
K. Olukotun
Spring 04/05

 Handout #13
CS315a

1

© 2006 Kunle Olukotun 1
CS315A Lecture 9

CS315A/EE386A: Lecture 9

Symmetric Multiprocessors II
Implementation Details

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun 2
CS315A Lecture 9

Announcements

• PS2 due Monday May 8
– no late day

• Midterm exam Wed May 10
– 7-9pm Gates B03
– Lectures 1-9
– Open book, open notes, calculator, no computer

• Midterm review Friday May 5
– Gates B01
– 4:15-5:05pm
– Broadcast live on E4

• PA2 due Mon May 15

K. Olukotun
Spring 04/05

 Handout #13
CS315a

2

© 2006 Kunle Olukotun 3
CS315A Lecture 9

Today’s Outline

• SMP performance
• SMP Implementation detail

© 2006 Kunle Olukotun 4
CS315A Lecture 9

SMP Performance

• Cache coherence protocol
– Update vs. invalidate
– Bus bandwidth

• Memory hierarchy performance
– Miss rate
– Number of processors
– Cache size
– Block size

• Highly application dependent
– Commercial
– Scientific

K. Olukotun
Spring 04/05

 Handout #13
CS315a

3

© 2006 Kunle Olukotun 5
CS315A Lecture 9

Update versus Invalidate

• Much debate over the years: tradeoff depends on sharing
patterns

• Intuition:
– If reads and writes are interleaved, update should do better

• e.g. producer-consumer pattern
– If those that use unlikely to use again, or many writes

between reads, updates not good
• particularly bad under process migration
• useless updates where only last one will be used

• Can construct scenarios where one or other is much better
• Can combine them in hybrid schemes

– E.g. competitive: observe patterns at runtime and change
protocol

© 2006 Kunle Olukotun 6
CS315A Lecture 9

Bus Traffic for Invalidate vs. Update

• Pattern 1:
for i = 1 to k
 P1(write, x); // one write before reads
 P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x); // many writes before reads

end for j
 P2(read, x);
end for i Assume:

1. Invalidation/upgrade = 6 bytes (5 addr, 1 cmd)

2. Update = 14 bytes (6 addr/cmd + 8 data)

3. Cache miss = 70 bytes (6 addr/cmd + 64 data)

K. Olukotun
Spring 04/05

 Handout #13
CS315a

4

© 2006 Kunle Olukotun 7
CS315A Lecture 9

Bus Traffic for Invalidate vs. Update, cont.

• Pattern 1 (one write before reads)
– N = 16, m = 10, k = 10
– Update

• Iteration 1: N regular cache misses (70 bytes)
• Remaining iterations: update per iteration (14 bytes)
• Total Update Traffic = 16*70 + 9*14 = 1246 bytes

– Invalidate
• Iteration 1: N regular cache misses (70 bytes)
• Remaining: P1 generates upgrade (6), 15 others Read

miss (70)
• Total Invalidate Traffic = 16*70 + 9*6 + 15*9*70 = 10,624

bytes
• Pattern 2 (many writes before reads)

– Update = 2*70 + 10*9*14 = 1400 bytes
– Invalidate = 11*70 + 9*6 = 824 bytes

• Pattern 1:
for i = 1 to k
 P1(write, x);

P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x);

end for j
 P2(read, x);
end for i

© 2006 Kunle Olukotun 8
CS315A Lecture 9

Invalidate vs. Update Reality

• What about real workloads?
– Update can generate too much traffic
– Must limit (e.g., competitive snooping)

• Current Assessment
– Update very hard to implement correctly

(consistency discussion coming next week)
– Rarely done

• Future Assessment
– May be same as current or
– Chip multiprocessors may revive update protocols

• More intra-chip bandwidth
• Easier to have predictable timing paths?

K. Olukotun
Spring 04/05

 Handout #13
CS315a

5

© 2006 Kunle Olukotun 9
CS315A Lecture 9

Memory Hierarchy Performance

• Uniprocessor 3C’s
– (Compulsory, Capacity, Conflict)

• SM adds Coherence Miss Type (communication)
– True Sharing miss fetches data written by another processor
– False Sharing miss results from independent data in same

coherence block
• Increasing cache size

– Usually fewer capacity/conflict misses
– No effect on true/false “coherence” misses (so may dominate)

• Block size is unit of transfer and of coherence
– Doesn’t have to be, could make coherence smaller

• Increasing block size
– Usually fewer 3C misses but more bandwidth
– Usually more false sharing misses

© 2006 Kunle Olukotun 10
CS315A Lecture 9

Commercial Application Performance on a
4-Proc AlphaServer

• Alphaserver 4100
– L1: 8KB D.M.
– L2: 96KB 3-way S.A.
– L3: 2MB D.M.

• Performance
– OLTP: 7.0 CPI
– DSS: 1.6 CPI
– AltaVista: 1.3

K. Olukotun
Spring 04/05

 Handout #13
CS315a

6

© 2006 Kunle Olukotun 11
CS315A Lecture 9

OLTP Memory Performance

• 2-way S.A.
• Dominant sources

– Instruction
– Capacity/conflict

• Increasing cache size
– Reduces 1-proc misses
– Sharing misses remain

© 2006 Kunle Olukotun 12
CS315A Lecture 9

Block Size and Processor Count Effect on
OLTP Memory Performance

• Miss rate reduction in 2 MB, 2-way S.A.

– 32B: 100%
– 64B: 85%
– 128B: 75%
– 256B: 73%

K. Olukotun
Spring 04/05

 Handout #13
CS315a

7

© 2006 Kunle Olukotun 13
CS315A Lecture 9

Scientific App. Cache Size vs. Miss rate

• Arch parameters
– 16 processors
– 32B block size

• FFT
– Benefit limited due to . . .
– Communication for transpose
– Working set effects

• LU
– Next WS is both matrices

• Barnes
– Comm and capacity reduced

• Ocean
– Large impact on capacity

© 2006 Kunle Olukotun 14
CS315A Lecture 9

Scientific App. Block Size vs. Miss rate and Buss Traffic
(16 proc, 64 KB cache)

B
yt

es
 p

er
 d

at
a

re
fe

re
nc

e

K. Olukotun
Spring 04/05

 Handout #13
CS315a

8

© 2006 Kunle Olukotun 15
CS315A Lecture 9

Review: Symmetric Multiprocessors (SMP)

• Multiple microprocessors
• Each has cache hierarchy
• Connect with logical bus (totally-ordered broadcast)
• Implement Snooping Cache Coherence Protocol

– Broadcast all cache “misses” on bus
– All caches “snoop” bus and may act
– Memory responds otherwise

• Performance
– OLTP requires large caches (≥ 4 MB)
– OLTP performance limited by sharing misses
– Scientific apps show working set effects, smaller caches (≤ 0.5 MB)
– Optimized scientific apps don’t share much

© 2006 Kunle Olukotun 16
CS315A Lecture 9

Snooping Cache-Coherence Protocols

• Bus provides serialization point
• Each cache controller “snoops” all bus transactions

– Controller updates state of blocks in response to processor and
snoop events and generates bus transactions

• Snoopy protocol
– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache

K. Olukotun
Spring 04/05

 Handout #13
CS315a

9

© 2006 Kunle Olukotun 17
CS315A Lecture 9

MSI State Diagram

PrRd /--

M

BusRdX /
BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Bus
Writeback

BusWB

Bus Read
Exclusive

BusRdX

Bus ReadBusRd

Processor
Write

PrWr

Processor
Read

PrRd
ActionAbbreviation

© 2006 Kunle Olukotun 18
CS315A Lecture 9

Unanswered Questions

• How does memory know another cache will respond so it need
not?

• What do we do if a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?

• Is deadlock a problem?

• What happens on a PTE update with multiple TLBs?

K. Olukotun
Spring 04/05

 Handout #13
CS315a

10

© 2006 Kunle Olukotun 19
CS315A Lecture 9

Outline

• Coherence control implementation

• Writebacks & Non-Atomicity

• Cache hierarchies

• Split buses

• Deadlock, livelock, & starvation

• A case study

• TLB coherence

© 2006 Kunle Olukotun 20
CS315A Lecture 9

Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– no interleaving of transactions
• Atomic operations within process

– one finishes before next in program order
• Examine snooping,write serialization, and atomicity

• Then add more concurrency and re-examine

K. Olukotun
Spring 04/05

 Handout #13
CS315a

11

© 2006 Kunle Olukotun 21
CS315A Lecture 9

Cache Tags

• Cache controller must monitor bus and processor
– Can view as two controllers: bus-side, and processor-side
– With single-level cache: dual tags (not data) or dual-ported

tag RAM
• must reconcile when updated, but usually only looked up

– Respond to bus transactions

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by
the processor

© 2006 Kunle Olukotun 22
CS315A Lecture 9

Reporting Snoop Results: How?

• Collective response from caches must appear on bus
• Example: in MESI protocol, need to know

– Is block dirty; i.e. should memory respond or not?
– Is block shared; i.e. transition to E or S state on read miss?

• Three wired-OR signals
– Shared: asserted if any cache has a copy
– Dirty: asserted if some cache has a dirty copy

• needn’t know which, since it will do what’s necessary
– Snoop-valid: asserted when OK to check other two signals

• actually inhibit until OK to check
• Illinois MESI requires priority scheme for cache-to-cache

transfers
– Which cache should supply data when in shared state?
– Commercial implementations allow memory to provide data

K. Olukotun
Spring 04/05

 Handout #13
CS315a

12

© 2006 Kunle Olukotun 23
CS315A Lecture 9

Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do
• Fixed number of clocks from address appearing on bus

– Dual tags required to reduce contention with processor
– Still must be conservative (tags inaccessible on write: S M)
– Pentium, HP servers, Sun Enterprise

• Variable delay
– Memory assumes cache will supply data till all say “sorry”
– Less conservative, more flexible, more complex
– Memory can fetch data and hold just in case (SGI Challenge)

• Immediately
– Bit-per-block in memory
– Extra hardware complexity in commodity main memory system

© 2006 Kunle Olukotun 24
CS315A Lecture 9

Writebacks

• Write back block in M state
• Must allow processor to proceed on a miss

– fetch the block
– perform writeback later

• Need a writebuffer
– Must handle bus transactions in the write buffer
– Check writebuffer on snoop, if hit supply data and cancel

writeback

K. Olukotun
Spring 04/05

 Handout #13
CS315a

13

© 2006 Kunle Olukotun 25
CS315A Lecture 9

Snooping Cache

Cache Data RAM

Bus

tags

and

state

Proc

tags

and

state

Write-back bufferTag

Bus-side

controller

=?

=?

Cmd Addr Addr Cmd

Proc-side

controller

Data buffer
System bus

Addr Cmd
Processor

Data

© 2006 Kunle Olukotun 26
CS315A Lecture 9

Typical Bus Protocol

• On a miss processor must:
– Assert request for bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

BReq

BGnt

Addr
OK

Data

BR

Addr

Data

BG

BG

OK

OK

OK

others
may get
bus

K. Olukotun
Spring 04/05

 Handout #13
CS315a

14

© 2006 Kunle Olukotun 27
CS315A Lecture 9

Non-Atomic State Transitions

• Memory operations involve multiple actions
– Look up cache tags
– Arbitrate for bus
– Check for writeback
– Even if bus is atomic, overall set of actions is not
– Race conditions among multiple operations

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue BusInv to allow S M

• The cache controller must
– Handle requests for other blocks while waiting to acquire bus
– Handle requests for this block A

© 2006 Kunle Olukotun 28
CS315A Lecture 9

Non-Atomicity Transient States

Extend protocol
Two types of states

• Stable (e.g. MSI)
• Transient

Increases complexity

PrRd / --
BusRd / --

PrRd /--

M

BusRdX /
BusWB

I

PrWr / --

BusRd /
BusWB

PrRd /
BusReq

BusRdX / --

SM

S

IS

IM

PrWr /
BusReq

BusGnt /
BusRd

BusGnt /
BusRdX

PrWr /
BusReq

BusGnt /
BusInv

BusRdX / --

Bus
Grant

Bus
Request

Action

BusGnt

BusReq

Abbr.

K. Olukotun
Spring 04/05

 Handout #13
CS315a

15

© 2006 Kunle Olukotun 30
CS315A Lecture 9

Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– independent bus snooping at every level?
– maintain cache inclusion

• Requirements for Inclusion
– data in higher-level is superset of data in lower-level
– modified in lower-level marked modified in higher-level

• Now only need to snoop highest-level cache
– If L2 says not present, then not so in L1

• Is inclusion automatically preserved?
– Natural if higher-level is larger, low-level is DM but same block

size
– Maintaining inclusion can be tricky (Baer and Wang 1988)

© 2006 Kunle Olukotun 31
CS315A Lecture 9

Inclusion to be or not to be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must source

data or invalidate, forward actions to L1 caches
– L2 cache with inclusion often removes the need for dual tags

(next slide)
• But

– Restricted associativity in unified L2 can limit blocks in split
L1’s

– CMPs make inclusion expensive
• Total size of L1s maybe comparable to L2

– Not that hard to always snoop L1’s

• Thus, many new designs don’t maintain inclusion

K. Olukotun
Spring 04/05

 Handout #13
CS315a

16

© 2006 Kunle Olukotun 32
CS315A Lecture 9

Contention of Cache Tags

• L2 filter reduces contention on L1 tags

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by
the processor

TagsCached Data

Cached
DataTags

Tags used mainly
 by processor

Tags used mainly
 by bus snooper

L1 Cache

L2 Cache

© 2006 Kunle Olukotun 33
CS315A Lecture 9

Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus

• Typically two separate buses with tagged transactions
– Request : address and command
– Response: data

K. Olukotun
Spring 04/05

 Handout #13
CS315a

17

© 2006 Kunle Olukotun 34
CS315A Lecture 9

Potential Problems

• New request can appear on bus before previous one serviced
– Even before snoop result obtained
– P1 and P2 both try to write block A which is invalid in both

caches
– PI issues BusRdX, P2 in invalid state so no response
– P2 issues BusRdX, P1 in invalid state so no response
– P1 gets memory response and places block in modified

state
– P2 gets memory response and places block in modified

state
– Disaster! Memory is incoherent

• Buffer requests and responses
– Need flow control to prevent deadlock from limited buffering

• Ordering of Snoop responses
– when does snoop response appear wrt data response

© 2006 Kunle Olukotun 35
CS315A Lecture 9

One Solution

• Disallow conflicting transactions
– All processors can see outstanding transactions
– P2 won’t issue BusRdX for block A if it sees P1’s request

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response

K. Olukotun
Spring 04/05

 Handout #13
CS315a

18

© 2006 Kunle Olukotun 36
CS315A Lecture 9

A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of transaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRd, BusRdX (request + response)
– Writeback (request + data)
– Invalidate (request only)

• Per processor request table tracks all transactions

© 2006 Kunle Olukotun 37
CS315A Lecture 9

A Simple Example

4,x 4,x 4,xld x ld xst x

P2 can snarf data from first ld
P1 must hold st operation until entry is clear

P0 P1 P2

K. Olukotun
Spring 04/05

 Handout #13
CS315a

19

© 2006 Kunle Olukotun 38
CS315A Lecture 9

B

A

Protocol Correctness

• Protocol must maintain coherence and consistency
• Protocol implementation should prevent:
• Deadlock:

– all system activity ceases
– Cycle of resource dependences

• Livelock:
– no processor makes forward progress
– constant on-going transactions at hardware level
– e.g. simultaneous writes in invalidation-based protocol

• Starvation:
– some processors make no forward progress
– e.g. a processor always loses bus arbitration

© 2006 Kunle Olukotun 39
CS315A Lecture 9

Deadlock, Livelock, Starvation

• Request-reply protocols can lead to fetch deadlock
– When issuing requests, must service incoming transactions
– e.g. cache awaiting bus grant must snoop & writeback

blocks
– else may not respond to request that will release bus:

deadlock
• Livelock:

– Many processors want to write same line
– Invalidation happens between obtaining ownership & write
– Ownership changes but no processor actually writes data
– Solution: don’t let ownership be stolen before write

• Starvation:
– solve by using fair arbitration on bus and FIFO buffers

K. Olukotun
Spring 04/05

 Handout #13
CS315a

20

© 2006 Kunle Olukotun 40
CS315A Lecture 9

Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• How do you avoid Deadlock?
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues
• Responses are never delayed by requests waiting for a

response
• Responses are guaranteed to be serviced
• Requests will eventually be serviced since the number of

responses is bounded by outstanding requests

© 2006 Kunle Olukotun 41
CS315A Lecture 9

Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2

K. Olukotun
Spring 04/05

 Handout #13
CS315a

21

© 2006 Kunle Olukotun 42
CS315A Lecture 9

SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol
• GigaplaneTM bus has peak bw 2.67 GB/s, 300 ns latency
• Up to 112 outstanding transactions (max 7 per board)
• 16 bus slots, for processing or I/O boards

– 2 CPUs and 1GB memory per board
• memory distributed, but protocol treats as centralized (UMA)

GigaplaneTM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards

© 2006 Kunle Olukotun 43
CS315A Lecture 9

Sun Gigaplane Bus

• Non-multiplexed, split-transaction, 256-data/41-address, 83.5 MHz
(Plus 32 ECC lines, 7 tag, 18 arbitration, etc. Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each board

– Designed for multiple outstanding transactions per processor
• Emphasis on reducing latency

– Speculative arbitration if address bus not scheduled from prev. cycle
– Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle

• Snoop result associated with request (5 cycles later)
• Main memory can stake claim to data bus 3 cycles into this, and start

memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol
– Owned state says this processor instead of memory will provide data

K. Olukotun
Spring 04/05

 Handout #13
CS315a

22

© 2006 Kunle Olukotun 44
CS315A Lecture 9

Gigaplane Bus Timing

Arbitration

Address

State

Tag

Status

Data

1

Rd A Tag

A D A D A D A D A D A D A D A D

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Share ~Own

Tag

OK

D0 D1

4,5

Rd B Tag

Own

Tag

6

Cancel

Tag

7

© 2006 Kunle Olukotun 45
CS315A Lecture 9

Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-bar
• Data lines buffered through UDB to drive internal 1.3 GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus cycles

UltraSparc

L2 $ Tags

UDB

L2 $ Tags

UDB

Address controller Data controller (crossbar)

Memory (16 ¥ 72-bit SIMMS)

D-tags

576144

Gigaplane connector

Control Address Data 288

Address controller Data controller (crossbar)

Gigaplane connector

Control Address Data 288

72

SysIO SysIO

SBUS
25 MHz 64

SBUS slots

Fast wide
SCSI

10/100
Ethernet

FiberChannel
module (2)

UltraSparc

K. Olukotun
Spring 04/05

 Handout #13
CS315a

23

© 2006 Kunle Olukotun 46
CS315A Lecture 9

Enterprise I/O System

• I/O board has same bus interface ASICs as processor boards
• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing boards

– Uniformity simplifies design
– ASICs implement single-block cache, follows coherence

protocol
• Two independent 64-bit, 25 MHz Sbuses

– One for two dedicated FiberChannel modules connected to
disk

– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arbitrary

peripherals
• Performance and cost of I/O scale with no. of I/O boards

© 2006 Kunle Olukotun 47
CS315A Lecture 9

Memory Access Latency

• 300ns read miss latency
(130 ns on bus)

• Rest is path through
caches & the DRAM
access

• TLB misses add 340 ns

!
!

! ! ! ! ! ! ! ! !

!
!

""

""""""""""""
"

"

T
im
e
 (
n
s
)

Stride (bytes)

#

#

#

#

#
#

#

#

#

#

#

#

#
#

!

!

!

!

! ! !
!

!

!

!

!

! ! !

!

!
!

$

$

$

$ $ $
$

$

$

$

$

$ $

$

$

$

%

%

%

% % %
%

%

%

%

%

%

%

%
"

" " "
"

"

"

"

"

" "

& & & & & & & & & & &

4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M
0

100

200

300

400

500

600

700

#! !$ $%
% %

"
"

"' '(
'(

' ' '((
(

(''('('('('(
"'(

"'("('
&

%$

8 M

! 4 M

$ 2 M

% 1 M

" 512 K

256 K

' 128 K

(64 K

32 K

16 K

!

"

&

Ping-pong microbenchmark is 1.7 μs round-trip (5 mem accesses)

K. Olukotun
Spring 04/05

 Handout #13
CS315a

24

© 2006 Kunle Olukotun 48
CS315A Lecture 9

Sun Enterprise 10000

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four address busses

– each handles 1/4 of physical address space
– impose logical ordering for consistency: for writes on same

cycle, those on bus 0 occur “before” bus 1, etc.
• Get rid of data bandwidth problem: use a network

– E10000 uses 16x16 crossbar betw. CPU boards & memory
boards

– Each CPU board has up to 4 CPUs: max 64 CPUs total
• 10.7 GB/s max BW, 468 ns unloaded miss latency
• See “Starfire: Extending the SMP Envelope”, IEEE Micro,

Jan/Feb 1998

© 2006 Kunle Olukotun 49
CS315A Lecture 9

Translation Lookaside Buffer

• Cache of Page Table Entries
• Page Table Maps Virtual Page to Physical Frame

0

4

7 7

4

3

Virtual Address Space Physical Address Space

K. Olukotun
Spring 04/05

 Handout #13
CS315a

25

© 2006 Kunle Olukotun 50
CS315A Lecture 9

The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all

processors
• Process migration
• Changes are infrequent

– get OS to do it
– Always flush TLB is often adequate

© 2006 Kunle Olukotun 51
CS315A Lecture 9

TLB Shootdown

• To modify TLB entry, modifying processor must
– LOCK page table,
– flush TLB entries,
– queue TLB operations,
– send interprocessor interrupt,
– spin until other processors are done
– UNLOCK page table

• SLOW...
– But most common solution today

• Some ISAs have “flush TLB entry” instructions

