
 K. Olukotun
Spring 05/06

 Handout #19
CS315a

1

© 2006 Kunle Olukotun 1CS315A Lecture 11

CS315A/EE382B: Lecture 11

Memory Consistency & CMP Introduction

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun 2CS315A Lecture 11

Announcements

• PA2 due Wed May 17
• Midterms back today

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

2

© 2006 Kunle Olukotun 3CS315A Lecture 11

Today’s Outline

• Memory Consistency
• CMPs

© 2006 Kunle Olukotun 4CS315A Lecture 11

Synchronization Summary

• Interaction of hardware-software tradeoffs
• Must evaluate hardware primitives and software algorithms

together
– primitives determine which algorithms perform well

• Simple software algorithms with common hardware primitives do
well on bus

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

3

© 2006 Kunle Olukotun 5CS315A Lecture 11

Coherence vs. Consistency

• Intuition says loads should return latest value
– what is latest?

• Coherence concerns only one memory location
• Consistency concerns apparent ordering for all locations
• A Memory System is Coherent if

– can serialize all operations to that location such that,
– operations performed by any processor appear in program

order
• program order = order defined program text or assembly code

– value returned by a read is value written by last store to that
location

© 2006 Kunle Olukotun 6CS315A Lecture 11

Why Coherence != Consistency

/* initial A = B = flag = 0 */
 P1 P2
A = 1; while (flag == 0); /* spin */
B = 1; print A;
flag = 1; print B;

Intuition says printed A = B = 1
Coherence doesn’t say anything, why?
Consider a coalescing write buffer B

A

flag

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

4

© 2006 Kunle Olukotun 7CS315A Lecture 11

Why Coherence != Consistency

/* initial A = B = flag = 0 */
 P1 P2
A = 1; while (flag == 0); /* spin */
B = 1; print A;
flag = 1; print B;

Intuition says printed A = B = 1
Coherence doesn’t say anything, why?
Consider a coalescing write buffer B

A

flag

© 2006 Kunle Olukotun 8CS315A Lecture 11

Memory Consistency Model

• Interface between programmer and system
• What levels of the system do you need a memory consistency

model?

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

5

© 2006 Kunle Olukotun 10CS315A Lecture 11

Sequential Consistency

• Lamport 1979
• A multiprocessor is sequentially consistent if:

– The result of any execution is the same as if the operations
of all the processors were executed in some sequential order

– The operations of each individual processor appear in this
sequence in the order specified by its program

• What a moderately sophisticated software person would
assume of shared memory

© 2006 Kunle Olukotun 11CS315A Lecture 11

Sequential Consistency (SC)

P1 P2 P3

switch randomly set
after each memory op
provides single sequential
order among all operations

sequential
processors
issue
memory ops
in program
order

Memory

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

6

© 2006 Kunle Olukotun 12CS315A Lecture 11

Definitions and Sufficient Conditions

• Sequentially Consistent Execution
– result is same as one of the possible interleavings on

uniprocessor
• Sequentially Consistent System

– All execution is sequentially consistent
– Not possible to get execution that does not correspond to

some possible total order

© 2006 Kunle Olukotun 13CS315A Lecture 11

Memory Consistency Definitions

• Memory operation
– execution of load, store, atomic read-modify-write access to memory

location
• Issue

– operation is issued when it leaves processor and is presented to memory
system (cache, write-buffer, local and remote memories)

• Perform
– A store is performed wrt to a processor p when a load by p returns value

produced by that store or a later store
– A load is performed wrt to a processor when subsequent stores cannot

affect value returned by that load
• Complete

– memory operation is performed wrt all processors.

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

7

© 2006 Kunle Olukotun 14CS315A Lecture 11

Sufficient Conditions for Sequential Consistency

• Every processor issues memory ops in program order
• Processor must wait for store to complete before issuing next

memory operation
• After load, issuing proc waits for load to complete, and store that

produced the value to complete before issuing next op
– Ensures write atomicity (2 conditions)

• Writes to same location are serialized
• Can’t read result of store until all processors will see new value

• Easily implemented with shared bus

© 2006 Kunle Olukotun 15CS315A Lecture 11

Impact of Sequential Consistency (SC)

• Literal implementation: one memory module and no caches
• High performance implementations

– Coherent caching
• How do you maintain write atomicity with invalidates?

– Non binding prefetch
• What is this?

– Multithreading
• Is write atomicity a problem?

• Compilers
– No reordering of shared memory operations

• What simple optimizations does this disallow?
– Why is register allocation of shared memory bad?

• Why are’nt most modern systems sequentially consistent?

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

8

© 2006 Kunle Olukotun 16CS315A Lecture 11

Relaxed Memory Models

• Motivation is increased performance
– Overlap multiple reads and writes in the memory system
– Execute reads as early as possible and writes as late as possible

• Rely on “synchronized” programs to get same behavior as SC
– What is a synchronized program?

• Recall SC has
– Each processor generates at total order of its reads and writes

(R  R, R  W, W  W, & W  R)
– That are interleaved into a global total order

• (Most) Relaxed Models
• Processor consistency (PC):

– Relax ordering from writes to (other proc’s) reads
• Relaxed consistency (RC):

– Relax all read/write orderings (but add “fences”)

© 2006 Kunle Olukotun 17CS315A Lecture 11

Relax Write to Read Order

 /* initial A = B = 0 */
 P1 P2
A = 1; B = 1;
r1 = B; r2 = A;

Processor Consistent (PC) Models
Allow r1==r2==0 (precluded by SC, why?)
Examples: IBM 370, Sun’s Total Store Order, & Intel IA-32
Why do this?

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

9

© 2006 Kunle Olukotun 19CS315A Lecture 11

Write Buffers w/ Read Bypass

Shared Bus

P1

Write Flag 1
Read
Flag 2
t1

t3

P2

Write Flag 2
Read
Flag 1
t2

t4

Flag 1: 0
Flag 2: 0

P1 P2
Flag 1 = 1 Flag 2 = 1
if (Flag 2 == 0) if (Flag 1 == 0)
 critical section critical section

Memory
Write buffers violate SC

How do you fix this code?

© 2006 Kunle Olukotun 20CS315A Lecture 11

Why Not Relax All Orders?

 /* initially all 0 */
 P1 P2
A = 1; while (flag == 0); /* spin */
B = 1; r1 = A;
flag = 1; r2 = B;

Reorder of “A = 1”,“B = 1” or “r1 = A”,“r2 = B”
Via OOO processor, non-FIFO write buffers, delayed invalidation

acknowledgements, etc.
But Must Order

 “A = 1”,“B = 1” before “flag =1”
“flag != 0” before “r1 = A”,“r2 = B”

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

10

© 2006 Kunle Olukotun 21CS315A Lecture 11

Order with “Synch” Operations
“Safety Nets”

 /* initially all 0 */
 P1 P2
A = 1; while (SYNCH flag == 0);
B = 1; r1 = A;
SYNCH flag = 1; r2 = B;

Called “weak ordering” of “weak consistency” (WC)
Alternatively, relaxed consistency (RC) specializes

Acquires: force subsequent reads/writes after
Releases: force previous reads/writes before

© 2006 Kunle Olukotun 22CS315A Lecture 11

Sequential Consistency and
Processor Consistency

SC

= A

B =

acquire (S)

C =

 = D

release (S)

E =

F =

Normal orderings: RR, RW, WR, WW

Synch. orderings: SR, SW, RS, WS,

SS

PC/TSO

= A

B =

acquire (S)

C =

 = D

release (S)

E =

F =

Normal orderings: RR, RW, WW

Synch. orderings: SR, SW, RS, WS,

SS

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

11

© 2006 Kunle Olukotun 23CS315A Lecture 11

Weak Ordering and
Release Consistency

WO

= A

B =

acquire (S)

C =

 = D

release (S)

E =

F =

Synch. orderings: SR, SW, RS, WS,

SS

RC

= A

B =

acquire (S)

C =

 = D

release (S)

E =

F =

Synch. orderings: SAR, SAW, RSR,

WSR, SASA , SASr, SrSA, SRSR

© 2006 Kunle Olukotun 24CS315A Lecture 11

Commercial Models use “Fences”

/* initially all 0 */
 P1 P2
A = 1; while (flag == 0);
B = 1; FENCE;
FENCE; r1 = A;
flag = 1; r2 = B;

Examples: Compaq Alpha, IBM PowerPC,& Sun RMO

Can specialize fence: write fences and read fences (e.g., RMO)

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

12

© 2006 Kunle Olukotun 25CS315A Lecture 11

The Programming Interface

• WO and RC require synchronized programs
– All access to shared data separated by a pair of sync. ops.
– Data-race free

write (x)
...
release (s)
...
acquire (s)
...
access (x)

• All synchronization operations must be labeled and visible to the
hardware
– easy if synchronization library used
– must provide language support for arbitrary ld/st

synchronization (event notification, e.g., flag)
• Program that is correct for TSO portable to WO & RC

© 2006 Kunle Olukotun 26CS315A Lecture 11

Implementing Relaxed Models

• Processor consistency
– Read misses bypass pending writes
– Write-buffer with tag check
– Memory and bus that supports two outstanding misses
– Hide latency of write misses

• Release consistency
– Allow multiple outstanding writes
– Read misses bypass writes
– Processor must have nonblocking (lockup free) cache
– Memory and bus that supports multiple outstanding misses
– Hide more write latency and read latency

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

13

© 2006 Kunle Olukotun 27CS315A Lecture 11

SC and RC Performance Gap

• Relaxed models offer more implementation options
– Write buffers
– Nonblocking caches

• Improving SC performance
– Don’t serialize coherence permission operations

• How do you execute read A, write B, read C, write D?
– Speculative execution

• Allows SC implementations to hide read latency
• How does this work?
• Read A (miss), read B (hit)

• Closes gap between SC and RC

© 2006 Kunle Olukotun 28CS315A Lecture 11

Do We Need Relaxed Models?

• Mark Hill says we don’t
• Sequential consistency (SC) is enough

– processor consistency OK
– Need speculative execution (SE)

• Speculation already a core part of
microprocessor design

• SC+SE within 16% of relaxed models
on scientific benchmarks
– What is impact on commercial

apps?
• Makes life simpler for the parallel

programmer
• SC restricts compiler optimizations

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

14

© 2006 Kunle Olukotun 29CS315A Lecture 11

Single Thread Performance has Reached Limits

• This has been said before, but it is really happening now!

• ILP and deep pipelining have run out of steam:

– ILP parallelism in applications has been mined out

– Communication delays are hurting complex microarchitectures

– Frequency scaling is now technology-driven (minimal pipe stages)

– The power and complexity of microarchitectures taxes our ability to
cool and verify

• Latest evidence
– Intel cancels Tejas: projected 180 W
– Sun cancels Millennium : 4 years late

– Comparable performance

• Intel, IBM, Sun pursuing multicore designs

© 2006 Kunle Olukotun 30CS315A Lecture 11

Shared Cache Advantages

• Cache placement identical to single cache
– Only one copy of any cached block

• Fine-grain sharing
– Communication latency determined level in the storage

hierarchy where the access paths meet
– 10– 20 cycles for L2 cache meeting

• Potential for positive interference
– One proc. prefetches data for another

• Smaller total storage
– Only one copy of code/data used by both proc.

• Can share data within a line without “ping-pong”
– Also, long lines without false sharing

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

15

© 2006 Kunle Olukotun 31CS315A Lecture 11

Shared Cache Disadvantages

• Fundamental BW limitation
• Increases latency of all accesses

– Must go through crossbar
– Larger cache
– L1 hit time determines proc. cycle time !!!

• Potential for negative interference
– One proc flushes data needed by another
– Bad for completely independent tasks

• Many L2 caches are shared today
– IBM Power5, Sun Niagara
– Allows sharing, but doesn’t affect L1 hit time

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

© 2006 Kunle Olukotun 32CS315A Lecture 11

“Thread-level”

Parallelism, Latency and Throughput

Pa
ra

lle
lis

m

Grain Size (instructions)

Instruction

Loop

Task

Process

1 10 102 103 104 105

TRADITIONAL
MULTIPROCESSOR

(Throughput)

106

Out-Of-Order
OR

VLIW
(Latency)

CHIP
MULTIPROCESSORS
(Throughput + Latency)

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

16

© 2006 Kunle Olukotun 33CS315A Lecture 11

Stanford Hydra Chip-Multiprocessor

• Large shared L2 cache
• Low-latency interprocessor communication (10-15 cycles)

DRAM
interface

DRAM
Main

Memory

I/O bus
interface

I/O
Devices

On-chip L2 cache (MB)

Write bus (64b)

Read bus (256b)

L1 ICache
(16kB)

CPU0

L1 DCache
(16kB)

L1 ICache
(16kB)

CPU1

L1 DCache
(16kB)

L1 ICache
(16kB)

CPU2

L1 DCache
(16kB)

L1 ICache
(16kB)

CPU3

L1 DCache
(16kB)

Central bus arbitrator

© 2006 Kunle Olukotun 34CS315A Lecture 11

Parallel Performance

• Varying levels of
system performance
– Throughput

workloads work well
– Very parallel apps

(matrix-based FP
and multimedia) are
excellent

– Acceptable only
with some less
parallel (integer)
apps

Hand Parallelized SUIF
Parallelized

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

17

© 2006 Kunle Olukotun 35CS315A Lecture 11

Need to Parallelize Applications

• Parallel software for single applications is limited
– Hand-parallelized applications
– Auto-parallelized dense matrix FORTRAN applications

• Traditional auto-parallelization of general purpose-programs is very
difficult
– Synchronization required for correctness
– General programs complicate dependence analysis

• Random pointers in C code
– Compile time analysis is too conservative

• How can hardware help?
– Low latency = small threads w/ lots of communication OK
– Reduce need for pointer disambiguation
– Allow the compiler to be aggressive

© 2006 Kunle Olukotun 36CS315A Lecture 11

Solution: Thread-level Speculation

• TLS enables parallelization without regard for data-dependencies
– Loads and stores follow original sequential semantics
– Speculation hardware ensures correctness
– Add synchronization only for performance

• Parallelization is now easy
– Loop parallelization can be automated
– Break code into arbitrary threads

• Data speculation support
– Wisconsin Multiscalar, CMU Stampede, Illinois Torrelas group
– Hydra CMP provides low-overhead support for TLS+Dynamic

compiler+new programming model

 K. Olukotun
Spring 05/06

 Handout #19
CS315a

18

© 2006 Kunle Olukotun 37CS315A Lecture 11

Midterm

