
 K. Olukotun
Spring 05/06

 Handout #8
CS315a

1

CS315A Lecture 6© 2006 Kunle Olukotun 1

CS315A/EE382B: Lecture 6

Scientific Applications

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun 2

Today’s Outline: Scientific Apps

• The OCEAN multi-grid simulation benchmark
• Dense matrix kernels:

– Matrix-vector multiply
– Matrix-matrix multiply
– Gaussian elimination/LU decomposition

• SPLASH-2

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

2

© 2006 Kunle Olukotun 3

Sample Algorithms & Applications

• We have mostly talked about programming at a high level
– Parallelism of basic tasks
– Parameters of algorithm analysis

• Now let’s take our analysis tools and use them!
– Regular, dense matrix applications
– Next lecture: applications with irregular data structures and

flow

© 2006 Kunle Olukotun 4

The OCEAN Benchmark

• Ocean simulates an ocean basin!
– Basin consists of a discretized grid of points
– Each point is a record with several parameters:

• Temperature, salinity, current flow, etc.
– Simulate changes over discrete steps of time
– Multiple grids are used to adjust spatial resolution dynamically

• Match resolution to rate-of-change of currents

Ocean Basin

Multiple-
resolution grids

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

3

© 2006 Kunle Olukotun 5

The Sequential Algorithm

• The core is a partial differential equation solver
– Works by estimating an answer and iterating to the solution
– Multiple grids are used to select:

• Fast-coarse early solution approximation
• Slow-fine final adjustments to the solution

– Iteration cycle adjusts using NSEW neighbor information
• Keeps repeating until solution convergence

• Sequential program loops along rows
– A top-left to bottom-right dependence
– Not good for parallel versions!
– Can we do better?

© 2006 Kunle Olukotun 6

Algorithm Modifications

• This PDE solution method is approximate
– Relies on recent inputs to speed convergence
– Iteration (N:i, W:i, S:i-1, E:i-1) is just a convenient selection
– But others are valid, too

• One obvious possibility: (N:i-1, W:i-1, S:i-1, E:i-1)
– Eliminates all dependencies within an iteration
– Makes each iteration completely parallel

Task TaskTask Task Loop.

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

4

© 2006 Kunle Olukotun 7

Red-Black Gauss-Seidel

• Further refinement leads to “red-black” approximation
– Basic parallel version requires odd-i and even-i grids

• Double the memory requirements
– Split each iteration into two phases to avoid this

• “Red” & “black” checkerboard squares alternate
– Now just need two barriers/timestep

Phase I: Red Updates Phase II: Black Updates

© 2006 Kunle Olukotun 8

Algorithm Analysis

• We can now analyze the parallel algorithm:
– Computation/communication ratio
– Type(s) of communication required
– All in terms of n (side of grid) and P (number of processors)

• Note that in past, we used N = size of grid (n2 here)
– Concurrency: Maximum number of useful processors

• Only in terms of n, since this sets P

• Concurrency for red-black Ocean is simple!

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

5

© 2006 Kunle Olukotun 9

Communication Analysis

• Ocean just uses nearest-neighbor communication
– Cheap and easy to implement on any shared parallel

processor

• We can choose a 1-D or 2-D partitioning
– Has no impact on computation
– But affects communication:

�

2n

�

n
2

p

Comms/Stripe: Elements/Stripe:

�

4
n

p

�

n
2

p

Comms/Block: Elements/Block:

© 2006 Kunle Olukotun 10

Computation-Communication Ratio

• We can now calculate computation-communication ratios:
– 1-D, “striped” division:

– 2-D, “blocked” division:

• The 2-D division version is better
– Offers more concurrency: n2 instead of n
– Less communication for same computation
– Also lends itself well to 4-D array blocking techniques

• Has been shown to speed up better than 50%
• 4-D arrays avoid false sharing at edges of blocks

�

n

p

�

n

p
Clearly better!

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

6

© 2006 Kunle Olukotun 11

Matrix-Vector Multiply

• One of the simplest linear algebra functions
– Requires simple data manipulation
– Requires some reduction

• Two ways to allocate by data:
– 1-D division, by row on input (or chunk of output)
– 2-D division, blocked on input

X = X =

n

n/p

�

n

p

© 2006 Kunle Olukotun 12

Computation & Communication Analysis

• Just one MAC (multiply-accumulate) per matrix element

• Only need to communicate along rows
– Nothing for 1-D
– Reduction sum communication for 2-D

• So why even bother with a blocked implementation?�

n
2

p

Comms/Stripe: MACs/Stripe:

�

n
2

p

Comms/Block: MACs/Block:

None Reduction

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

7

© 2006 Kunle Olukotun 13

Concurrency Analysis

• 2-D offers more possible concurrency
– 1-D only lets you use n processors
– 2-D lets you use up to n2 processors!

• At the expense of reduction trees for each output
– This is a common advantage of 2-D division!

• 2-D may also be a better choice if you’re multiplying the matrix
before or after this step

© 2006 Kunle Olukotun 14

Matrix-Matrix Multiply

• Now let’s add another dimension to an input
• Two basic ways to allocate by data/execution:

– 1-D division, by row on input/output
– 2-D division, blocked on output

X =

X =

n

n/p

�

n

p

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

8

© 2006 Kunle Olukotun 15

Computation & Communication Analysis

• n MACs per matrix element

• Blocking now improves both:
– Concurrency: n to n2

– Communication: Each block only needs 1/sqrt(p) of each
input matrix

Comms/Stripe: MACs/Stripe:

�

2
n
2

p

�

n
3

p

Comms/Block: MACs/Block:

�

n
3

p

�

n
2

Computation-Comm. Ratio: Computation- Comm. Ratio:

�

n

p

�

n

p
Better!

© 2006 Kunle Olukotun 16

Review of Gaussian Elimination for solving Ax=b

• Add multiples of each row to later rows to make A upper triangular
• Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

9

© 2006 Kunle Olukotun 17

LU Decomposition

• A critical linear algebra function is solving systems of equations
– Gaussian elimination is the basic technique
– Decomposition of A into L & U matrices

• Basic algorithm:
– Loop n times through algorithm (iterator k)
– Divide A[k,k] into all remaining values in its row (k+1 to n)

• Note that this uses many potentially expensive division ops
– Subtract row k • A[row, k] from all remaining rows (k+1 to n)

• This is just a lot of MAC operations

Elements already 0 Elements that
will change

Elements that
will not change

© 2006 Kunle Olukotun 18

Communication Patterns

• Normally divided up by mapping processors to areas of A

• Communication is mostly symmetric:
– kth column must be broadcast across to right
– kth row must be broadcast down to bottom

• Subtract out the product of these two communications
– Plus A[k, k] must be broadcast down row k first

then +

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

10

© 2006 Kunle Olukotun 19

Work/Data Division Patterns

• Can divide up in 1-D striped or 2-D blocked arrangements
– 1-D works OK both with columns OR rows

• Must communicate in both directions, anyway
– 2-D offers n2 concurrency, while 1-D only offers n

• Block-cyclic distribution is necessary for load balancing
– Only the lower-right corner of the array is active
– Need to spread this corner out among processors
– B-C reduces load imbalance to no more than 1 row/column

n

n/p

�

n

p

Rows

Columns

Cycle

© 2006 Kunle Olukotun 20

Why SPLASH-2?

• SPLASH
– Small number of programs
– Programs not scalable

• SPLASH-2
– Broader range of coverage, improved algorithms
– Designed for scalability

• Goals of paper
– Characterization of SPLASH-2 programs
– Methodology for architectural studies

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

11

© 2006 Kunle Olukotun 21

The SPLASH-2 Applications

© 2006 Kunle Olukotun 22

SPLASH-2 Characterization

• Axes of Characterization
– Concurrency
– Temporal Locality and Working Sets
– Communication-to-Computation Ratio and Traffic
– Spatial Locality

• Effects of
– Machine model
– Data set size
– Inherent versus practical considerations

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

12

© 2006 Kunle Olukotun 23

Concurrency

• PRAM model
• Speedups

• Methodological consideration?
– Beware of limited concurrency

© 2006 Kunle Olukotun 25

Temporal Locality and Working Sets

• Motivation
– Temporal locality ⇒ miss rate ⇒ performance

• Working sets
– Working sets denoted by knees in miss rate curve
– Hierarchy of working sets
– Some working sets are more important than others

LU

WS1: a few blocks

WS2: partition of DS

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

13

© 2006 Kunle Olukotun 26

Example Working Sets

• Characteristics of working sets
– Parameter dependent
– Grow at different rates
– May not be well-defined
– How should you measure miss rates?

© 2006 Kunle Olukotun 27

Working Set Methodological Implications

LU

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

14

© 2006 Kunle Olukotun 29

Communication-to-Computation Ratio and
Traffic

• Comm-to-comp ratio: inherent traffic ⇒ lower bound

• Why do we care?
• Components of traffic

– Inherent traffic
– Capacity traffic
– Artifactual traffic

Communication ∝ perimeter
Computation ∝ area

© 2006 Kunle Olukotun 30

Traffic Example

• Characteristics of traffic
– Parameter dependent (procs, problem size, ...)
– Composition changes with parameters

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

15

© 2006 Kunle Olukotun 31

Traffic: Implications

• Methodological implications

• Why do Radix and FFT have traffic graphs that flatten out with
processor count?

© 2006 Kunle Olukotun 33

Spatial Locality

• Motivation
– Spatial locality ⇒ miss rate ⇒ performance
– Choice of line size

• Linesize effects

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

16

© 2006 Kunle Olukotun 34

Spatial Locality Example

• Characteristics of spatial locality
– Parameter dependent (procs, problem size, ...)
– Miss composition changes with parameters

© 2006 Kunle Olukotun 35

Spatial Locality Implications

• Methodological implications

 K. Olukotun
Spring 05/06

 Handout #8
CS315a

17

© 2006 Kunle Olukotun 37

Summary and Look Ahead

• Dense matrix kernels offer interesting tradeoffs between:
– Communication
– Computation
– Maximum concurrency

• SPLASH-2
– Need to understand how parameters affect results
– Conclusion = ƒ(appl,prob size,cache size,line size,# procs,...)

• Some parameters are easy to prune
– Important to understand program behavior!

• More applications
– Scientific applications with irregular data structures and flow
– Commercial applications

• Read paper

