
K. Olukotun
Spring 05/06

 Handout #15
CS315a

1

© 2005 Kunle Olukotun 1
CS315A Lecture 10

CS315A/EE382B: Lecture 10

SMP2 and Synchronization

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

© 2005 Kunle Olukotun 2
CS315A Lecture 10

Announcements

• PS2 due today

– no late day
• Midterm exam Wed May 10

– 7-9pm Gates B03

– Lectures 1-9

– No class on May 10

• PA2 due Wed May 15

K. Olukotun
Spring 05/06

 Handout #15
CS315a

2

© 2005 Kunle Olukotun 3
CS315A Lecture 10

Today’s Outline

• Finish off SMP Implementation

• Synchronization
– Locks

– Barriers

© 2005 Kunle Olukotun 4
CS315A Lecture 10

B

A

Protocol Correctness

• Protocol must maintain coherence and consistency

• Protocol implementation should prevent:
• Deadlock:

– all system activity ceases

– Cycle of resource dependences

• Livelock:

– no processor makes forward progress

– constant on-going transactions at hardware level

– e.g. simultaneous writes in invalidation-based protocol

• Starvation:

– some processors make no forward progress

– e.g. a processor always loses bus arbitration

K. Olukotun
Spring 05/06

 Handout #15
CS315a

3

© 2005 Kunle Olukotun 5
CS315A Lecture 10

Split-Transaction Bus

Mem Access Delay

Address/CMD

Mem Access Delay

Data

Address/CMD

Data

Address/CMD

Bus
arbitration

• Split bus transaction into request and response sub-transactions

– Separate arbitration for each phase

• Other transactions may intervene

– Improves bandwidth dramatically

– Response is matched to request
– Buffering between bus and cache controllers

• Reduce serialization down to the actual bus arbitration

© 2005 Kunle Olukotun 6
CS315A Lecture 10

Complications

• New request can appear on bus before previous one serviced

– Even before snoop result obtained

– Conflicting operations to same block may be outstanding on bus
– e.g. P1, P2 write block in S state at same time

• both get bus before either gets snoop result, so both think they’ve won

• Buffers are small, so may need flow control
• Buffering implies revisiting snoop issues

– When and how snoop results and data responses are provided

– In order w.r.t. requests? (PPro, DEC Turbolaser: yes; SGI, Sun: no)

– Snoop and data response together or separately?
• SGI together, SUN separately

K. Olukotun
Spring 05/06

 Handout #15
CS315a

4

© 2005 Kunle Olukotun 7
CS315A Lecture 10

Example (based on SGI Challenge)

• No conflicting requests for same block allowed on bus

– 8 outstanding requests total, makes conflict detection tractable

• Flow-control through negative acknowledgement (NACK)

– NACK as soon as request appears on bus, requestor retries

– Separate command (incl. NACK) + address and tag + data buses

• Responses may be in different order than requests

– Order of transactions determined by requests

– Snoop results presented on bus with response

• Look at

– Bus design, and how requests and responses are matched

– Snoop results and handling conflicting requests

– Flow control

– Path of a request through the system

© 2005 Kunle Olukotun 8
CS315A Lecture 10

Bus Design and Req-Resp Matching

• Essentially two separate buses, arbitrated independently

– “Request” bus for command and address

– “Response” bus for data

• Out-of-order responses imply need for matching req-response

– Request gets 3-bit tag when wins arbitration
• max 8 outstanding

– Response includes data as well as corresponding request tag

– Tags allow response to not use address bus, leaving it free

• Separate bus lines for arbitration, and for snoop results

Req / Addr

Resp / Data

K. Olukotun
Spring 05/06

 Handout #15
CS315a

5

© 2005 Kunle Olukotun 9
CS315A Lecture 10

Bus Interface with Request Table

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Data to/from $

Request
buffer

Request table

Ta
g

7

A
dd
re
ss

Request +

M
is
ce
lla
ne
o
us

response
queue

Addr + cmd bus

Data + tag bus

Snoop state
from $

state

Issue +
merge

W
rit
e
b
a
ck
s

R
e
sp
on
se
s

check

0

O
ri
gi
na
to
r

M
y
re
sp
o
ns
e

in
fo
rm
a
tio
n

R
es
po
ns
e

qu
eu
e

© 2005 Kunle Olukotun 10
CS315A Lecture 10

Bus Design (continued)

• Tracking outstanding requests and matching responses

– Eight-entry “request table” in each cache controller

– New request on bus added to all at same index, determined by tag

– Entry holds address, request type, state in that cache (if determined
already), ...

– All entries checked on bus or processor accesses for match, so fully
associative

– Entry freed when response appears, so tag can be reassigned by
bus

K. Olukotun
Spring 05/06

 Handout #15
CS315a

6

© 2005 Kunle Olukotun 11
CS315A Lecture 10

Snoop Results and Conflicting Requests

• Variable-delay snooping

• Shared, dirty and inhibit wired-OR lines

• Snoop results presented when response appears

– Determined earlier, in request phase, and kept in request
table entry

– Also determined who will respond

– Writebacks and upgrades don’t have data response or
snoop result

• Avoiding conflicting requests on bus
– don’t issue request for conflicting request that is in request

table

• Writes committed when request gets bus

© 2005 Kunle Olukotun 12
CS315A Lecture 10

Flow Control

• Where?

– incoming request buffers from bus to cache controller

– response buffer
• Controller limits number of outstanding requests

• Mainly needed at main memory in this design

– Each of the 8 transactions can generate a writeback

– Can happen in quick succession (no response needed)

_ ♦SGI Challenge: separate NACK lines for address and data buses
• Request (response) cancelled everywhere, and retries later

• Backoff and priorities to reduce traffic and starvation

– SUN Enterprise: destination initiates retry when it has a free buffer
• source keeps watch for this retry

• guaranteed space will still be there, so only two “tries” needed at most

K. Olukotun
Spring 05/06

 Handout #15
CS315a

7

© 2005 Kunle Olukotun 13
CS315A Lecture 10

Handling a Read Miss

• Need to issue BusRd

• First check request table. If hit:

– If prior request exists for same block, want to grab data too!
• “want to grab response” bit

• “original requestor” bit
– non-original grabber must assert sharing line so others will load in S rather than E state

– If prior request incompatible with BusRd (e.g. BusRdX)
• wait for it to complete and retry (processor-side controller)

– If no prior request, issue request and watch out for race conditions
• Window of vulnerability

• conflicting request may win arbitration before this one, but this one
receives bus grant before conflict is apparent

– watch for conflicting request in slot before own, degrade request to “no action” and
withdraw till conflicting request satisfied

© 2005 Kunle Olukotun 14
CS315A Lecture 10

Upon Issuing the BusRd Request

• All processors enter request into table, snoop for request in cache

• Memory starts fetching block

• 1. Cache with dirty block responds before memory ready

– Memory aborts on seeing response

– Waiters grab data
• some may assert inhibit to extend response phase till done snooping

• memory must accept response as WB (might even have to NACK)

• 2. Memory responds before cache with dirty block

– Cache with dirty block asserts inhibit line till done with snoop

– When done, asserts dirty, causing memory to cancel response

– Cache with dirty issues response, arbitrating for bus

• 3. No dirty block: memory responds when inhibit line released

– Assume cache-to-cache sharing not used (for non-modified data)

K. Olukotun
Spring 05/06

 Handout #15
CS315a

8

© 2005 Kunle Olukotun 15
CS315A Lecture 10

Handling a Write Miss

• Similar to read miss, except:

– Generate BusRdX
– Main memory does not sink response since will be modified

again

– No other processor can grab the data

• If block present in shared state, issue BusUpgr instead

– No response needed

– If another processor was going to issue BusUpgr, changes
to BusRdX as with atomic bus

© 2005 Kunle Olukotun 16
CS315A Lecture 10

Detecting Write Completion

• Problem: invalidations don’t happen as soon as request appears on bus

– They’re buffered between bus and cache

– Need additional mechanisms

• Key property to preserve: processor shouldn’t see new value produced
by a write before previous writes in bus order are visible to it

– 1. Don’t let certain types of incoming transactions be reordered in
buffers

• in particular, data reply should not overtake invalidation request

• okay for invalidations to be reordered: only reply actually brings data in

– 2. Allow reordering in buffers, but ensure important orders
preserved at key points

• e.g. flush incoming invalidations/updates from queues and apply before
processor completes operation that may enable it to see a new value

K. Olukotun
Spring 05/06

 Handout #15
CS315a

9

© 2005 Kunle Olukotun 17
CS315A Lecture 10

Write Serialization and Atomicity

• Still provided naturally by broadcast nature of bus

– Order of requests acked on the bus

• Recall that bus implies:

– writes commit in same order w.r.t. all processors

– read cannot see value produced by write before write has
committed on bus and hence w.r.t. all processors

© 2005 Kunle Olukotun 18
CS315A Lecture 10

 Synchronization

• Mutual Exclusion (critical sections)

– Lock & Unlock
• Event Notification

– point-to-point (producer-consumer, flags)

– global (barrier)

• LOCK, BARRIER

– How are these implemented?

K. Olukotun
Spring 05/06

 Handout #15
CS315a

10

© 2005 Kunle Olukotun 19
CS315A Lecture 10

Anatomy of A Synchronization Operation

• Acquire Method
– method for trying to obtain the lock, or proceed past barrier
– Acquire right to the synch

• Waiting Algorithm
– Spin or busy wait
– Block (suspend)

• Release Method
– method to allow other processes to proceed past

synchronization event
– Enable other processors to acquire right to the synch

• Waiting algorithm is independent of type of synchronization
– makes no sense to put in hardware

© 2005 Kunle Olukotun 20
CS315A Lecture 10

HW/SW Implementation Tradeoffs

• User wants high level (ease of programming)

– LOCK(lock_variable), UNLOCK(lock_variable)
– BARRIER(barrier_variable, Num_Procs)

• Hardware

– The Need for Speed (it’s fast)

• Software wants

– Flexibility

K. Olukotun
Spring 05/06

 Handout #15
CS315a

11

© 2005 Kunle Olukotun 21
CS315A Lecture 10

How Not To Implement Locks

• LOCK

while(lock_variable == 1);
lock_variable = 1;

• UNLOCK

lock_variable = 0;

• Implementation requires Mutual Exclusion!

– Can’t have two processes successfully acquire the lock

– Need atomic way to both read and write

© 2005 Kunle Olukotun 22
CS315A Lecture 10

Atomic Instructions

• Specifies a location, register, & atomic operation

– Value in location read into a register

– Another value (function of value read or not) stored into
location

• Many variants

– Varying degrees of flexibility in second part

• Simple example: test&set

– Value in location read into a specified register

– Constant 1 stored into location

– Successful if value loaded into register is 0
– Other constants could be used instead of 1 and 0

K. Olukotun
Spring 05/06

 Handout #15
CS315a

12

© 2005 Kunle Olukotun 23
CS315A Lecture 10

Simple Test&Set Lock

lock: t&s register, location

bnz lock /* if not 0, try again */

ret /* return control to caller */

unlock: st location, #0 /* write 0 to location */

ret /* return control to caller */

• Other read-modify-write primitives

– Swap

– Fetch&op

– Compare&swap
•Three operands: location, register to compare with, register to
swap with

•Not commonly supported by RISC instruction sets, except
SPARC

• cacheable or uncacheable

© 2005 Kunle Olukotun 24
CS315A Lecture 10

Performance Criteria for Synch. Ops

• Latency (time per op)

– especially when light contention
• Bandwidth (ops per sec)

– especially under high contention

• Traffic

– load on critical resources (e.g. bus)

– especially on failures under contention

• Storage

• Fairness

K. Olukotun
Spring 05/06

 Handout #15
CS315a

13

© 2005 Kunle Olukotun 25
CS315A Lecture 10

Number of processors

Ti
m

e
(µ

s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
 Test&set, c = 0

 Test&set, exponential backoff, c = 3.64
 Test&set, exponential backoff, c = 0

 Ideal

9753

T&S Lock Microbenchmark

lock;
delay(c);
unlock;

• Why does performance degrade?
• Bus Transactions on T&S?

© 2005 Kunle Olukotun 26
CS315A Lecture 10

Spin Lock with Test & Set

LOCK
while (test&set(x) == 1);

UNLOCK
x = 0;

• High contention (many processes want lock)
• Remember the CACHE!
• Each test&set is a read miss and a write miss

– Not fair
• Problem is?
• Waiting Algorithm!
• Requires a read and write

– Uninterruptable sequence
– Complicates coherence protocol

K. Olukotun
Spring 05/06

 Handout #15
CS315a

14

© 2005 Kunle Olukotun 27
CS315A Lecture 10

Improved Hardware Primitives: LL-SC

• Goals:

– Test with reads

– Failed read-modify-write attempts don’t generate invalidations

– Nice if single primitive can implement range of r-m-w operations

• Load-Locked (or -linked), Store-Conditional

– LL reads variable into register

– Follow with arbitrary instructions to manipulate its value

– SC tries to store back to location

– succeed if and only if no other write to the variable since this
processor’s LL

• indicated by condition codes, register value

• If SC succeeds, all three steps happened atomically

• If fails, doesn’t write or generate invalidations
– must retry acquire

© 2005 Kunle Olukotun 28
CS315A Lecture 10

Simple Lock with LL-SC

lock: ll reg1, location /* LL location to reg1 */
sc location, reg2 /* SC reg2 into location*/
beqz reg2, lock /* if failed, start again */
ret

unlock: st location, #0 /* write 0 to location */
ret

• Can do more fancy atomic ops by changing what’s between LL & SC
– But keep it small so SC likely to succeed
– Don’t include instructions that would need to be undone (e.g. stores)

• SC can fail (without putting transaction on bus) if:
– Detects intervening write even before trying to get bus
– Tries to get bus but another processor’s SC gets bus first

• LL, SC are not lock, unlock respectively
– Only guarantee no conflicting write to lock variable between them
– But can use directly to implement simple operations on shared variables

K. Olukotun
Spring 05/06

 Handout #15
CS315a

15

© 2005 Kunle Olukotun 29
CS315A Lecture 10

Better Lock Implementations

• Two choices:

– Don’t spin so much

– Spin without generating bus traffic

• Spin lock with backoff

– Insert delay between attempts to lock (not too long)

– Expenonential seems good (k*ci)

– Not fair

• Test-and-Test&Set

– Spin (test) on local cached copy until it gets invalidated, then issue
store conditional

– Intuition: No point in trying to set the location until we know that it’s
not set, which we can detect when it gets invalidated...

– Still contention after invalidate

– Still not fair

© 2005 Kunle Olukotun 30
CS315A Lecture 10

Ticket Lock

• Two counters per lock (next_ticket, now_serving)
– Acquire: fetch&inc next_ticket;

wait for now_serving == next_ticket
• atomic op when arrive at lock, not when it’s free (so less

contention)

– Release: increment now-serving
• Only one r-m-w per acquire
• Performance

– low latency for low-contention - if fetch&inc cacheable
– O(p) read misses at release, since all spin on same variable
– FIFO order

• like simple LL-SC lock, but no inval when SC succeeds, and
fair

• Wouldn’t it be nice to poll different locations ...

K. Olukotun
Spring 05/06

 Handout #15
CS315a

16

© 2005 Kunle Olukotun 31
CS315A Lecture 10

Array-based Queuing Locks

• Waiting processes poll on different locations in an array of size p

– Acquire
• fetch&inc to obtain address on which to spin (next array

element)

• ensure that these addresses are in different cache lines or
memories

– Release
• set next location in array, thus waking up process spinning on it

– O(1) traffic per acquire with coherent caches

– FIFO ordering, as in ticket lock, but, O(p) space per lock

© 2005 Kunle Olukotun 32
CS315A Lecture 10

Lock Performance on SGI Challenge

K. Olukotun
Spring 05/06

 Handout #15
CS315a

17

© 2005 Kunle Olukotun 33
CS315A Lecture 10

Point-to-Point Event Synchronization I

• Often use normal variables as flags

• If we know value of a before hand

• Assumes Sequential Consistency!!

 P1 P2

a = f(x); while (flag == 0);
flag = 1; b = g(a);

 P1 P2

a = f(x); while (a == 0);
 b = g(a);

© 2005 Kunle Olukotun 34
CS315A Lecture 10

Synchronization Summary

• Rich interaction of hardware-software tradeoffs

• Must evaluate hardware primitives and software algorithms
together

– primitives determine which algorithms perform well

• Evaluation methodology is challenging

– Use of delays, microbenchmarks
– Should use both microbenchmarks and real workloads

• Simple software algorithms with common hardware primitives do
well on bus

