
K. Olukotun Handout #5b
Spring 05/06

1

CS315a

Programming Assignment #1:

Basic Image Processing

Due Monday, April 24

In this assignment, you will implement three image analysis and manipulation routines. Of course, our
interest is in analyzing the potential parallelism available in the application, not on the image analysis
itself, so the algorithms are simplified. Programming assignments #2 and #3 will involve more substantial
applications to stress your parallelizing skills.

For this assignment, you will be parallelizing each application with both pthreads and OpenMP. On future
assignments, you may choose between the two, but for this assignment you must use both. In the
process, you should get a working knowledge of both models and develop insight as to their pros and
cons.

Make sure you read the syllabus regarding late days, honor code, etc. Note: you may work alone or in
groups of two.

Deliverables

1. Code (25% of grade): To submit your code, run

/afs/ir.stanford.edu/class/cs315a/bin/submit pa1

from the directory containing your submission. All files in the current directory and any subdirectories will
be copied to our repository. Please do not submit our images back to us; they are large and we already
have them. Please include a README with the names and SUNet IDs of all group members and a
description of the directory structure of your submission (what answers are where, etc.). You must submit
by 11:59 p.m. on the due date.

2. Writeup (75%): Answer the questions in this document, making appropriate graphs. A significant part
of parallel programming is the analysis of program performance, so after you write correct code, you
usually need to spend just as long tuning the code for proper performance. We will rely upon your written
report to grade your performance-tuning efforts and your analysis of the causes of any problems that may
occur. For later programming assignments, much of this analysis should come from your insights about
the hardware architecture as well as from the program code itself.

When reporting timing information, include the input filename and machine name.

Submit your writeup on paper in the homework box by Darlene’s office, Gates 408 (before 5 p.m.) or
electronically along with your code (PDF, PS, or HTML; no Word documents please). Please include
names and SUNet IDs of all group members.

The Environment

You must compile and run your applications on Sun multiprocessor machines using both pthreads and
OpenMP. At Sweet Hall, there are many such machines available: the saga (1–22) and elaine (1–43)
machines all have two processors, the two tree machines have eight, and junior has 16. In order to
keep the load on the larger machines reasonable as deadlines approach, we recommend that you
compile and debug your applications on the 2-processor machines before moving to the larger machines
only for final performance runs. junior has been reserved for exclusive use by another class from 6
p.m.–6 a.m., so you can only use it during the day.

K. Olukotun Handout #5b
Spring 05/06

2

CS315a
Timing Runs
After debugging your programs on the smaller machines (saga and elaine), you’ll need to acquire timed
runs to compute speedups. Make sure you use the same machine for all runs of one problem (e.g., use
the same machine for Problem 1B for 1, 2, 4, 8, and 16 processors). You may vary the machine between
problems.

Use junior or bigpun for timing runs. bigpun has a batch system so only one program will be running
at once; this makes the reported times more accurate. Watch for announcements regarding the use of
bigpun.

Use the Makefile.omp and Makefile.pthread provided. You can change optimization values, but
don’t remove library or include information. In order to use the Sun compiler, you must set the appropriate
environment variables by executing source pa.csh in csh or . pa.bash in bash, located in
/usr/class/cs315a/PA/. If you are interested in reading more about the Sun compiler, we refer you
to the man page or the manual, which is available on the internet:

Sweet Hall: http://docs.sun.com/app/docs/coll/771.6

If you choose to use other machines, with other compilers, the exact method of using these features may
vary considerably. If you choose to use a different kind of machine, we will not support you with any
unusual compiler setup that may be necessary.

We provide you with shell programs, P1/pa1-pN.c, which read in one or more JPEG files (specified
from the command line) into memory buffers, call user functions, and then write selected buffers back out
to one or more new JPEG file(s). The program also times the user function (over one or more runs) and
reports the elapsed execution time, for performance evaluation. With this starting point, you should first
write a sequential version of each program to use for timing runs. Then, parallelize your sequential code.
Use the supplied JPEG photographs of varying sizes.

Execute the programs by typing

./pa1 <# runs> <# procs> <input.jpg> [input2.jpg] <output.jpg>

You can specify the number of times you want to run each command and the number of processors to be
used. You can copy the necessary files from the following directory on the Leland system:

/usr/class/cs315a/PA/PA1/

A Note on Performance Times: Because of effects like interference from other users, OS paging, I/O, and
the like, you should be very careful interpreting timing information. You can try making several runs until
the average time per run stabilizes. Use the “# of runs” option to do this, or do it manually or with run
scripts. This assignment’s image analysis benchmarks lend themselves well to this kind of analysis,
because runs should typically take few seconds to a few minutes, so multiple runs should still take a
reasonable amount of time.

Problem 1. Blur Filter
For the first problem, you will perform a simple yet common image operation: blurring. This is making
each pixel in the image a weighted average of itself and its neighbors. Edges are smeared out by this
averaging process, resulting in a soft-focus effect. Each pixel of the output image is produced by the
following formula three times for every pixel (once each for the red, green, and blue color components):

∑ ∑

∑ ∑
−

−−=

−

−−=

−

−−=

−

−−=

++
= 1

)1(

1

)1(

1

)1(

1

)1(

))((

))()(input(
),output(r

ri

r

rj

r

ri

r

rj

r - |j|r - |i|

r - |j|r - |i| j i, y x
yx

K. Olukotun Handout #5b
Spring 05/06

3

CS315a

Please note that the pixels are composed of three 8-bit unsigned chars (R, G, B), with a range of 0–255
each. Your intermediate results will require larger integers, however, to avoid overflow. Through the final
division, your output pixels should also be confined to the 0–255 range, or you will get some strange
results.

Here are some examples of radial blur matrices (note that the 0 case is not computed using the above
formula):

()

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

=

12321
24642
36963
24642
12321

 uses 3

121
242
121

 uses 2

1 uses 1 0,

r

r

r

There are a couple of subtle details for you to think about. Note that the weights and final division factor
can be pre-calculated before the loop to reduce work within the loop body itself. However, this doesn’t
work within r pixels of the edges of the image, when you will be summing over some pixels that don’t
exist.

For these pixels, you must only run the summations (in both numerator and denominator) over pixels that
actually exist. As a result, the value of the denominator will be reduced near the edges of the image. We
recommend you use small loops before or after your main filter loop specially optimized for these pixels.

1A) Parallelize the outer loop in both pthreads and OpenMP. Run both versions with a blur radius r =
.05×max(picture height, picture width) pixels. In both versions, try blocking the parallel outer loop on an
interleaved basis (divided one row/column at a time) and a chunked basis (divided up with blocks of 1/N
of the rows/columns to each processor). While we recommend putting your pthread and OpenMP
versions of the program in different files, these simpler variations can probably be handled easily using
some strategic #defines. Measure and analyze the speedup on 2 processors for papak.jpg, Then,
using the best performing OpenMP and pthreads versions, measure and analyze the speedup on 2
processors for trythis.jpg and trythat.jpg (for reasonable radii, use r=64 for both trythis and trythat).
Which ones are better/worse, and why?

1B) Take the best blur filter implementation from 1A from each programming model and test it with 4, 8,
and 16 processors on papak.jpg. Plot the speedup you obtain (Y) against the number of processors (X).
How close is it to the “optimal” linear speedup? If it is poor, why?

Problem 2. Histogram Analysis
Another common image manipulation function is to count the number of pixels in an image that are light,
dark, midtones, etc. This is useful in determining how under- or over-exposed a photograph might be, for
example. For this, we need to accumulate the number of pixels that exist at each level. Accumulate four
different values: a red histogram (0–255), green histogram (0–255), blue histogram (0–255), and sum
histogram (R+G+B = 0–765) for each pixel. For a simple uniprocessor version of the code, you would
store the values in histogram variables like these:

int rHist[256], gHist[256], bHist[256]; /* RGB histogram buckets */
int sHist[766]; /* R+G+B histogram buckets */

K. Olukotun Handout #5b
Spring 05/06

4

CS315a

Using the following code for each pixel:

rHist[pixel_red]++;
gHist[pixel_green]++;
bHist[pixel_blue]++;
sHist[pixel_red + pixel_green + pixel_blue]++;

When complete, you should save your results to a file with the following loop (which is commented out at
the bottom of pa1-p2.c), running on one processor:

for (i = 0; i < 256; i++)
 fprintf(outputFile, "%3u: R:%8u G:%8u B:%8u S0:%8u S1:%8u S2:%8u\n",
 i, rHist[i], gHist[i], bHist[i], sHist[i], sHist[i+256],
 (i+512 < 776 ? sHist[i+512] : 0));

Use bigdaddy.jpg for timing runs.

2A) First allocate your four histograms as a shared memory object in both OpenMP and pthreads
protected by locks for each histogram bucket; on groups of 32 histogram buckets; and on R, G, B, and
sum histograms (for a total of 6 combinations). How well do they speed up on 2 processors? Which ones
are better/worse, why? Pick the best version for each programming model and report and analyze
speedups for 4, 8, and 16 processors.

2B) Now allocate private histograms for each processor with a final reduction to one set of histograms at
the end (which you can choose to do serially or in parallel). (Note that locks are not necessary as only
one processor will be working on its private histograms at a time.) How well does this speed up on 2, 4, 8,
and 16 processors? Plot this with the best results from 2A on the same graph and contrast.

2C) Live dangerously by turning off your locks in the shared histogram code (if you did this right, you can
just #define them to nothing!) and re-run the 2 processor runs without them. Do you notice much
difference in the final results when compared with the correct results?

Problem 3. Variable Radius Blurring
You can use a blur filter to blur less interesting background information but leave the foreground material
untouched. One way to do this is by using a variable-radius blur filter that averages more pixels in some
parts of the image than others. For this purpose, we will read in two input files: the first is a standard RGB
photograph, while the second is a grayscale “image” at the same resolution that stores the blur radii (in
terms of 0–255 pixels, instead of brightness values) we would like to use for each corresponding pixel in
the photograph. Just modify your code from Problem 1 to look up its blurring radius, r, at each pixel from
the second “image” buffer, move the weight calculations into the loop (since they’re varying, it’s a lot
harder to calculate them in advance), and you should have working code.

Use papak.jpg and papak-vrad.jpg for timing runs.

3A) Using the best static scheduling method from Problem 1 (i.e., interleaved vs. blocked), implement
variable blurring on OpenMP and pthreads. Analyze the speedups for 2, 4, 8, and 16 processors.

3B) Now switch to dynamically tasked parallel loops. Using both OpenMP and pthreads, try having
processors dynamically grab blocks of 1, 16, and 128 rows at a time. How well do these speed up on 2, 4,
8, and 16 processors? Plot this with the results from 3A on the same graph and contrast.

	Programming Assignment #1:
	Basic Image Processing
	Due Monday, April 24

	The Environment

