Allows sharing, but doesn’t affect L1 hit time

© 2006 Kunle

Olukotun CS315A Lecture 11 31

Parallelism, Latency and Throughput

AN I
Process
CHIP
Task MULTIPROCESSORS

E, (Throughput + Latency)

)

= L

5 oop

] Out-Of-Ord

o OR

Instruction VLIW
(Latency)
~
~
1 10 102 103 104 10° 108
Grain Size (instructions)
©2006 Kunle Olukotun CS315A Lecture 11 32

Handout #19
CS315a

15

K. Olukotun Handout #19
Spring 05/06 CS315a
Stanford Hydra Chip-Multiprocessor
L1 DCache L1 DCache L1 DCache L1 DCache
(16kB) (16kB) (16kB) (16kB)
Write bus (64b)
Read bus (256b)
On-chip L2 cache (MB) DRAM 110
Main Devices
Memory
* Large shared L2 cache
* Low-latency interprocessor communication (10-15 cycles)
©2006 Kunle Olukotun CS315A Lecture 11 33
Parallel Performance
4 General Uniprocessor Matrix and Multimedia Multiprogram ~ ® Varyl ng IeVeIS Of
Applications Applications
05 system performance
>] — Throughput
S workloads work well
52 — Very parallel apps
5 27 (matrix-based FP
S 15 and multimedia) are
§ excellent
3
? — Acceptable only
057 with some less

compress

parallel (integer)

.g., % [8 2 £ 2 o)
e ¢ v F 8§ 3 § 3 % apps
€ = 2
Hand Parallelized SUIF_
Parallelized

© 2006 Kunle Olukotun

CS315A Lecture 11 34

16

K. Olukotun
Spring 05/06

Need to Parallelize Applications

» Parallel software for single applications is limited
— Hand-parallelized applications
— Auto-parallelized dense matrix FORTRAN applications
» Traditional auto-parallelization of general purpose-programs is very
difficult
— Synchronization required for correctness
— General programs complicate dependence analysis
* Random pointers in C code
— Compile time analysis is too conservative
* How can hardware help?
— Low latency = small threads w/ lots of communication OK
— Reduce need for pointer disambiguation
— Allow the compiler to be aggressive

©2006 Kunle Olukotun CS315A Lecture 11 35

Solution: Thread-level Speculation

» TLS enables parallelization without regard for data-dependencies
— Loads and stores follow original sequential semantics
— Speculation hardware ensures correctness
— Add synchronization only for performance
» Parallelization is now easy
— Loop parallelization can be automated
— Break code into arbitrary threads
» Data speculation support
— Wisconsin Multiscalar, CMU Stampede, lllinois Torrelas group

— Hydra CMP provides low-overhead support for TLS+Dynamic
compiler+new programming model

Handout #19
CS315a

©2006 Kunle Olukotun CS315A Lecture 11 38

17

K. Olukotun
Spring 05/06

Midterm

45%
40%

40.38%

35%

30%

26.92%

25%
20%

15%

10%

11.53%

5%

0% 0%

1.92%
0% - 0%

0% T
0-10 10--20

19.23%

20-30 30-40 40-50 50-60 60-70 70-80 80-90 >>90

© 2006 Kunle Olukotun

CS315A Lecture 11

37

Handout #19
CS315a

18

