
K. Olukotun
Spring 05/06

 Handout #12
CS315a

1

© 2006 Kunle Olukotun 1CS315A Lecture 8

CS315A/EE382B: Lecture 8

Symmetric Multiprocessors I

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun 2CS315A Lecture 8

Today’s Outline

• Motivation for shared memory
• Cache coherence protocols
• SMP performance

K. Olukotun
Spring 05/06

 Handout #12
CS315a

2

© 2006 Kunle Olukotun 3CS315A Lecture 8

What is (Hardware) Shared Memory?

• Take multiple (micro-)processors

• Implement a memory system with
a single global physical address space

• Allow caching of shared and private data
– Minimize memory latency
– Maximize memory bandwidth

© 2006 Kunle Olukotun 4CS315A Lecture 8

Why Shared Memory?

• Pluses
– To applications looks like multitasking uniprocessor
– Programmers can worry about correctness first then performance
– Easy to do communication without OS
– For OS only evolutionary extensions required

• Minuses
– Proper synchronization can be difficult
– Communication is implicit so harder to optimize
– Hardware support can be complex

• Result
– Symmetric Multiprocessors (SMPs) are

the most success parallel machines ever
– And the first with multi-billion-dollar markets

• 90% commercial (TPC, DSS, web)
• 10% high-performance computing (eng, bio, financial)

K. Olukotun
Spring 05/06

 Handout #12
CS315a

3

© 2006 Kunle Olukotun 5CS315A Lecture 8

Some Shared Memory System Options

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shar ed memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

© 2006 Kunle Olukotun 6CS315A Lecture 8

Symmetric Multiprocessors (SMP)

• Multiple (micro-)processors

• Each has cache (a cache hierarchy)

• Connect with logical bus
– broadcast
– totally-ordered

K. Olukotun
Spring 05/06

 Handout #12
CS315a

4

© 2006 Kunle Olukotun 7CS315A Lecture 8

Caches are Critical for Performance

• Reduce average latency
– automatic replication and

migration closer to processor
• Reduce average bandwidth
• Data is logically transferred from

producer to consumer to memory
– store reg --> mem
– load reg <-- mem

P P P

• What happens when store & load are executed
on different processors?

• Many processor can share data efficiently

© 2006 Kunle Olukotun 8CS315A Lecture 8

Coherence and Consistency

• Intuition says loads should return the most recent value
– what is most recent?

• Coherence concerns only a single memory location
• Consistency concerns apparent ordering for multiple locations
• A Memory System is Coherent if:

– can serialize all operations to that location such that,
– operations performed by any processor appear in program

order
• program order = order defined by program text or assembly

code
– value returned by a read on one processor is value written

by last store to that location by another processor
– Writes to a location are seen in same order by all processors

• Write serialization

K. Olukotun
Spring 05/06

 Handout #12
CS315a

5

© 2006 Kunle Olukotun 9CS315A Lecture 8

Cache Coherence Problem (Step 1)

P1 P2

x

Bus

Main Memory

Ti
m

e

ld r2, x {0}

© 2006 Kunle Olukotun 10CS315A Lecture 8

Cache Coherence Problem (Step 2)

P1 P2

x

Bus

Main Memory

ld r2, x {0}

Ti
m

e

ld r2, x {0}

K. Olukotun
Spring 05/06

 Handout #12
CS315a

6

© 2006 Kunle Olukotun 11CS315A Lecture 8

Cache Coherence Problem (Step 3)

P1 P2

x

Bus

Main Memory

ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}Ti

m
e

ld r2, x {0}

© 2006 Kunle Olukotun 12CS315A Lecture 8

Cache Coherence Problem (Step 4)

P1 P2

x

Bus

Main Memory

ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}Ti

m
e

ld r2, x {0}

ld r2, x {0}
ERROR!!!

K. Olukotun
Spring 05/06

 Handout #12
CS315a

7

© 2006 Kunle Olukotun 13CS315A Lecture 8

Snooping Cache-Coherence Protocols

• Bus provides serialization point
– Broadcast, totally ordered

• Each cache controller “snoops” all bus transactions
– Controller updates state of blocks in response to processor and

snoop events and generates bus transactions
• Snoopy protocol (FSM)

– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache

© 2006 Kunle Olukotun 14CS315A Lecture 8

Cache Coherence Invalidate Protocol (Step 3)

P1 P2

x

Bus

Main Memory

ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}Ti

m
e

ld r2, x {0}

Invalidation of X

K. Olukotun
Spring 05/06

 Handout #12
CS315a

8

© 2006 Kunle Olukotun 15CS315A Lecture 8

Cache Coherence Invalidate Protocol (Step 4)

P1 P2

x

Bus

Main Memory

Ti
m

e ld r2, x {miss, 1}
ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}

ld r2, x {0}

CORRECT!!

© 2006 Kunle Olukotun 16CS315A Lecture 8

Cache Coherence Update Protocol (Step 3)

P1 P2

x

Bus

Main Memory

ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}Ti

m
e

ld r2, x {0}

Update of X

Update of X

K. Olukotun
Spring 05/06

 Handout #12
CS315a

9

© 2006 Kunle Olukotun 17CS315A Lecture 8

Cache Coherence Update Protocol (Step 4)

P1 P2

x

Bus

Main Memory

ld r2, x { 0}
add r2, r2, #1
st x, r2 {1}Ti

m
e

ld r2, x {0}

ld r2, x {hit, 1}

Update of X

CORRECT!!

© 2006 Kunle Olukotun 18CS315A Lecture 8

The Simple Invalidate Snooping Protocol

• Write-through, no-
write-allocate
cache

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

Bus Write

Bus Read

Processor
Write

Processor
Read

Action

BusWr

BusRd

PrWr

PrRd
Abbreviation

K. Olukotun
Spring 05/06

 Handout #12
CS315a

10

© 2006 Kunle Olukotun 19CS315A Lecture 8

Is 2-state Protocol Coherent?

• Assume bus transactions and memory operations are atomic, one-level
cache

– processor waits for memory operation to finish before issuing next
– with one-level cache, assume invalidations applied during bus xaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)

• invalidations applied to caches in bus order
• How to insert reads in this order?

– Read misses
• appear on bus, and will “see” last write in bus order

– Read hits: do not appear on bus
• But value read was placed in cache by either

– most recent write by this processor, or most recent read miss
– Both these transactions appeared on the bus

• So reads hits also see values as produced bus order

© 2006 Kunle Olukotun 20CS315A Lecture 8

A 3-State Write-Back Invalidation Protocol

• 2-State Protocol
+ Simple hardware and protocol
– Bandwidth (every write goes on bus!)

• 3-State Protocol (MSI)
– Modified (H&P calls Exclusive)

• one cache has valid/latest copy
• memory is stale

– Shared
• one or more caches (and memory) have valid copy

– Invalid
• Must invalidate all other copies before entering modified state
• Requires bus transaction (order and invalidate)

K. Olukotun
Spring 05/06

 Handout #12
CS315a

11

© 2006 Kunle Olukotun 21CS315A Lecture 8

MSI Processor and Bus Actions

• Processor:
– PrRd
– PrWr
– Writeback on replacement of modified block

• Bus
– Bus Read (BusRd) Read without intent to modify, data could

come from memory or another cache
– Bus Read-Exclusive (BusRdX) Read with intent to modify,

must invalidate all other caches copies
– Writeback (BusWB) cache controller puts contents on bus

and memory is updated
– Definition: cache-to-cache transfer occurs when another

cache satisfies BusRd or BusRdX request
• Let’s draw it!

© 2006 Kunle Olukotun 22CS315A Lecture 8

MSI State Diagram

PrRd /--

M

BusRdX /
BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Bus
Writeback

BusWB

Bus Read
Exclusive

BusRdX

Bus ReadBusRd

Processor
Write

PrWr

Processor
Read

PrRd
ActionAbbreviation

K. Olukotun
Spring 05/06

 Handout #12
CS315a

12

© 2006 Kunle Olukotun 23CS315A Lecture 8

MSI Invalidate Protocol

• Read obtains block in
“shared”
– even if only cache copy

• Obtain exclusive ownership
before writing
– BusRdX causes others to

invalidate
– If M in another cache, will

cause writeback
– BusRdX even if hit in S

• promote to M (upgrade)

PrRd /--

M

BusRdX /
BusWBS

I

PrWr / --

BusRd /
BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

© 2006 Kunle Olukotun 24CS315A Lecture 8

A Cache Coherence Example

Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u S -- -- BusRd Memory
2. P3 read u S -- S BusRd Memory
3. P3 write u I -- M BusRdX Memory or P3
4. P1 read u S -- S BusRd P3’s cache
5. P2 read u S S S BusRd Memory
6. P2 write u I M I BusRdX P2’s cache

• Single writer, multiple reader protocol
• Why do you need Modified to Shared?

K. Olukotun
Spring 05/06

 Handout #12
CS315a

13

© 2006 Kunle Olukotun 25CS315A Lecture 8

Protocol Analysis

• Ocean
– Transitions per 1000 data refs
– 22% loads, 5% stores, 73% other

• 0.27 data refs/instr
• Compute traffic per CPU (1 GHz)

– IS : 0.19%
– SM : 0.32%
– MS : 0.23%
– MNP : 0.26%
– NPS : 0.22%
– NPM : 0.17%
– Total : 1.22% of data refs
– 1.22% x 0.27 refs/instr x 70 bytes x 1 GHz
– = 230 Mbytes/sec

Bus trans = 70 bytes (6 addr/cmd + 64 data)

PrWr/BusRdX
0.0

BusRdX/BusWB
0.0

M

S

I

PrRd, PrWr / --
843.6

BusRd /BusWB
2.3PrWr / BusRdX

3.2

PrRd / BusRd
1.9

BusRdX / --
2.5

PrRd,BusRd / --
148.7

Replace/BusWB

2.6
PrWr / BusRdX
1.7

PrRd / BusRd
2.2

© 2006 Kunle Olukotun 26CS315A Lecture 8

A Cache Coherence: Optimizations

Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u S -- -- BusRd Memory
2. P3 read u S -- S BusRd Memory
3. P3 write u I -- M BusRdX Memory or P3
4. P1 read u S -- S BusRd P3’s cache
5. P2 read u S S S BusRd Memory
6. P2 write u I M I BusInv P2’s cache

• Upgrade (ownership) misses (SM)
– Use invalidate instead of BusRdX

• What if not in any cache (sequential application)?
– Read, Write produces 2 bus transactions!

K. Olukotun
Spring 05/06

 Handout #12
CS315a

14

© 2006 Kunle Olukotun 27CS315A Lecture 8

4-State (MESI) Invalidation Protocol

• Often called the Illinois protocol
• Modified (dirty)
• Exclusive (clean unshared) only this cache has copy, but not dirty
• Shared
• Invalid
• Requires a shared signal to detect if other caches have a copy of

block (S)
• Bus writeback for cache-to-cache transfers

– Only one can do it though
• What does state diagram look like?

© 2006 Kunle Olukotun 28CS315A Lecture 8

Update Protocols

• If data is to be communicated between processors, invalidate
protocols seem inefficient

• Consider a shared flag
– p0 waits for it to be zero, then does work and sets it one
– p1 waits for it to be one, then does work and sets it zero

K. Olukotun
Spring 05/06

 Handout #12
CS315a

15

© 2006 Kunle Olukotun 29CS315A Lecture 8

Dragon Write-back Update Protocol

• 4 states
– Exclusive-clean or exclusive (E): I and memory have it
– Shared clean (Sc): I, others, and maybe memory, but I’m not owner
– Shared modified (Sm): I and others but not memory, and I’m the owner

• Sm and Sc can coexist in different caches, with only one Sm

– Modified or dirty (D): I and, noone else
• No invalid state

– If in cache, cannot be invalid
– If not present in cache, view as being in not-present or invalid state

• New processor events: PrRdMiss, PrWrMiss
– Introduced to specify actions when block not present in cache

• New bus transaction: BusUpd
– Broadcasts single word written on bus; updates other relevant caches

© 2006 Kunle Olukotun 30CS315A Lecture 8

Dragon State Transition Diagram

E Sc

Sm M

PrWr/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

PrWrMiss/(BusRd(S);
BusUpd)

PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

PrWr/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrWr/BusUpd(S)

PrWr/BusUpd(S)

K. Olukotun
Spring 05/06

 Handout #12
CS315a

16

© 2006 Kunle Olukotun 31CS315A Lecture 8

SMP Performance

• Cache coherence protocol
– Update vs. invalidate
– Bus bandwidth

• Memory hierarchy performance
– Miss rate
– Number of processors
– Cache size
– Block size

• Highly application dependent
– Commercial
– Scientific

© 2006 Kunle Olukotun 32CS315A Lecture 8

Update versus Invalidate

• Much debate over the years: tradeoff depends on sharing
patterns

• Intuition:
– If reads and writes are interleaved, update should do better

• e.g. producer-consumer pattern
– If those that use unlikely to use again, or many writes

between reads, updates not good
• particularly bad under process migration
• useless updates where only last one will be used

• Can construct scenarios where one or other is much better
• Can combine them in hybrid schemes

– E.g. competitive: observe patterns at runtime and change
protocol

K. Olukotun
Spring 05/06

 Handout #12
CS315a

17

© 2006 Kunle Olukotun 33CS315A Lecture 8

Bus Traffic for Invalidate vs. Update

• Pattern 1:
for i = 1 to k
 P1(write, x); // one write before reads
 P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x); // many writes before reads

end for j
 P2(read, x);
end for i

Assume:

1. Invalidation/upgrade = 6 bytes (5 addr, 1 cmd)

2. Update = 14 bytes (6 addr/cmd + 8 data)

3. Cache miss = 70 bytes (6 addr/cmd + 64 data)

© 2006 Kunle Olukotun 34CS315A Lecture 8

Bus Traffic for Invalidate vs. Update, cont.

• Pattern 1 (one write before reads)
– N = 16, m = 10, k = 10
– Update

• Iteration 1: N regular cache misses (70 bytes)
• Remaining iterations: update per iteration (14 bytes)
• Total Update Traffic = 16*70 + 9*14 = 1246 bytes

– Invalidate
• Iteration 1: N regular cache misses (70 bytes)
• Remaining: P1 generates upgrade (6), 15 others

Read miss (70)
• Total Invalidate Traffic = 16*70 + 9*6 + 15*9*70 =

10,624 bytes
• Pattern 2 (many writes before reads)

– Update = 2*70 + 10*9*14 = 1400 bytes
– Invalidate = 11*70 + 9*6 = 824 bytes

• Pattern 1:
for i = 1 to k
 P1(write, x);

P2-PN(read, x);
end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
 P1(write, x);

end for j
 P2(read, x);
end for i

K. Olukotun
Spring 05/06

 Handout #12
CS315a

18

© 2006 Kunle Olukotun 35CS315A Lecture 8

Invalidate vs. Update Reality

• What about real workloads?
– Update can generate too much traffic
– Must limit (e.g., competitive snooping)

• Current Assessment
– Update very hard to implement correctly

(consistency discussion coming next week)
– Rarely done

• Future Assessment
– May be same as current or
– Chip multiprocessors may revive update protocols

• More intra-chip bandwidth
• Easier to have predictable timing paths?

© 2006 Kunle Olukotun 36CS315A Lecture 8

Memory Hierarchy Performance

• Uniprocessor 3C’s
– (Compulsory, Capacity, Conflict)

• SM adds Coherence Miss Type (communication)
– True Sharing miss fetches data written by another processor
– False Sharing miss results from independent data in same

coherence block
• Increasing cache size

– Usually fewer capacity/conflict misses
– No effect on true/false “coherence” misses (so may dominate)

• Block size is unit of transfer and of coherence
– Doesn’t have to be, could make coherence smaller

• Increasing block size
– Usually fewer 3C misses but more bandwidth
– Usually more false sharing misses

K. Olukotun
Spring 05/06

 Handout #12
CS315a

19

© 2006 Kunle Olukotun 37CS315A Lecture 8

Commercial Application Performance on a
4-Proc AlphaServer

• Alphaserver 4100
– L1: 8KB D.M.
– L2: 96KB 3-way S.A.
– L3: 2MB D.M.
– 4 processors

• Performance
– OLTP: 7.0 CPI
– DSS: 1.6 CPI
– AltaVista: 1.3 CPI

© 2006 Kunle Olukotun 38CS315A Lecture 8

OLTP Memory Performance

• 2-way S.A.
• Dominant sources

– Instruction
– Capacity/conflict

• Increasing cache size
– Reduces 1-proc misses
– Sharing misses remain

K. Olukotun
Spring 05/06

 Handout #12
CS315a

20

© 2006 Kunle Olukotun 39CS315A Lecture 8

Block Size and Processor Count Effect on
OLTP Memory Performance

• Miss rate reduction in 2 MB, 2-way S.A.

– 32B: 100%
– 64B: 85%
– 128B: 75%
– 256B: 73%

© 2006 Kunle Olukotun 40CS315A Lecture 8

Scientific App. Cache Size vs. Miss rate

• Arch parameters
– 16 processors
– 32B block size

• FFT
– Benefit limited due to . . .
– Communication for transpose
– Large working set

• LU
– Next WS is both matrices

• Barnes
– Comm and capacity reduced

• Ocean
– Large impact on capacity

K. Olukotun
Spring 05/06

 Handout #12
CS315a

21

© 2006 Kunle Olukotun 41CS315A Lecture 8

Scientific App. Block Size vs. Miss rate and Buss Traffic
(16 proc, 64 KB cache)

B
yt

es
 p

er
 d

at
a

re
fe

re
nc

e

