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Announcements

• PS2 due Monday May 8
– no late day

• Midterm exam Wed May 10
– 7-9pm Gates B03
– Lectures 1-9
– Open book, open notes, calculator, no computer

• Midterm review Friday May 5
– Gates B01
– 4:15-5:05pm
– Broadcast live on E4

• PA2 due Mon May 15
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Today’s Outline

• SMP performance
• SMP Implementation detail
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SMP Performance

• Cache coherence protocol
– Update vs. invalidate
– Bus bandwidth

• Memory hierarchy performance
– Miss rate
– Number of processors
– Cache size
– Block size

• Highly application dependent
– Commercial
– Scientific
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Update versus Invalidate

• Much debate over the years: tradeoff depends on sharing
patterns

• Intuition:
– If reads and writes are interleaved, update should do better

• e.g. producer-consumer pattern
– If those that use unlikely to use again, or many writes

between reads, updates not good
• particularly bad under process migration
• useless updates where only last one will be used

• Can construct scenarios where one or other is much better
• Can combine them in hybrid schemes

– E.g. competitive: observe patterns at runtime and change
protocol
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Bus Traffic for Invalidate vs. Update

• Pattern 1:
for i = 1 to k
 P1(write, x);     // one write before reads
 P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x);   // many writes before reads

end for j
 P2(read, x);
end for i Assume:

1. Invalidation/upgrade  = 6 bytes (5 addr, 1 cmd)

2. Update = 14 bytes (6 addr/cmd + 8 data)

3. Cache miss = 70 bytes (6 addr/cmd + 64 data)
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Bus Traffic for Invalidate vs. Update, cont.

• Pattern 1 (one write before reads)
– N = 16, m = 10, k = 10
– Update

• Iteration 1: N regular cache misses (70 bytes)
• Remaining iterations: update per iteration (14 bytes)
• Total Update Traffic = 16*70 + 9*14 = 1246 bytes

– Invalidate
• Iteration 1: N regular cache misses (70 bytes)
• Remaining: P1 generates upgrade (6), 15 others Read

miss (70)
• Total Invalidate Traffic = 16*70 + 9*6 + 15*9*70 = 10,624

bytes
• Pattern 2 (many writes before reads)

– Update = 2*70 + 10*9*14 = 1400 bytes
– Invalidate = 11*70 + 9*6 = 824 bytes

• Pattern 1:
for i = 1 to k
 P1(write, x);

P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x);

end for j
 P2(read, x);
end for i

© 2006 Kunle Olukotun 8
CS315A Lecture 9

Invalidate vs. Update Reality

• What about real workloads?
– Update can generate too much traffic
– Must limit (e.g., competitive snooping )

• Current Assessment
– Update very hard to implement correctly

(consistency discussion coming next week)
– Rarely done

• Future Assessment
– May be same as current or
– Chip multiprocessors may revive update protocols

• More intra-chip bandwidth
• Easier to have predictable timing paths?
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Memory Hierarchy Performance

• Uniprocessor 3C’s
– (Compulsory, Capacity, Conflict)

• SM adds Coherence Miss Type (communication)
– True Sharing miss fetches data written by another processor
– False Sharing miss results from independent data in same

coherence block
• Increasing cache size

– Usually fewer capacity/conflict misses
– No effect on true/false “coherence” misses (so may dominate)

• Block size is unit of transfer and of coherence
– Doesn’t have to be, could make coherence smaller

• Increasing block size
– Usually fewer 3C misses but more bandwidth
– Usually more false sharing misses
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Commercial Application  Performance on a
4-Proc AlphaServer

• Alphaserver 4100
– L1: 8KB D.M.
– L2: 96KB 3-way S.A.
– L3: 2MB D.M.

• Performance
– OLTP: 7.0 CPI
– DSS: 1.6 CPI
– AltaVista: 1.3
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OLTP Memory Performance

• 2-way S.A.
• Dominant sources

– Instruction
– Capacity/conflict

• Increasing cache size
– Reduces 1-proc misses
– Sharing misses remain
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Block Size and Processor Count Effect on
OLTP Memory Performance

• Miss rate reduction in 2 MB, 2-way S.A.

– 32B: 100%
– 64B: 85%
– 128B: 75%
– 256B: 73%
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Scientific App. Cache Size vs. Miss rate

• Arch parameters
– 16 processors
– 32B block size

• FFT
– Benefit limited due to . . .
– Communication for transpose
– Working set effects

• LU
– Next WS is both matrices

• Barnes
– Comm and capacity reduced

• Ocean
– Large impact on capacity
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Scientific App. Block Size vs. Miss rate and Buss Traffic
(16 proc, 64 KB cache)
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Review: Symmetric Multiprocessors (SMP)

• Multiple microprocessors
• Each has cache hierarchy
• Connect with logical bus (totally-ordered broadcast)
• Implement Snooping Cache Coherence Protocol

– Broadcast all cache “misses” on bus
– All caches “snoop” bus and may act
– Memory responds otherwise

• Performance
– OLTP requires large caches (≥ 4 MB)
– OLTP performance limited by sharing misses
– Scientific apps show working set effects, smaller caches (≤ 0.5 MB)
– Optimized scientific apps don’t share much
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Snooping Cache-Coherence Protocols

• Bus provides serialization point
• Each cache controller “snoops” all bus transactions

– Controller updates state of blocks in response to processor and
snoop events and generates bus transactions

• Snoopy protocol
– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache
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MSI State Diagram

PrRd /--

M

BusRdX /
BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Bus
Writeback

BusWB

Bus Read
Exclusive

BusRdX

Bus ReadBusRd

Processor
Write

PrWr

Processor
Read

PrRd
ActionAbbreviation
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Unanswered Questions

• How does memory know another cache will respond so it need
not?

• What do we do if a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?

• Is deadlock a problem?

• What happens on a PTE update with multiple TLBs?
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Outline

• Coherence control implementation

• Writebacks &  Non-Atomicity

• Cache hierarchies

• Split buses

• Deadlock, livelock, & starvation

• A case study

• TLB coherence
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Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– no interleaving of  transactions
• Atomic operations within process

– one finishes before next in program order
• Examine snooping,write serialization, and atomicity

• Then add more concurrency and re-examine
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Cache Tags

• Cache controller must monitor bus and processor
– Can view as two controllers: bus-side, and processor-side
– With single-level cache: dual tags (not data) or dual-ported

tag RAM
• must reconcile when updated, but usually only looked up

– Respond to bus transactions

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by 
the processor
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Reporting Snoop Results: How?

• Collective response from caches must appear on bus
• Example: in MESI protocol, need to know

– Is block dirty; i.e. should memory respond or not?
– Is block shared; i.e. transition to E or S state on read miss?

• Three wired-OR signals
– Shared: asserted if any cache has a copy
– Dirty: asserted if some cache has a dirty copy

• needn’t know which, since it will do what’s necessary
– Snoop-valid: asserted when OK to check other two signals

• actually inhibit until OK to check
• Illinois MESI requires priority scheme for cache-to-cache

transfers
– Which cache should supply data when in shared state?
– Commercial implementations allow memory to provide data
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Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do
• Fixed number of clocks from address appearing on bus

– Dual tags required to reduce contention with processor
– Still must be conservative (tags inaccessible on write: S  M)
– Pentium, HP servers, Sun Enterprise

• Variable delay
– Memory assumes cache will supply data till all say “sorry”
– Less conservative, more flexible, more complex
– Memory can fetch data  and hold just in case (SGI Challenge)

• Immediately
– Bit-per-block in memory
– Extra hardware complexity in commodity main memory system
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Writebacks

• Write back block in M state
• Must allow processor to proceed on a miss

– fetch the block
– perform writeback later

• Need a writebuffer
– Must handle bus transactions in the write buffer
– Check writebuffer on snoop, if hit supply data and cancel

writeback
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Snooping Cache

Cache Data RAM

Bus

tags

and

state

Proc

tags

and

state

Write-back bufferTag

Bus-side

controller

=?

=?

Cmd Addr Addr Cmd

Proc-side

controller

Data buffer
System bus

Addr Cmd
Processor

Data
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Typical Bus Protocol

• On a miss processor must:
– Assert request for bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

BReq

BGnt

Addr
OK

Data

BR

Addr

Data

BG

BG

OK

OK

OK

others
may get
bus
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Non-Atomic State Transitions

• Memory operations involve multiple actions
– Look up cache tags
– Arbitrate for bus
– Check for writeback
– Even if bus is atomic, overall set of actions is not
– Race conditions among multiple operations

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue BusInv to allow S  M

• The cache controller must
– Handle requests for other blocks while waiting to acquire bus
– Handle requests for this block A
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Non-Atomicity  Transient States

Extend protocol
Two types of states

• Stable (e.g. MSI)
• Transient

Increases complexity

PrRd / --
BusRd / --

PrRd /--

M

BusRdX /
BusWB

I

PrWr / --

BusRd /
BusWB

PrRd / 
BusReq

BusRdX / --

SM

S

IS

IM

PrWr /
BusReq

BusGnt / 
BusRd

BusGnt / 
BusRdX

PrWr /
BusReq

BusGnt / 
BusInv

BusRdX / --

Bus
Grant

Bus
Request

Action

BusGnt

BusReq

Abbr.
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Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– independent bus snooping at every level?
– maintain cache inclusion

• Requirements for Inclusion
– data in higher-level is superset of data in lower-level
– modified in lower-level  marked modified in higher-level

• Now only need to snoop highest-level cache
– If L2 says not present, then not so in L1

• Is inclusion automatically preserved?
– Natural if higher-level is larger, low-level is DM but same block

size
– Maintaining inclusion can be tricky (Baer and Wang 1988)
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Inclusion to be or not to be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must source

data or invalidate, forward actions to L1 caches
– L2 cache with inclusion often removes the need for dual tags

(next slide)
• But

– Restricted associativity in unified L2 can limit blocks in split
L1’s

– CMPs make inclusion expensive
• Total size of L1s maybe comparable to L2

– Not that hard to always snoop L1’s

• Thus, many new designs don’t maintain inclusion
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Contention of Cache Tags

• L2 filter reduces contention on L1 tags

Tags TagsCached Data

Tags used by
the bus snooper

Tags used by 
the processor

TagsCached Data

Cached
DataTags

Tags used mainly 
 by processor

Tags used mainly
 by bus snooper

L1 Cache

L2 Cache
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Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus

• Typically two separate buses with tagged transactions
– Request : address and command
– Response: data
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Potential Problems

• New request can appear on bus before previous one serviced
– Even before snoop result obtained
– P1 and P2 both try to write block A which is invalid in both

caches
– PI issues BusRdX, P2 in invalid state so no response
– P2 issues BusRdX, P1 in invalid state so no response
– P1 gets memory response and places block in modified

state
– P2 gets memory response and places block in modified

state
– Disaster! Memory is incoherent

• Buffer requests and responses
– Need flow control to prevent deadlock from limited buffering

• Ordering of Snoop responses
– when does snoop response appear wrt data response
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One Solution

• Disallow conflicting transactions
– All processors can see outstanding transactions
– P2 won’t issue BusRdX for block A if it sees P1’s request

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response
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A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of transaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRd, BusRdX (request + response)
– Writeback (request + data)
– Invalidate (request only)

• Per processor request table tracks all transactions
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A Simple Example

4,x 4,x 4,xld x ld xst x

P2 can snarf data from first ld
P1 must hold st operation until entry is clear

P0 P1 P2



K. Olukotun
Spring 04/05

 Handout #13
CS315a

19

© 2006 Kunle Olukotun 38
CS315A Lecture 9

B

A

Protocol Correctness

• Protocol must maintain coherence and consistency
• Protocol implementation should prevent:
• Deadlock:

– all system activity ceases
– Cycle of resource dependences

• Livelock:
– no processor makes forward progress
– constant on-going transactions at hardware level
– e.g. simultaneous writes in invalidation-based protocol

• Starvation:
– some processors make no forward progress
– e.g. a processor always loses bus arbitration
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Deadlock, Livelock, Starvation

• Request-reply protocols can lead to fetch deadlock
– When issuing requests, must service incoming transactions
– e.g. cache awaiting bus grant must snoop & writeback

blocks
– else may not respond to request that will release bus:

deadlock
• Livelock:

– Many processors want to write same line
– Invalidation happens between obtaining ownership & write
– Ownership changes but no processor actually writes data
– Solution: don’t let ownership be stolen before write

• Starvation:
– solve by using fair arbitration on bus and FIFO buffers
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Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• How do you avoid Deadlock?
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues
• Responses are never delayed by requests waiting for a

response
• Responses are guaranteed to be serviced
• Requests will eventually be serviced since the number of

responses is bounded by outstanding requests
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Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2
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SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol
• GigaplaneTM bus has peak bw 2.67 GB/s, 300 ns latency
• Up to 112 outstanding transactions (max 7 per board)
• 16 bus slots, for processing or I/O boards

– 2 CPUs and 1GB memory per board
• memory distributed, but protocol treats as centralized (UMA)

GigaplaneTM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards
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Sun Gigaplane Bus

• Non-multiplexed, split-transaction, 256-data/41-address, 83.5 MHz
(Plus 32 ECC lines, 7 tag, 18 arbitration, etc.  Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each board

– Designed for multiple outstanding transactions per processor
• Emphasis on reducing latency

– Speculative arbitration if address bus not scheduled from prev. cycle
– Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle

• Snoop result associated with request (5 cycles later)
• Main memory can stake claim to data bus 3 cycles into this, and start

memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol
– Owned state says this processor instead of memory will provide data
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Gigaplane Bus Timing

Arbitration

Address

State

Tag

Status

Data

1

Rd A Tag

A D A D A D A D A D A D A D A D

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Share ~Own

Tag

OK

D0 D1

4,5

Rd B Tag

Own

Tag

6

Cancel

Tag

7
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Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-bar
• Data lines buffered through UDB to drive internal 1.3 GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus cycles

UltraSparc

L2 $ Tags

UDB

L2 $ Tags

UDB

Address controller Data controller (crossbar)

Memory (16 ¥ 72-bit SIMMS)

D-tags

576144

Gigaplane connector

Control Address Data 288

Address controller Data controller (crossbar)

Gigaplane connector

Control Address Data 288

72

SysIO SysIO

SBUS
25 MHz 64

SBUS slots

Fast wide 
SCSI

10/100 
Ethernet

FiberChannel
module (2)

UltraSparc
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Enterprise I/O System

• I/O board has same bus interface ASICs as processor boards
• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing boards

– Uniformity simplifies design
– ASICs implement single-block cache, follows coherence

protocol
• Two independent 64-bit, 25 MHz Sbuses

– One for two dedicated FiberChannel modules connected to
disk

– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arbitrary

peripherals
• Performance and cost of I/O scale with no. of I/O boards

© 2006 Kunle Olukotun 47
CS315A Lecture 9

Memory Access Latency

• 300ns read miss latency
(130 ns on bus)

• Rest is path through
caches & the DRAM
access

• TLB misses add 340 ns
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Sun Enterprise 10000

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four address busses

– each handles 1/4 of physical address space
– impose logical ordering for consistency: for writes on same

cycle, those on bus 0 occur “before” bus 1, etc.
• Get rid of data bandwidth problem: use a network

– E10000 uses 16x16 crossbar betw. CPU boards & memory
boards

– Each CPU board has up to 4 CPUs: max 64 CPUs total
• 10.7 GB/s max BW, 468 ns unloaded miss latency
• See “Starfire: Extending the SMP Envelope”, IEEE Micro,

Jan/Feb 1998
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Translation Lookaside Buffer

• Cache of Page Table Entries
• Page Table Maps Virtual Page to Physical Frame

0

4

7 7

4

3

Virtual Address Space Physical Address Space
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The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all

processors
• Process migration
• Changes are infrequent

– get OS to do it
– Always flush TLB is often adequate
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TLB Shootdown

• To modify TLB entry, modifying processor  must
– LOCK page table,
– flush TLB entries,
– queue TLB operations,
– send interprocessor interrupt,
– spin until other processors are done
– UNLOCK page table

• SLOW...
– But most common solution today

• Some ISAs have “flush TLB entry” instructions


