2

CS315A/EE382B: Lecture 6

Scientific Applications

Kunle Olukotun Stanford University

http://eeclass.stanford.edu/cs315a

© 2006 Kunle Olukotun

CS315A Lecture 6

Today's Outline: Scientific Apps

- The OCEAN multi-grid simulation benchmark
- Dense matrix kernels:
 - Matrix-vector multiply
 - Matrix-matrix multiply
 - Gaussian elimination/LU decomposition
- SPLASH-2

Sample Algorithms & Applications

- We have mostly talked about programming at a high level
 - Parallelism of basic tasks
 - Parameters of algorithm analysis
- · Now let's take our analysis tools and use them!
 - Regular, dense matrix applications
 - Next lecture: applications with irregular data structures and flow

© 2006 Kunle Olukotun

The OCEAN Benchmark

- Ocean simulates an ocean basin!
 - Basin consists of a discretized grid of points
 - Each point is a record with several parameters:Temperature, salinity, current flow, etc.
 - Simulate changes over discrete steps of time
 - Multiple grids are used to adjust spatial resolution dynamically
 - Match resolution to rate-of-change of currents

The Sequential Algorithm

- · The core is a partial differential equation solver
 - Works by estimating an answer and iterating to the solution
 - Multiple grids are used to select:
 - Fast-coarse early solution approximation
 - Slow-fine final adjustments to the solution
 - Iteration cycle adjusts using NSEW neighbor information
 - Keeps repeating until solution convergence
- Sequential program loops along rows
 - A top-left to bottom-right dependence
 - Not good for parallel versions!
 - Can we do better?

5

6

© 2006 Kunle Olukotun

Algorithm Modifications

- This PDE solution method is approximate
 - Relies on recent inputs to speed convergence
 - Iteration (N:*i*, W:*i*, S:*i*-1, E:*i*-1) is just a convenient selection
 - But others are valid, too
- One obvious possibility: (N:*i*-1, W:*i*-1, S:*i*-1, E:*i*-1)
 - Eliminates all dependencies within an iteration
 - Makes each iteration completely parallel

Red-Black Gauss-Seidel

- Further refinement leads to "red-black" approximation
 - Basic parallel version requires odd-i and even-i grids
 Double the memory requirements
 - Split each iteration into two phases to avoid this
 - "Red" & "black" checkerboard squares alternate
 - Now just need two barriers/timestep

© 2006 Kunle Olukotun

Algorithm Analysis

- We can now analyze the parallel algorithm:
 - Computation/communication ratio
 - Type(s) of communication required
 - All in terms of n (side of grid) and P (number of processors)
 - Note that in past, we used N = *size* of grid (n² here)
 - Concurrency: Maximum number of useful processors
 - · Only in terms of n, since this sets P
- · Concurrency for red-black Ocean is simple!

© 2006 Kunle Olukotun

Computation-Communication Ratio

- We can now calculate computation-communication ratios:
 - 1-D, "striped" division: $\frac{n}{p}$ - 2-D, "blocked" division: n
 - $\frac{n}{\sqrt{p}}$ Clearly better!
- The 2-D division version is better
 - Offers more concurrency: n² instead of n
 - Less communication for same computation
 - Also lends itself well to 4-D array blocking techniques
 - Has been shown to speed up better than 50%
 - 4-D arrays avoid false sharing at edges of blocks

^{© 2006} Kunle Olukotun

Matrix-Vector Multiply

- One of the simplest linear algebra functions
 - Requires simple data manipulation
 - Requires some reduction
- Two ways to allocate by data:
 - 1-D division, by row on input (or chunk of output)
 - 2-D division, blocked on input

© 2006 Kunle Olukotun

Computation & Communication Analysis

- Just one MAC (multiply-accumulate) per matrix element
- · Only need to communicate along rows
 - Nothing for 1-D
 - Reduction sum communication for 2-D

Comms/Stripe:	MACs/Stripe:	Comms/Block:	MACs/Block:
None	$\frac{n^2}{p}$	Reduction	$\frac{n^2}{p}$

· So why even bother with a blocked implementation?

Concurrency Analysis

- 2-D offers more possible *concurrency*
 - 1-D only lets you use n processors
 - 2-D lets you use up to n² processors!
 - At the expense of reduction trees for each output
 - This is a common advantage of 2-D division!
- 2-D may also be a better choice if you're multiplying the matrix before or after this step

© 2006 Kunle Olukotun

Matrix-Matrix Multiply

- Now let's add another dimension to an input
- Two basic ways to allocate by data/execution:
 - 1-D division, by row on input/output
 - 2-D division, blocked on output

Computation & Communication Analysis

- n MACs per matrix element
- · Blocking now improves both:
 - Concurrency: n to n²
 - Communication: Each block only needs 1/sqrt(p) of each input matrix

Comms/Stripe:	MACs/Stripe:	Comms/Block:	MACs/Block:	
n^2	$\frac{n^3}{p}$	$2\frac{n^2}{\sqrt{p}}$	$\frac{n^3}{p}$	
Computation-Comm. Ratio:		Computation- Comm. Ratio:		
<u>1</u> 1	<u>1</u>	Better! $\longrightarrow \frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{1}}}}}}}}}}$	$\frac{n}{p}$	
© 2006 Kunle Olukotun			15	

Review of Gaussian Elimination for solving Ax=b

- · Add multiples of each row to later rows to make A upper triangular
- Solve resulting triangular system Ux = c by substitution

© 2006 Kunle Olukotun

LU Decomposition

· A critical linear algebra function is solving systems of equations

- Gaussian elimination is the basic technique
- Decomposition of A into L & U matrices

17

18

- Basic algorithm:
 - Loop n times through algorithm (iterator k)
 - Divide A[k,k] into all remaining values in its row (k+1 to n)
 Note that this uses many potentially expensive division ops
 - Subtract row k A[row, k] from all remaining rows (k+1 to n)
 - This is just a lot of MAC operations

© 2006 Kunle Olukotun

Communication Patterns

- · Normally divided up by mapping processors to areas of A
- Communication is mostly symmetric:
 - kth column must be broadcast across to right
 - kth row must be broadcast down to bottom
 - · Subtract out the product of these two communications
 - Plus A[k, k] must be broadcast down row k first

Work/Data Division Patterns

- Can divide up in 1-D striped or 2-D blocked arrangements
 - 1-D works OK both with columns OR rows
 - Must communicate in both directions, anyway
 - 2-D offers n² concurrency, while 1-D only offers n
- · Block-cyclic distribution is necessary for load balancing
 - Only the lower-right corner of the array is active
 - Need to spread this corner out among processors
 - B-C reduces load imbalance to no more than 1 row/column

Why SPLASH-2?

- SPLASH
 - Small number of programs
 - Programs not scalable
- SPLASH-2
 - Broader range of coverage, improved algorithms
 - Designed for scalability
- Goals of paper
 - Characterization of SPLASH-2 programs
 - Methodology for architectural studies

© 2006 Kunle Olukotun

Code	New	Domain	Representative of	Multiple Data Sets
Barnes		Astrophysics	Hierarchical N-body methods	/
FMM	1	Astrophysics	Hierarchical N-body methods	/
Water-Naq		Chemistry	N-body methods	/
Water-Sp	1	Chemistry	N-body methods	/
Radicelty	1	Graphics	Hierarchical radiosity	
Raytrace	1	Graphics	Optimized ray tracing	
Voirend	1	Graphics	Volume rendering	/
Ocean		CFD	Regular grid Iteration	1
LU	~	Radar cross section	Dense matrix factorization	/
Cholesky		Finite element	Sparse matrix factorization	/
FFT	~	Signal processing	Convolution/Transform	/
Radix	~	Sorting	Sorting	/
	Code Barnes FMM Water-Nsq Water-Sp Radiosity Radiosity Raytrace Voirend Ocean LU Cholesky FFT Radix	Code New Barnes - FMM -/ Water-Nsq -/ Water-Sp -/ Radiosity -/ Raytrace -/ Voirend -/ Ocean -/ LU -/ Cholesky -/ FFT -/ Radix -/	CodeNewDomainBarnesAstrophysicsFMM✓FMM✓Water-NaqChemistryWater-Sp✓Fadlosity✓Radiosity✓GraphicsRaytrace✓GraphicsVoirend✓GraphicsOceanCFDLU✓CholeskyFinite elementFFT✓Signal processingRadix✓Sorting	CodeNewDomainRepresentative ofBarnesAstrophysicsHierarchical N-body methodsFMM✓AstrophysicsHierarchical N-body methodsWater-Nsq✓ChemistryN-body methodsWater-Sp✓ChemistryN-body methodsWater-Sp✓ChemistryN-body methodsRadiosity✓GraphicsHierarchical radiosityRaytrace✓GraphicsOptimized ray tracingVoirend✓GraphicsVolume renderingOcean✓CFDRegular grid IterationLU✓Radar cross sectionDense matrix factorizationFFT✓Signal processingConvolution/TransformRadix✓SortingSorting

The SPLASH-2 Applications

© 2006 Kunle Olukotun

SPLASH-2 Characterization

- Axes of Characterization
 - Concurrency
 - Temporal Locality and Working Sets
 - Communication-to-Computation Ratio and Traffic
 - Spatial Locality
- Effects of
 - Machine model
 - Data set size
 - Inherent versus practical considerations

© 2006 Kunle Olukotun

22

© 2006 Kunle Olukotun

Temporal Locality and Working Sets

- Motivation
 - Temporal locality \Rightarrow miss rate \Rightarrow performance
- Working sets
 - Working sets denoted by knees in miss rate curve
 - Hierarchy of working sets
 - Some working sets are more important than others

Example Working Sets

Working Set Methodological Implications

Communication-to-Computation Ratio and Traffic

Traffic Example Ocean 1.0 traffic (bytes/FLOP) small problem default problem 0.8 0.6 0.4 0.2 0.0 2 4 8 16 32 64 1 2 4 8 16 32 64 1 number of processors 📩 remote 🥅 local 🛶 true sharing Characteristics of traffic • - Parameter dependent (procs, problem size, ...) - Composition changes with parameters 30 © 2006 Kunle Olukotun

33

Traffic: Implications

- Methodological implications
- Why do Radix and FFT have traffic graphs that flatten out with processor count?

© 2006 Kunle Olukotun

Spatial Locality

- Motivation
 - Spatial locality \Rightarrow miss rate \Rightarrow performance
 - Choice of line size

Linesize effects

Spatial Locality Implications

Methodological implications

© 2006 Kunle Olukotun

Summary and Look Ahead

- Dense matrix kernels offer interesting tradeoffs between:
 - Communication
 - Computation
 - Maximum concurrency
- SPLASH-2
 - Need to understand how parameters affect results
 - Conclusion = f(appl,prob size,cache size,line size,# procs,...)
 - Some parameters are easy to prune
 - Important to understand program behavior!
- More applications
 - Scientific applications with irregular data structures and flow
 - Commercial applications
 - Read paper