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Announcements

• PS1

– Due today

• PA2

– Due May 10

• New information sheet

– Change in one of readings
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Today’s Outline: Irregular Applications

• Irregular applications: Characteristics

– Variation in workload
– Variation in dataset

• Some example applications:

– Sparse matrix multiply

– Barnes-Hut

• Commercial applications:

– OLTP

– Decision support

• Memory System Characterization of Commercial Workloads
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Characteristics of Irregularity

• What are “irregular” applications?

• Ones with significantly varying work/datapoint

– Hard to estimate how time will be spent

– Different processors running different code (database)

– Need task queuing to balance loads

• Ones with datasets not easily divisible by processor

– Changing data layout over time

– Sparse data layout

– Trees of dependent work (sorts, searches)



K. Olukotun
Spring 05/06

Handout #10
CS315a

3

© 2006 Kunle Olukotun 5
CS315A Lecture 7

Changing Datasets

• Take a static, grid-based simulation algorithm

– Can divide up a priori, in an optimized way
• Now adjust the problem structure on a regular basis

– To focus in on areas of particular interest

– Requires dynamic re-division of the whole grid

Static = Easy! Adjusting Grids = Hard!
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How Do We Rebalance?

• Task stealing is a quick and simple solution

– But leads to poor memory locality
– Can only work if we are using task queues

– Should only be used for temporary shifting of a few points

• Need to migrate points to reflect long-term trends

– Must keep track of approximate work/point

– Quick heuristics to determine # points/processor

– Like census & congressional representatives

– Move points across processor borders:
• Underutilized processors eat up neigboring points

• Overutilized processors release points

• All may have to shift to keep all processors’ points together



K. Olukotun
Spring 05/06

Handout #10
CS315a

4

© 2006 Kunle Olukotun 7
CS315A Lecture 7

Sparse Matrices I

• We have discussed “dense” matrix calculations

– Most numbers in matrix are non-zero
– Best solution performs all potentially necessary calculations

• But many matrix calculations are “sparse”

– Only a few % of numbers are non-zero

– Zeros make most answers easy-to-determine

– Best solution is to skip unnecessary calculation . . .

– . . . But now our calculation densities are hard-to-predict
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Sparse Matrices II

• Communication patterns are also hard-to-predict

– Must find active points that are multiplied with each other
• May be fairly far away in the matrix, so localization doesn’t help

– Must deal with hot spots: nodes used many times
• May need to be replicated or divided

– Often need to map nodes to processors quickly
• May only use for one or two multiplies

• There is no “standard” algorithm for sparse matrix multiply

– Some basic division patterns are a start (rows, blocks, etc.)
– But algorithms are tuned for:

• Most frequent arrangement of non-zero elements
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Barnes-Hut I

• A common N-body gravitational problem solver

– Best described by an analogy:
• Dense matrix multiply is to sparse matrix multiply, as

• Dense N-body code is to Barnes-Hut

– Deals with scattered objects in space:
• A planet here, a star there, a comet over there

• And LOTS of empty space in between

• Combines many problems into one application:

– Sparse data representation

– Unbalanced load

– Need to find local neighbors across a complex data structure

– Data points gradually move around in space

© 2006 Kunle Olukotun 10
CS315A Lecture 7

Barnes-Hut II

• Major problem is the data structure: an “octtree”

– Divides 3-D space into 8 equal-size cubes

– Subdivides any cubes containing more than one body

– Continue recursively dividing up data

• Here is a 2-D “quadtree” equivalent:

– Note that nearest neighbors are not always close in tree
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Barnes-Hut III

• This application is difficult to parallelize

– Must communicate in all-to-all fashion
• Complicated by combining of remote elements (“superbodies”)

• Dense parts of tree take longer

– Must allocate tree branches dynamically
• Depth of the tree varies greatly

– Nearest-neighbors may be far apart in the tree

– Must move nodes around in the tree at every timestep

• Communication is unstructured
– Lots of local references

– But also a fair number of remote references
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OLTP: On-Line Transaction Processing

• Database application with many uses
– Bank/credit card account management systems
– Warehouse inventory management

• Lots of small “transaction” tasks
– Each transaction just updates a small number of records

• Ex.: Buyer’s & Seller’s bank accounts

– Each task is typically read-write
• Make a quick search to find affected records
• Update all records
• Save results in a reliable way

• Multiprocessor interaction requires locks on records
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DSS: Decision Support Systems I

• Businesses often want to learn about customers
– Look up records of a certain type (Ex.: Customers in N. Cal)
– Look for relationships (Ex.: In N. Cal and own a home)

• Must support a few tasks on tables of records
– Extract records of one type from a database (search)
– Intersection/union of table pairs to form composite
– Sort

• Different requirements from OLTP
– Much larger “transactions”

• Each one is a complex sequence of basic tasks

– Lower I-O/computation ratio, so kernel has little effect
– Typically read-only: R/W locks useful

• Although OLTP may be occurring simultaneously
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DSS: Decision Support Systems II

• Larger transactions make intra-transaction parallelism important

– Can parallelize within/among each basic table operation
– Helps hide disk latency with more threads

– Helps utilize multiprocessors better
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Memory System Characterization of
Commercial Workloads

• Market shift for high-performance systems
–yesterday: technical/numerical applications ($2B today)
–today: databases, web servers, e-mail services, etc ($48B

today).

• Bottleneck shift in commercial application
–yesterday: I/O
–today: memory system

• Lack of data on behavior of commercial workloads

• Re-evaluate memory system design trade-offs
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TPC history of benchmarks

• TPC-A
– First OLTP benchmark
– Based on Jim Gray’s Debit-Credit benchmark

• TPC-B
– Simpler version of TPC-A
– Meant as a stress test of the server only

• TPC-C
– Current TPC OLTP benchmark
– Much more complex than TPC-A/B

• TPC-D
– Current TPC DSS benchmark

• TPC-W
– New Web-based e-commerce benchmark
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The TPC-B benchmark

• Models a bank with many branches

–1 transaction type: account update

• Metrics:

–tpsB (transactions/second)

–$/tpsB

• Scale requirement:

–1 tpsB needs 100,000 accounts

Branch

Teller Account

History

100,00010
Begin transaction
    Update account balance
    Write entry in history table
    Update teller balance
    Update branch balance
Commit
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Workloads

• OLTP (on-line transaction processing)
– modeled after TPC-B, using Oracle7 DB engine
– short transactions, intense process communication & context

switching
– multiple transactions in-transit

• DSS (decision support systems)
– modeled after TPC-D, using Oracle7
– long running transactions, low process communication
– parallelized queries

• AltaVista
– Web index search application using custom threads package
– medium sized transactions, low process communication
– multiple transactions in-transit
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Oracle: software structure

• Server processes
– actual execution of transactions

• DB writer

– flush dirty blocks to disk

• Log writer

– writes redo logs to disk at
commit time

• Process and system monitors

– misc. activity monitoring and
recovery

• Processes communicate through
SGA and IPC

© 2006 Kunle Olukotun 21
CS315A Lecture 7

Oracle: software structure(2)

• SGA:

– shared memory segment mapped by
all processes

• Block buffer area

– cache of database blocks

– larger portion of physical memory

• Metadata area

– synchronization structures

– shared procedures

– directory information

– How does metadata differ from block
buffer area?

• Hiding I/O latency:

Block buffer area

Redo buffers

Data dictionary

Fixed region

Shared pool

System Global Area (SGA)
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Methodology: Platform

• AlphaServer4100 5/300
– 4x 300 MHz processors (8KB/8KB I/D caches, 96KB L2 cache)

– 2MB board-level cache

– 2GB main memory

– latencies:    1:7:21:80/125 cycles
• Why two memory latencies

– 3-channel HSZ disk array controller

• Digital Unix 4.0B
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Methodology: Tools

• Monitoring tools:
– IPROBE
– DCPI
– ATOM

• Simulation tools:
– tracing: preliminary user-level studies
– SimOS-Alpha: full system simulation, including OS

• Why is combination good?
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Scaling

• Why do we need to scale benchmark?
• Scaling the problem size is critical
• Validation criteria: ?
• Requires good understanding of workload

–make sure system is well tuned
–?
–?

• Does scaling work?
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CPU Cycle Breakdown

• Instruction and data related stalls are equally important
•Why?

• Very high CPI for OLTP
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Cache behavior
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Stall Cycle Breakdown

• OLTP dominated by non-primary cache and memory stalls

• DSS and AltaVista stalls are mostly Scache hits
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Impact of On-Chip Cache Size

• What can you conclude about cache size for DSS?

P=4; 2MB, 2-way off-chip cacheP=4; 2MB, 2-way off-chip cache
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OLTP: Effect of Off-Chip Cache Organization
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• Significant benefits from large off-chip caches (up to 8MB)
• What is the impact of large caches besides low miss rate?
• What is impact of set-associativity?

P=4P=4
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OLTP: Impact of system size

• Communication misses become dominant for larger systems
• Why does ratio of false sharing / true sharing not increase?

P=4; 2MB, 2-way off-chip cacheP=4; 2MB, 2-way off-chip cache
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62%

38%

dirty misses
clean misses

OLTP: Contribution of Dirty Misses

• Shared metadata is the important region
– 80% of off-chip misses
– 95% of dirty misses

• What happens to dirty misses with increases in cache and

system size?

P=4, 8MB Bcache
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OLTP: Impact of Off-Chip Cache Line Size

• Good spatial locality on communication for OLTP

• Very little false sharing in Oracle itself

P=4; 2MB, 2-way off-chip cacheP=4; 2MB, 2-way off-chip cache
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Summary of Results

• On-chip cache

– 64KB I/D sufficient for DSS & AltaVista

• Off-chip cache

– OLTP benefits from larger caches (up to 8MB)

• Dirty misses

– Can become dominant for OLTP
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SPLASH vs. Online Transaction Processing (OLTP)

A typical SPLASH app. has

> 3x the issue rate,

~26x less cycles spent in memory barriers,

1/4 of the TLB miss ratios,

< 1/2 the fraction of cache-to-cache transfers,

~22x smaller instruction cache miss ratio,

~1/2 L2$ miss ratio

...of an OLTP app.
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Conclusions

• Parallelizing irregular applications offers a challenge
–Get good speedup . . .

• . . . While balancing uneven-sized work
• . . . And difficult-to-split datasets
• Requires planning of task stealing & adjustment, for SM

• Commercial applications
–Memory system is the current challenge in DB performance

–Careful scaling enables detailed studies

–Combination of monitoring and simulation is very powerful

–Architect needs deep understanding of the workload

–Diverging memory system designs
• OLTP benefits from large off-chip caches, fast communication
• DSS & AltaVista may perform better without an off-chip cache


