K. Olukotun
Spring 05/06

CS315A/EE382B: Lecture 6

Scientific Applications

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun CS315A Lecture 6

Today’s Outline: Scientific Apps

* The OCEAN multi-grid simulation benchmark
* Dense matrix kernels:

— Matrix-vector multiply

— Matrix-matrix multiply

— Gaussian elimination/LU decomposition
+ SPLASH-2

© 2006 Kunle Olukotun

Handout #8
CS315a

K. Olukotun
Spring 05/06

Sample Algorithms & Applications

* We have mostly talked about programming at a high level
— Parallelism of basic tasks
— Parameters of algorithm analysis

* Now let’s take our analysis tools and use them!
— Regular, dense matrix applications

— Next lecture: applications with irregular data structures and
flow

© 2006 Kunle Olukotun

The OCEAN Benchmark

* Ocean simulates an ocean basin!

Basin consists of a discretized grid of points

Each point is a record with several parameters:
» Temperature, salinity, current flow, etc.

Simulate changes over discrete steps of time

Multiple grids are used to adjust spatial resolution dynamically
» Match resolution to rate-of-change of currents

00000000

Multiple- 00000000
resolution grids Q0000000
00000000

Ocean Basin

© 2006 Kunle Olukotun

Handout #8
CS315a

K. Olukotun Handout #8
Spring 05/06 CS315a

The Sequential Algorithm

» The core is a partial differential equation solver
— Works by estimating an answer and iterating to the solution

— Multiple grids are used to select: (<] @
» Fast-coarse early solution approximation
* Slow-fine final adjustments to the solution ® ®

— lteration cycle adjusts using NSEW neighbor information
» Keeps repeating until solution convergence

» Sequential program loops along rows
— A top-left to bottom-right dependence
— Not good for parallel versions!
— Can we do better?

© 2006 Kunle Olukotun

Algorithm Modifications

» This PDE solution method is approximate
— Relies on recent inputs to speed convergence
— lteration (N:i, W:i, S:i-1, E:i-1) is just a convenient selection
— But others are valid, too

* One obvious possibility: (N:i-1, W:i-1, S:i-1, E:i-1)
— Eliminates all dependencies within an iteration
— Makes each iteration completely parallel

.... [Task Task Task Task:|.... Loop

L3S v NS N

© 2006 Kunle Olukotun

K. Olukotun Handout #8
Spring 05/06 CS315a

Red-Black Gauss-Seidel

* Further refinement leads to “red-black” approximation
— Basic parallel version requires odd-i and even-i grids
* Double the memory requirements
— Split each iteration into two phases to avoid this
» “Red” & “black” checkerboard squares alternate
— Now just need two barriers/timestep

Phase I: Red Updates Phase II: Black Updates

Tt
R

© 2006 Kunle Olukotun

Algorithm Analysis

* We can now analyze the parallel algorithm:
Computation/communication ratio
Type(s) of communication required
All'in terms of n (side of grid) and P (number of processors)
* Note that in past, we used N = size of grid (n2 here)
Concurrency: Maximum number of useful processors
* Only in terms of n, since this sets P

» Concurrency for red-black Ocean is simple!

© 2006 Kunle Olukotun

K. Olukotun
Spring 05/06

Communication Analysis

» Ocean just uses nearest-neighbor communication

— Cheap and easy to implement on any shared parallel
processor

* We can choose a 1-D or 2-D partitioning
— Has no impact on computation
— But affects communication:

Commsi/Stripe: ~ Elements/Stripe: Comms/Block:

Elements/Block:

P

nz nz
2n > \p b

— =

© 2006 Kunle Olukotun

Computation-Communication Ratio

* We can now calculate computation-communication ratios:
— 1-D, “striped” division: 7

p

— 2-D, “blocked” division: 5
ﬁ <«—— Clearly better!

* The 2-D division version is better
— Offers more concurrency: n? instead of n
— Less communication for same computation
— Also lends itself well to 4-D array blocking techniques
» Has been shown to speed up better than 50%
* 4-D arrays avoid false sharing at edges of blocks

© 2006 Kunle Olukotun

Handout #8
CS315a

K. Olukotun Handout #8
Spring 05/06 CS315a

Matrix-Vector Multiply

» One of the simplest linear algebra functions
— Requires simple data manipulation
— Requires some reduction

» Two ways to allocate by data:
— 1-D division, by row on input (or chunk of output)
— 2-D division, blocked on input

nip 4 ﬁ‘{ ol

© 2006 Kunle Olukotun

Computation & Communication Analysis

* Just one MAC (multiply-accumulate) per matrix element

* Only need to communicate along rows
— Nothing for 1-D
— Reduction sum communication for 2-D

Comms/Stripe: MACSs/Stripe: Comms/Block: MACs/Block:
None L Reduction L
14 14

» So why even bother with a blocked implementation?

© 2006 Kunle Olukotun

K. Olukotun Handout #8
Spring 05/06 CS315a

Concurrency Analysis

» 2-D offers more possible concurrency
— 1-D only lets you use n processors
— 2-D lets you use up to n? processors!
» At the expense of reduction trees for each output
— This is a common advantage of 2-D division!

» 2-D may also be a better choice if you're multiplying the matrix
before or after this step

© 2006 Kunle Olukotun

Matrix-Matrix Multiply

* Now let’s add another dimension to an input

» Two basic ways to allocate by data/execution:
— 1-D division, by row on input/output
— 2-D division, blocked on output

S
n/p']I XI-I=
=
77

© 2006 Kunle Olukotun

K. Olukotun Handout #8
Spring 05/06 CS315a

Computation & Communication Analysis

* n MACs per matrix element

» Blocking now improves both:
— Concurrency: n to n?
— Communication: Each block only needs 1/sqrt(p) of each

input matrix
Comms/Stripe: MACSs/Stripe: Comms/Block: MACs/Block:
. ”) IS
p \/; p
Computation-Comm. Ratio: Computation- Comm. Ratio:

n n
- Better! ——
\p

© 2006 Kunle Olukotun

Review of Gaussian Elimination for solving Ax=b

» Add multiples of each row to later rows to make A upper triangular
» Solve resulting triangular system Ux = ¢ by substitution

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows

Strueture of Matrix during simple version of Gaussian Elimination

Afteri=1 Afteri=2 Afteri=3 Afteri=n-1

© 2006 Kunle Olukotun

K. Olukotun
Spring 05/06

LU Decomposition

» A critical linear algebra function is solving systems of equations
— Gaussian elimination is the basic technique

— Decomposition of A into L & U matrices
nts that

will not change

0 ements that

Elements already, Il ch
change

» Basic algorithm:
— Loop n times through algorithm (iterator k)
— Divide A[k,k] into all remaining values in its row (k+1 to n)
* Note that this uses many potentially expensive division ops
— Subtract row k ¢ A[row, k] from all remaining rows (k+1 to n)
» This is just a lot of MAC operations

© 2006 Kunle Olukotun

Communication Patterns

* Normally divided up by mapping processors to areas of A

» Communication is mostly symmetric:
— k' column must be broadcast across to right
— k™ row must be broadcast down to bottom
» Subtract out the product of these two communications
— Plus Ak, k] must be broadcast down row k first

then

© 2006 Kunle Olukotun

Handout #8
CS315a

K. Olukotun
Spring 05/06

Work/Data Division Patterns

» Can divide up in 1-D striped or 2-D blocked arrangements
— 1-D works OK both with columns OR rows
» Must communicate in both directions, anyway
— 2-D offers n2 concurrency, while 1-D only offers n
» Block-cyclic distribution is necessary for load balancing
— Only the lower-right corner of the array is active
— Need to spread this corner out among processors
— B-C reduces load imbalance to no more than 1 row/column

L L] opee
-l W B

n Columns |::>

© 2006 Kunle Olukotun 19

Why SPLASH-27?

+ SPLASH
— Small number of programs
— Programs not scalable
+ SPLASH-2
— Broader range of coverage, improved algorithms
— Designed for scalability
» Goals of paper
— Characterization of SPLASH-2 programs
— Methodology for architectural studies

© 2006 Kunle Olukotun 20

Handout #8
CS315a

10

K. Olukotun
Spring 05/06

The SPLASH-2 Applications

Multiple
Code | New Domain Representative of csie
Bames Astropnyaice Hierarchical N-booy methode 7
o | P 7| Astropnysice Hierarchical N-booy metnode 7
& [waterneg Chemiztry N-body methoos 7
% | watersp | 7 | Chemistry N-body methoos 7
2 | Raadloelty / | Graphics Hierarchical radiosity
o Raytrace 7/ | Graphics Optimized ray tracing
< ["Voirena 7| Graphics Volume rendering 7
Ocean CFD Reguler grid lteration 7
o | W 7 | Radar cross eection | Dense matrix factorization 7
T [Cnokeky Finie element Sparse matrix aciorzation 7
5 [FFT 7 | Signal proceseing | Convolution/Tranaform 7
¥ [MRaox 7 | Sorting Sorting 7

© 2006 Kunle Olukotun

SPLASH-2 Characterization

* Axes of Characterization

Concurrency
Temporal Locality and Working Sets
Communication-to-Computation Ratio and Traffic
Spatial Locality
» Effects of

— Machine model
— Data set size
— Inherent versus practical considerations

© 2006 Kunle Olukotun

22

Handout #8
CS315a

11

K. Olukotun
Spring 05/06

Concurrency
*+ PRAM model
» Speedups
E g
3 Barnes b Volrend
2 FFT 2 Water-Sp
@ FMM @ Ocean
Raytrace Water-Nsq
Radix
Lu Radiosity
Cholesky
0 1 1 1 L 1 L 1 1 0 1 1 1 L 1 1 1 1
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of Processors Number of Processors
» Methodological consideration?
© 2006 Kunle Olukotun 23
Temporal Locality and Working Sets
* Motivation
— Temporal locality = miss rate = performance
» Working sets
— Working sets denoted by knees in miss rate curve
— Hierarchy of working sets
— Some working sets are more important than others
6% &
5% 1 WS1: a few blocks
LU o 4%+
©
T 3%+
K] WS2: partition of DS
S 2% + P
1% 1
B SO SN
0w v~ o 2 8 38 8 & &
©2006 Kunle Olukotun s 8 5 8 2
Cache Size (KB)

Handout #8
CS315a

12

K. Olukotun Handout #8
Spring 05/06 CS315a

Example Working Sets

Ocsan
14%

2% WS1size = P/4DS
o 10%
g o f'_ WS2 size = DS/P
8 &%
= o
% ‘-‘A
% 0% —
R R E SR LR
Cache Sizs (KB) " Cache Size (KB) "

» Characteristics of working sets
— Parameter dependent
— Grow at different rates
— May not be well-defined
— How should you measure miss rates?

© 2006 Kunle Olukotun 2

Working Set Methodological Implications

% LU
S% 1 WS1 size = Fixed
4%
©
« 3%+
o WS2 size = DS/P
S 2% +
1% +
SO T G e S PN
Cache Size (KB)

©2006 Kunle Olukotun 2

13

K. Olukotun
Spring 05/06

Communication-to-Computation Ratio and
Traffic

» Comm-to-comp ratio: inherent traffic = lower bound

PO P1

Communication « perimeter
Computation « area

P2

* Why do we care?

» Components of traffic
— Inherent traffic
— Capacity traffic
— Artifactual traffic

© 2006 Kunle Olukotun 29

Traffic Example

Ocean

1.0

small problem default problem

O~
N B ®

traffic (bytes/FLOP)
o
o

1 2 4 8 16 32 64 1 2 4 8 16 32 64
number of processors
mm remote Jlocal -~ true sharing
* Characteristics of traffic
— Parameter dependent (procs, problem size, ...)
— Composition changes with parameters

© 2006 Kunle Olukotun 30

Handout #8
CS315a

14

K. Olukotun
Spring 05/06

Traffic: Implications

» Methodological implications

* Why do Radix and FFT have traffic graphs that flatten out with
processor count?

© 2006 Kunle Olukotun 31

Spatial Locality

* Motivation
— Spatial locality = miss rate = performance
— Choice of line size

* Linesize effects
— Increasing linesize — =

(+) Prefetching effect | [| |

(-) Poor utilization | [| |

Proc0 Proc1 Proc2 Proc3
) False sharing | [[[|

© 2006 Kunle Olukotun 33

Handout #8
CS315a

15

K. Olukotun
Spring 05/06

Spatial Locality Example

Radix
12% + small problem default problem
10% -
[)
® 8% -
o 6%
% 4% -
2% -
0% -
@ © o4 I3 XY @ © o F XY
- ® a0 - ® N o
- «N - «

Line Size (bytes)
mcold+cap mtrue sharing ofalse sharing
» Characteristics of spatial locality

— Parameter dependent (procs, problem size, ...)
— Miss composition changes with parameters

© 2006 Kunle Olukotun 34

Spatial Locality Implications

* Methodological implications

©2006 Kunle Olukotun 35

Handout #8
CS315a

16

K. Olukotun
Spring 05/06

Summary and Look Ahead

» Dense matrix kernels offer interesting tradeoffs between:
— Communication
— Computation
— Maximum concurrency
+ SPLASH-2
— Need to understand how parameters affect results
— Conclusion = f(appl,prob size,cache size,line size,# procs,...)
* Some parameters are easy to prune
— Important to understand program behavior!
» More applications
— Scientific applications with irregular data structures and flow
— Commercial applications
* Read paper

©2006 Kunle Olukotun 37

Handout #8
CS315a

17

