

 Archives

 Special

 About Us

 Columns

 Features

 Print Archives
1994-1998

 BYTE Digest

Michael Abrash's
Graphics Programming
Black Book

 101 Perl Articles

 How to Access
BYTE.com

 Write to BYTE.com

 Advertise with
BYTE.com

Newsletter
Free E-mail
Newsletter from
BYTE.com

your email here

Subscribe

Jump to...

 HOME ABOUT US ARCHIVES CONTACT US ADVERTISE REGISTER

15 Years Ago in BYTE

August 1996 / Blasts From The Past / 15 Years Ago in BYTE

Are languages being used according to their
original design? Larry Tesler of Apple thought
they should be....ideally.

BYTE devoted almost the entire issue to Smalltalk, Smalltalk-80, and
other object-oriented-programming topics. In one article, Apple's Larr
Tesler said, "You can write almost any program better in a language
you know well than in one you know poorly. But if languages are
compared from a viewpoint broader than that of a narrow expert, each
language stands out above the others when used for the purpose for
which it was designed." Hold that thought.

August 1981 's almost-exclusive coverage of Smalltalk provided a
wealth of information from programming and debugging, to the
graphics kernel. Here's what else Larry Tesler had to say:

The Smalltalk Environment

by Larry Tesler

[Editor's Note: Due to the large volume of graphics originally included
with this article, you will need to refer to the print issue, page 90, to
view them.]

As I write this article, I am wearing a T-shirt given to me by a friend.

Page 1 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

Emblazoned across the chest is the loud plea:

DON'T

MODE

ME IN

Surrounding the caption is a ring of barbed wire that symbolizes the
trapped feeling I often experience when my computer is "in a mode."

In small print around the shirt are the names of some modes I have
known and deplored since the early 1960s when I came out of the
darkness of punched cards into the dawn of interactive terminals. My
rogues' gallery of inhuman factors includes command modes like
INSERT, REPLACE, DELETE, and SEARCH, as well as that inescapable
prompt, "FILE NAME?" The color of the silk scr een is, appropriately
enough, very blue.

My friend gave me the shirt to make fun of a near-fanatical campaign
have waged for several years, a campaign to eliminate modes from th
face of the earth--or at least from the face of my computer's display
screen. It started in 1973 when I began work at the Xerox Palo Alto
Research Center (PARC) on the design of interactive systems to be
used by office workers for document preparation. My observations of
secretaries learning to use the text editors of that era soon convinced
me that my beloved computers were, in fact, unfriendly monsters, and
that their sharpest fangs were the ever-present modes. The most
common question asked by new users, at least as often as "How do I
do this?," was "How do I get out of this mode?" Other researchers
have also condemned the prevalence of modes in interactive systems
for novice users.

Novices are not the only victims of modes. Experts often type
commands used in one mode when they are in another, leading to
undesired and distressing consequences. In many systems, typing the
letter "D" can have meanings as diverse as "replace the selected
character by D," "insert a D before the selected character," or "delete
the selected character." How many times have you heard or said,
"Oops, I was in the wrong mode"?

Preemption

Even when you remember what mode you are in, you can still fall into
a trap. If you are running a data-plotting program, the only command
you can use are the ones provided in that program. You can't use any
of the useful capabilities of your computer that the author of the
program didn't consider, such as obtaining a list of the files on the
disk. On the other hand, if you're using a program that lets you list
files, you probably can't use the text editor to change their names.
Also, if you are using a text editor, you probably can't plot a graph
from the numbers that appear in the document.

Page 2 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

If you stop any program and start another, data displayed by the first
program is probably er ased from the screen and irretrievably lost from
view. In general, "running a program" in most systems puts you into a
mode where the facilities of other programs are unavailable to you.
Dan Swinehart calls this the dilemma of preemption .

Many systems feature hierarchies of modes. A portion of a typical
mode hierarchy is shown in figure 1. If you are in the editor and want
to copy text from a file, you issue the copy-from command and it give
the prompt "from what file?" You then type a file name. What if you
can't remember the spelling? No problem. Leave from-what-file mode
leave copy-from mode, save the edited text, exit from the editor to th
executive, call up file management from the executive, issue the list-
files command, look for the name you want (Hey, that went by too
fast. Sorry, you can't scroll backwards in that mode.), terminate the
list command, exit from file management to the executive, reenter the
editor , issue the copy-from command, and when it prompts you with
"from-what-file?," simply type the name (you haven't forgotten it,
have you?).

You don't have to be a user-sympathizer to join the campaign against
modes. The most coldhearted programmer is a victim as well. Say you
have programmed a new video game for your personal computer and
have encountered a bug. An obscure error message appears on the
screen mixed in with spacecraft and alien forms. To see the latest
version of the program on the screen, you have to wipe out the very
evidence you need to solve the problem. Why? Because the system
forces you to choose between edit mode and execute mode. You can't
have both.

Enter the Integrated Environment

Soon after I began battling the mode monster, I became associated
with Alan Kay, who had just founded the Learning Research Group
(LRG) at the Xerox PARC. Kay shared my disdain for modes and had
devised a user-interface paradigm (reference 3) that elimin ated one
kind of mode, the kind causing the preemption dilemma. The paradigm
he advocated was called "overlapping windows."

Most people who have used computer displays are familiar with
windows. They are rectangular divisions of the screen, each displaying
a different information set. In some windowing systems, you can have
several tasks in progress, each represented in a different window, and
can switch freely between tasks by switching between windows.

The trouble with most windowing systems is that the windows compet
with each other for screen space-if you make one window bigger,
another window gets smaller. Kay's idea was to allow the windows to
overlap. The screen is portrayed as the surface of a desk, and the
windows as overlapping sheets of paper. Partly covered sheets peek
out from behind sheets that obscure them. With the aid of a pointing
device that moves a cursor around the screen, you can move the

Page 3 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

cursor over a partly covered sheet and press a button on the pointing
device to uncover t hat sheet.

The advantages of the overlapping-window paradigm are:

-- the displays associated with several user tasks can be viewed
simultaneously

-- switching between tasks is done with the press of a button

-- no information is lost switching between tasks

-- screen space is used economically

Of course, windows are, in a sense, modes in sheep's clothing. They
are more friendly than modes because you can't slip into a window
unknowingly when you are not looking at the screen, and because you
can get in and out of any window at any time you choose by the push
of a button.

Kay saw his paradigm as the basis for what he called an "integrated
environment." When you have an integrated environment, the
distinction between operating system and application fades. Every
capability of your personal computer is always available to you to
apply to any information you want. With minimal effort, you can move
among such divers e activities as debugging programs, editing prose,
drawing pictures, playing music, and running simulations. Information
generated by one activity can be fed to other activities, either by direc
user interaction or under program control.

When Kay invented the Smalltalk language in 1972, he designed it
with the ability to support an integrated environment. The
implementations of Smalltalk produced by Dan Ingalls and the other
members of the Learning Research Group have achieved ever-
increasing integration. The file system, process-management system,
graphics capability, and compiler are implemented almost entirely in
Smalltalk. They are accessible from any program, as well as by direct
user interaction.

In recent years, the idea of an integrated environment has spread
outside the Learning Research Group and even to non-Smalltalk
systems. The window-per-program paradigm is now commonplace,
and many system designers have adopted the overlapping-sheet
model of the screen.

In summary, the term environment is used to refer to everything in a
computer that a person can directly access and utilize in a unified and
coordinated manner. In an integrated environment , a person can
interweave activities without losing accumulated information and
without giving up capabilities.

Page 4 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

Strengths of Smalltalk

Before delving further into the nature of the Smalltalk environment, w
should first discuss its purpose .

Many general-purpose programming languages are more suitable for
certain jobs than others. BASIC is easy to learn and is ideal for small
dialogue-oriented programs. FORTRAN is well suited to numerical
applications. COBOL is tailored to business data processing. Pascal is
good for teaching structured programming.

LISP is wonderful for processing symbolic information. APL excels at
manipulating vectors and matrices. C is great for systems
programming. SIMULA shines at discrete simulations. FORTH lets
people quickly develop efficient modular p rograms on very small
computers.

All these languages have been used for numerous purposes in addition
to those mentioned. You can write almost any program better in a
language you know well than in one you know poorly. But if languages
are compared from a viewpoint broader than that of a narrow expert,
each language stands out above the others when used for the purpose
for which it was designed.

Although Smalltalk has been used for many different applications, it
excels at a certain style of software development on a certain type of
machine. The machine that best matches Smalltalk's strengths is a
personal computer with a high-resolution display, a keyboard, and a
pointing device such as a mouse or graphics tablet. A cursor on the
screen tracks mouse movements on the table so you can point to
objects on the screen. The mouse (reference 4) has one or more
buttons on its top side. One button is used as a selection button If
there are more buttons, they are normally used as menu b uttons .

If the machine has a high-performance disk drive, you can use a
virtual-memory version of Smalltalk and have as little as 80 K bytes o
main memory, not counting display-refresh memory. Otherwise, you
should have at least 256 K bytes of memory. This much memory is
required because the whole integrated environment lives in one
address space. It includes not only the usual run-time language
support, but window-oriented graphics, the editor, the compiler, and
other software-development aids. The programs you write tend to be
small because they can build on existing facilities; no system facilities
are hidden from the user. Users of LISP and FORTH will be familiar
with this idea.

Smalltalk supports its preferred hardware by incorporating software
packages that provide:

-- output to the user through overlapping windows

-- input from a keyboard, a pointing device, and menus

Page 5 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

-- uniform treatment of textual, graphical, symbolic, and numeric
information

These interactive facilities are utilized heavily by the built-in
programming aids and are available to all userwritten applications.

The style of software development to which Smalltalk is oriented is
exploratory . In exploratory development, it should be fast to create
and test prototypes, and it should be easy to change them without
costly repercussions. Smalltalk is helpful because:

-- The language is more concise than most, so less time is spent at th
keyboard.

-- The text editor is simple, modeless, and requires a minimum of
keystrokes.

-- The user can move among programming, compiling, testing, and
debugging activities with the push of a button.

-- Any desired information about the program or its execution is
accessible in seconds with minimal effort.

-- The compiler can translate and relink a single change into the
environment in a few seconds, so the time usually wasted waiting for
recompilation after a small program modification is avoided.

-- Smalltalk programs grow gracefully. In most environments, a
system gets more difficult to change as it grows. If you add 2
megabytes of virtual memory to the Smalltalk environment, you can
fill the second megabyte with useful capabilities as fast as you can fill
the first.

-- The class structure of the language prevents objects from making
too many assumptions about the internal behavior of other objects
(see David Robson's article, "Object-Oriented Software Systems," on
page 74 of this issue). The programmer can augment or change the
methods used in one part of a program without having to reprogram
other parts.

The Anatomy of a Window

Over the years, members of the Learning Research Group have
embellished Kay's original window concept. Let us look at a Smalltalk
window in more detail (figure 2).

The window is shown as a framed rectangular area wi th a title tab
attached to its top edge. The program associated with the window
must confine its output to the framed area.

Every window has a window menu . The window menu includes

Page 6 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

commands to reframe the window in a new size and location, to close
the window, to print the contents of the window on a hard-copy
device, and to retrieve windows hidden under it.

A window is tiled by one or more panes , each with its own pane
menu. The pane menu includes commands appropriate to the content
of that pane. In addition, a pane has a scroll bar on its left side used t
scroll the contents of the pane when more information exists than fits
in the frame at one time.

Although you can see many windows and panes at once, you can
interact with only one pane at a time. That pane and its window are
said to be awake or active . To awaken a different pane of the same
window, move the cursor over the new pane. To awaken a different
window, move the cursor over the new win dow and press the
selection button on the pointing device. When a window wakes up, its
title tab and all its panes are displayed, and it is no longer covered up
by other windows.

The scroll bar of the active pane is called the active scroll bar . Its
menu and the menu of its window are called the active menus . In
order to reduce screen clutter and maximize utilization of precious
screen space, no inactive scroll bars or menus are displayed. On
machines that use a pointing device with three buttons, some versions
of Smalltalk even hide the active menus until one of two menu button
is pressed, at which time the associated menu pops up and stays up
until the button is released. If the button is released when the cursor
over a command in the menu, that command is executed.

Modeless Editing

The overlapping-window paradigm helps eliminate preemption. It can
also reduce the need for certain prompts and their associated modes.
For example, you never have to type the name of a procedure you
want to examine. At worst, you point to its name in a list; at best, the
desired procedure is already in a window on the screen, and you
activate that window.

Unfortunately, overlapping windows do not eliminate command modes
like "insert" and "replace" by themselves. Between 1973 and 1975, I
worked at PARC with various collaborators, including Dan Swinehart
and Timothy Mott, to banish command modes from interactive
systems. Despite initial skepticism, nearly all users of our prototypes
grew to appreciate the absence of modes. The following techniques
were devised by us to eliminate modes from text editing. They are
analogous to the techniques used to keep Polish-notation calculators
relatively mode-free. Similar techniques can be applied to page layout
graphics creation, and other interactive tasks.

Selection precedes command:

-- Every command is executed immediately when you issue it. You are

Page 7 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

not asked to confirm it. Yo u can issue an undo command to reverse
the effects of the last issued command. Although the main purpose of
"undo" is to compensate for the lack of command confirmation, it can
also be used to change your mind after issuing a command.

-- For a command like "close the active window" that requires no
additional parameters, you simply issue the command.

-- For a command like "delete text" that requires one parameter, you
first select the parameter using the pointing device and then issue the
command. Until you issue the command, you can change your mind
and make a different selection, or even choose a different command.

-- For a command like "send electronic mail" that requires several
parameters (recipient, subject, content), you first fill the parameters
into a form using modeless text editing and then issue the command.
You are not in a mode while filling out the form. If you want to copy
something into the form from another place, you can. If you want to
do something else instead, just do it; you may even return to the form
later and finish filling it out.

Typing text always replaces the selected characters:

-- Pressing a text key on the keyboard never issues a command. It
always replaces the current selection by the typed character and
automatically selects the gap following that character.

-- To replace a passage of text, first select it and then type the
replacement. The first keystroke deletes the original text.

-- To insert between characters, you first select the gap between thos
characters and then type the insertion. Essentially, you are replacing
nothing with something.

-- The destructive backspace function always deletes the character
preceding the selection, even if that character was there before the
selection was made.

-- The "undo" command can be used to reverse the effects of all your
typing and backspacin g since you last made a selection with the
pointing device.

Thus, the usual insert, append, and replace modes are folded into one
mode-replace mode-and one mode is no mode at all.

The "shift lock" key and analogous commands like "bold shift" and
"underline shift" cause modes for the interpretation of subsequently
typed characters. However, shifts are familiar to people and are
relatively harmless. The worst they do is change a "d" to a "D," "d," o
"d"never to a Delete command.

Page 8 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

The bit-map display can show boldface characters, as well as italics,
underlining, and a variety of styles and sizes of printer's type. Thus, a
you enter text in bold shift, the screen shows what the text will look
like when it is printed. A command like bold shift can also be applied t
existing text to change it to boldface.

In 1976, Dan Ingalls devised a user interface for Smalltalk that
incorporated most of the mode-avoidance techniques discussed earlie
Consequently, it is rare in the present Smalltalk environ ment to
encounter a mode.

Making a Selection

In the Smalltalk-76 user interface, text is selected using the pointing
device and a single button. First, the cursor is moved to one end of th
passage to be selected. The selection button is pressed and held down
while the cursor is moved to the other end of the passage. This
operation is called "draw-through," though it is not necessary to
traverse intermediate characters en route to the destination. When th
cursor reaches the other end of the passage, the button is released.
The selected passage is then shown in inverse video.

The feedback given to the user during selection is as follows. When th
button is depressed, a vertical bar appears in the nearest
intercharacter gap. (At the left end of a line of text, the bar appears to
the left of the first character. At the right end of a line, the bar appear
to the left of the final space character.)

If the button is released without moving the cursor, the bar remains,
indicatin g that a zero-width selection has been made. This method-
clicking once between characters-is the one to use before you insert
new text.

If the button is held down while the cursor is moved, the system
supplies continuous feedback by highlighting in inverse video all
characters between the initial bar and the gap nearest to the cursor.
When the button is released, the selected characters remain
highlighted. This method-drawing through a passage is the one to use
before you copy, move, delete, or replace text, or before you change
to boldface or otherwise alter its appearance.

Clicking the button twice with the cursor in the same spot within a
word selects that whole word and highlights it. This special mechanism
is provided because it is very common to select a word. Informal
experiments lead us to believe that double clicking is much easier tha
drawing through a word for beginners and experts alike. It is also
faster. It takes the average user about 2.6 seconds to select a word
anywhere on the s creen using draw-through, but it takes only 1.5
seconds using the double click (reference 5).

There is only one selection in the active pane. It is called the active
selection .

Page 9 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

Issuing a Command

When you issue a command in Smalltalk, you are sending a message
to an object. There are two ways to send a message from Ingalls's
user interface. You can send certain commonly sent messages to the
active pane or window by choosing them from menus; you can send
any message to any object by direct execution of a Smalltalk
statement.

Smalltalk-76 provides pop-up menus for the most commonly used
commands, like "cut," which deletes the selected text. To issue the
"cut" command, you pop up the active-pane menu with one of the
menu buttons on the mouse, keep that button down while moving the
cursor to the command name, and then release the button. A
command in the pane menu can have only one parameter, the active
selection. A command in the window menu can have no parameters.

To issue a command that is not available in a menu, you select any
place you can insert text, and type the whole command as a statemen
in the Smalltalk language. Then you select that statement and issue
the single-parameter command "do it" to obtain the result. The "do it"
command provides immediate execution of any Smalltalk statement o
group of statements. This method of command issuance uses the
previous method: you are sending the message doit to the pane, with
the Smalltalk statement as its parameter.

It is standard practice to keep a "work-space" window around the
screen in which to type your nonmenu commands. When you want to
reissue a nonmenu command issued earlier, simply select the
command in the workspace window and "do it." You may, of course,
edit some of the parameters of the old command before you select it
and "do it." In a sense, you are filling out a form when you edit
parameters of an immediate statement.

Unfortunately, the common commands "move text from here to ther e
and "copy text from here to there" cannot be issued by a single menu
command because they require two parameters, the source selection
and the destination selection. Sometimes, they even involve message
to more than one pane, the source pane and the destination pane. In
modeless system, a move or copy command is done in two steps:

-- A move is done by cut and paste . First, you select the source text
and issue the "cut" command. The "cut" command deletes the selecte
text, but leaves it in a special place where it can be retrieved by
"paste." Then you select the destination and issue the "paste"
command to complete the move.

-- A copy is done by copy and paste , which is completely analogous t
cut and paste, but does not delete the original text.

Remember the "copy-from-file" example (the one where you had to go
in and out of many layers of modes)? In the Smalltalk-76 user

Page 10 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

interface, you can accomplish this with six pushed buttons, no mode
ex its, and no typing: (1) activate the source window that displays the
file you are copying from; (2) select the desired text; (3) issue the
"copy" command in the menu; (4) activate the destination window; (5
select the destination point, and (6) issue the "paste" command in the
menu. The job requires little more effort than copying within the same
document. If the window is not already on the screen and you can't
remember the file name, you can go to another window and scroll
through a list of files without having to exit any modes, invoke any
programs, save any edits, lose sight of the destination file, or lose any
time.

The Smalltalk-76 text-editing facilities not only relieve you of the
burden of modes, they also require very few keystrokes and are easy
to learn.

Software-Development Aids

One of my summer projects in 1977 was to increase the speed and
friendliness of the Smalltalk software-development environment by
adding inspect windows , browse windows , an d notify windows to the
user interface. These and other enhancements made by the Learning
Research Group are described below. In recent months, the team has
further enhanced the Smalltalk-80 environment. Although it conforms
to the same principles as before, its details are different from what is
described in this article.

Inspecting Data Structures

Suppose someone has given you a Smalltalk program to implement a
"regular polygon" class and you want to learn more about it. It would
be helpful to see an actual instance of a regular polygon.

If the variable triangle refers to a regular polygon, you type the
following statement into your work-space window:

triangle inspect

and then issue the "do it" command in the pane menu. In a few
seconds, a two-paned "inspect window" appears on the screen. Its titl
tab tells you the class of the inspected object, in this case,
RegularPolygon. The window is divided into two panes. The left or
variable pane lists the parts of a regular polygon, sides, center, radius
and plotter. The right or value pane is blank.

You point to the word sides in the variable pane and click the selection
button on the mouse. The word sides is highlighted, and in the value
pane, the value of the variable sides appears, in this case, 3. You poin
to the word center and click. In the value pane appears the value of
center, in this case, the point 526@302. The value pane is dependent
on the variable pane because its contents are determined by what you

Page 11 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

select in the variable pane. The arrow in figure 3 symbolizes this
dependency.

Let's inspect the value of center. In the variable pane, where center is
selected, pop up the pane menu and issue the "inspect" command. On
the screen appears another inspect window showing that center is an
instance of class Point . You can now examine that point's variables, x
and y, reactivate the original inspect window, close either or both
windows, or work in any other window. You are no t in a mode.

Browsing Through Existing Definitions

Now that you have inspected a sample regular polygon, you might
want to find out what methods have been defined in its class. One wa
to do this is to activate a window called a "browse window" or
"browser." Most Smalltalk programmers leave a browser or two on the
screen at all times with the work-space window.

The title tab of the browser says "Classes" because the standard
browser lets you examine and change the definitions of all Smalltalk
classes-classes supplied by the system, as well as classes supplied by
yourself. It is easy to create a more restricted browser that protects
the system from ill-conceived modification. But on a personal
computer, you are just going to hurt yourself.

The browser has five panes. The principal dependencies between
panes are symbolized by arrows in figure 4. The top row has four
panes called the class-category pane, class pane, method-category
pane, and method pane. The large lower pane i s called the editing
pane. (After you have used the system for a few minutes, the
significance of each pane becomes apparent, and it is not necessary to
memorize their technical names.)

In photo 13a, the browser shows a method definition in the editing
pane. You can tell that the method is class RegularPolygon's version o
scale: because RegularPolygon is highlighted in the class pane and
scale: is highlighted in the method pane.

The method-category pane lists several groups of methods within clas
RegularPolygon : initialization, analysis, display, transformation, testing,
and private methods. You can tell that scale: is a transformation
message in class RegularPolygon because that category is highlighted.

The class-category pane lists several groups of classes, including
numbers, files, and graphical objects. You can tell that class
RegularPolygon is in the graphical objects group because that category is
highlighted.

Suppose you want to look at a different meth od, translateBy: . Click its
name in the method pane and its definition is immediately displayed in
that pane's dependent, the editing pane. If the method you want to
see is in the method category analysis, first click that category name.

Page 12 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

Immediately after you do that, its dependent, the method pane, lists
the methods in that category. Now you can click the name of the
desired method.

If you want to know things about the class as a whole, like its
superclass and field names, click "Class Definition" in the method-
category pane and the definition appears in the editing pane.

Suppose you want to look at a different class, say IrregularPolygon .
Click its name in the class pane and its method categories are
immediately displayed in the next pane. If the class you want to see is
in the class category windows, first click that category name.
Immediately after you do that, the class pane lists the classes in that
category. Now you can click the name of the desired class.

Categorizati on is used at both the class and method level to help the
programmer organize his or her program and to provide fewer choices
in each pane. If a list is longer than what can fit in a pane, it can be
scrolled by pressing a mouse button with the cursor in the scroll bar.

If you just want to browse around reading class and method
definitions, you can do so by lazily clicking the selection button with
the cursor over each name, never touching the keyboard. That is why
the window is called a browser. Browsers are further discussed in
references 6 and 7.

Astute readers may have noticed that the class template (see "The
Smalltalk-80 System" by the Learning Research Group on page 36 of
this issue) presents the methods of a class apart from the methods of
its instances, while the browser does not. This discrepancy stems from
differences between the Smalltalk-80 and Smalltalk-76 languages.

Revising Definitions

If you are looking at a method definition or class definition in the editi
ng pane, you can revise it using the standard text-editing facilities
(select, type, cut, paste, copy).

If you like, you can copy information into the definition from other
windows--including other browse windows--because you are not in an
mode while browsing. You can even interrupt your editing to run
another program, list your disk files, draw a picture, or do whatever
you like. You can later reactivate the browser and continue editing.

When you are done editing, pop up the active-pane menu and issue
the "compile" command. Compilation takes a few seconds or less
because it is incremental-that is, you can compile one method at a
time. The compiler reports a syntax error to you by inserting a
message at the point where the error was detected and automatically
selecting that error message. You can then cut out or overtype the
message, make the correction, and immediately reissue the "compile"
command.

Page 13 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

If you start to revise a definition and change your mind about it, you
can pop up the pane men u and issue the "cancel" command. The
"cancel" command redisplays the last successfully compiled version of
the method. If you cancel by accident, just issue the "undo" command
to return the revised version.

Adding New Definitions

To add a new method definition, select a method category. In the
editing pane, a template appears for defining a new method. The
template reminds you of the required syntax of a method.

Use standard editing facilities to supply the message pattern, variable
list, and body of the method. When the definition is ready, issue the
"compile" command.

Once compilation succeeds, the selector of the new method is
automatically added to the alphabetized list in the method pane, and
the message pattern is automatically changed to boldface in the
editing pane.

A new class definition is added in an analogous manner. Start by
selecting a class category, then fill in a template for defining a new
class and compile it. New categories can be added and old cat egories
can be renamed and reorganized.

Program Testing

Let us purposely add a bug to a method and see how it can be tracked
down and fixed.

Browse to the method cornerAngle in class RegularPolygon , cut out the
characters "180-", and recompile it. In the RegularPolygon work-space
window, select the test program and issue the "do it" command.
Instead of the desired triangle, an open three-sided figure is drawn
because of the bug introduced into the angle calculation.

Breakpoints

To track down the bug, let us set a breakpoint in the method
cornerAngle . Using standard editing facilities, add the statement:

self notify: 'about to calculate angle'.

before the return statement. Now rerun the test case. When the
computer encounters the breakpoint, a new window appears in
midscreen. It is called a "notify window". The title tab of the notify
window says "about to calculate angle".

The notify window ha s one pane, the stack pane. It shows
RegularPolygon > > cornerAngle (ie: the class and method in which the

Page 14 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

breakpoint was encountered). The pop-up menu of that pane offers
several commands, including "stack" and "proceed".

The "proceed" command closes the notify window and continues
execution from the breakpoint. If we issue a "proceed" in our example
the same breakpoint will be encountered again immediately because
the cornerAngle method is used several times during the execution of
the test program.

What a Notify Window Can Display

The "stack" command expands the contents of the pane to include
messages that have been sent, but have not yet received replies. It
reveals that the sender of the message cornerAngle was RegularPolygon
> >plot:.

The pop-up menu of the notify window offers the usual repertoire,
including the "close" and "frame" commands. If "close were issued, th
notify window would disappear from the screen and execution of the
program under test would be aborted. Let us issue the "frame"
command instead. The notify window grows larger and acquires a tota
of six panes. Their interdependencies are diagrammed in figure 5.

The upper left pane is the stack pane retained from before. The upper
right pane is an editing pane. If you select RegularPolygon > > plot: in
the stack pane, its method definition appears in the editing pane. You
can scroll through the definition and even edit it there and recompile
as in the browser.

The middle two panes are the "context variable" and "context value"
panes. They are analogous to the two panes of an inspect window, bu
in this case, the variables you can examine are the arguments and
local variables of the method selected in the stack pane. Click ink in
the variable pane to see its value in the value pane.

The bottom two panes are the "instance variable" and "instance value
panes. They also are analogous to the panes of an inspect window.
They let you examine the instance variables of the receiver of the
message selected in the stack pane. Click center to see its value
appear in the value pane.

You can type statements into the value panes and execute them using
"do it". They will be executed in the context of the method selected in
the stack pane-that is, they may refer to arguments and local variable
of the method and to instance variables.

Debugging

You could step through the execution of the method in the editing
pane. You would select one statement at a time in the editing pane
and issue the "do it" command. To close in on the planted bug, we can
evaluate self cornerAngle, an expression on the last line of the

Page 15 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

method. Select that expression and issue the "do it" command. The
answer, 1 20, appears to the right of the question. Since the interior
angle of a regular triangle is 60 degrees, we have found the planted
bug.

Now select RegularPolygon > > cornerAngle in the stack pane. Its method
definition, including the breakpoint we set, appears in the editing pane
Use standard editing to remove the breakpoint, correct the error, and
recompile the editing pane.

You can randomly access any level in the stack by clicking it in the
stack pane.

Resumption

After recompiling a method, you can resume execution from the
beginning of any method on the stack using the "restart" command in
the stack-pane menu. This lets the test proceed without having to sta
over from the work-space window. Resumption of execution after a
correction is a handy capability when a program that has been running
well encounters a minor bug.

The entire stack of the process under test was saved in the notify
window. When a notify window appears, the rest of the system is not
preempted. You are not required to deal with the notify window when
it appears. You can work in other windows and come back to it later,
cause other notify windows to be created, or work a little in the notify
window and then do somet hing else. There are no modes.

Error Notifications

Error messages are no different from breakpoints, except that if they
are supposed to be "unrecoverable" they are programmed as:

self error: 'error whatever'.

If the user "proceeds" out of the notify window after an error, the
process under test is terminated.

The most frequently encountered Smalltalk error is "Message not
understood." It occurs when a method is sent to an object and neither
that object's class nor any of its superclasses defines a method to
receive that message. Let us edit the method sideLength to send the
message cosine instead of cos. After recompiling that method and
reexecuting the test program, a notify window appears to announce
that class Real and its superclasses do not define cosine.

In most programming systems, equivalent error conditions such as
"undeclared procedure" and "wrong number of arguments" are issued
at compile time. Smalltalk cannot detect these conditions until r un
time because variables are not declared as to type. At run time, the

Page 16 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

object sent the message cosine could be an instance of a class that di
define a method of that name.

Type Checking

When we program in languages like Pascal, we depend on type
checking to catch procedure-call errors early in the software-
development process. In return, we have to take extra time
maintaining type declarations, and we lose the very powerful ability to
define generic or "polymorphic" procedures with the same name but
with parameters of varying types.

Type checking is important in most systems for four reasons, none of
which is very important in Smalltalk:

-- Without type checking, a program in most languages can "crash" in
mysterious ways at run time. Even with type checking, most
programming systems can crash due to uninitialized variables,
dangling references, etc. Languages with this feature are sometimes
called "unsafe." Examples of unsafe languages are Pascal, PL/1, and C
Examples of fairly safe languages are BASIC and LISP. Smalltalk is a
safe language. It cannot be wiped out by normal programming. In
particular, it never crashes when there are "type mismatches." It just
reports a "Message not understood" error and helps the programmer
quickly find and fix the problem through the notify window.

-- In most systems, the edit-compile-debug cycle is so tedious that
early error detection is indispensable. In Smalltalk, type errors are
found early in testing, along with value-range errors and other bugs.

-- Type declarations help to document programs. This is true, but wel
chosen variable names and pertinent comments provide more specific
information than do type declarations. A poor documenter can convey
as little information in a strongly typed program as in an untyped
program.

-- Most compilers can generate more efficient object code if types are
declared. Existing implementations of Smalltalk cannot take advantag
e of type declarations. We expect that future versions will have that
ability. At that time, type declarations may be added to the language.
They probably will be supplied by the system rather than the user,
using a program-analysis technique called "type inference."

Project Windows

Although overlapping windows enable you to keep the state of several
tasks on the screen at the same time, you may sometimes be working
on several entirely different projects, each involving several tasks.
Smalltalk lets you have a different "desk top" for each project. On eac
desk top are windows for the tasks involved in that project. To help
you travel from one desk top to another, a desk top can have one or
more project windows that show you other available desk tops and let

Page 17 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

you switch to one of them.

Saving Programs

In unintegrated systems, you create a program using standard text-
editing facilities. Then, using standard utility programs, you can obtain
a program listing on paper, back up the program on other media, and
transmit the program to other people. In an integrated system,
equivalent capabilities must be provided within the system itself. Som
of the program-saving capabilities of Smalltalk are described briefly
below.

One important facility is the snapshot. The entire state of the Smalltal
environment-including class and method definitions, data objects,
suspended processes, windows on the screen, and project desk tops-
can be momentarily frozen and saved on secondary storage. The
snapshot can be restored later and resumed. People familiar with the
sysout in InterLISP or the workspace concept in APL will understand
the benefit of this facility.

Another facility allows definitions of one or more methods or classes to
be listed on a printer. A related facility is filin/filout . The filout
message writes an ASCII representation of one or more definitions
onto a conventional text file. The definitions can then be transfused
into another Smalltalk environ ment by using the filin message in that
environment.

Often, during a programming session, the user changes a number of
method definitions that are scattered throughout many classes and
cannot recall which ones were changed. The changes facility
automatically keeps a record of what definitions changed in each
project, and makes it easy for the user to filout those definitions at th
end of the session.

Implementation of the Environment

Because Smalltalk is an integrated environment, all the facilities
described in this article are implemented in the high-level language,
including modeless editing, windows, the compiler, and the notify
mechanism. This was possible because Smalltalk represents
everything, including the dynamic state of its own processes, as
objects that remember their own state and that can be sent messages
by other objects. Using the browser, you can examine and (carefully)
change the definitions of the software-development aids.

In the implementation of Smal ltalk-76, classes InspectWindow ,
BrowseWindow , and NotifyWindow are all tiny subclasses of class PanedWindow
which defines their common behavior. Similarly, classes StackPane ,
VariablePane , ValuePane and so on, are all tiny subclasses of class
ListPane . The superclass defines common behavior such as scrolling
and selecting entries.

Page 18 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

If someone shows you a system claimed to be "Smalltalk," find out
whether the software-development aids exist and whether they are
programmed as class definitions in the high-level language. If not, the
system is not bona fide.

Conclusions

The Smalltalk programming environment is reactive. That is, the user
tells it what to do and it reacts, instead of the other way around. To
enable the user to switch between tasks, the state of the tasks is
preserved in instantly accessible windows that overlap on desk tops.
To give the user the maximum freedom of choice at every moment,
modes rarely occur in the user interface. The result of this organizatio
is that tasks, including softwaredevelopment tasks, can be
accomplished with greater speed and less frustration than is usually
encountered in computer systems.

References

1. Sneeringer, J. "User-Interface Design for Text Editing: A Case
Study." Software-Practice and Experience 8, pages 543 thru 557,
1978.

2. Swinehart, D C (thesis). "Copilot: A Multiple Process Approach to
Interactive Programming Systems." Stanford Artificial Intelligence
Laboratory Memo AIM-230, Stanford University, July 1974.

3. Kay, A and A Goldberg. "Personal Dynamic Media." Computer,
March 1977 (originally published as Xerox PARC Technical Report SSL
76-1, March 1976, out of print).

4. English, W, D Engelbart, and M Berman. "Display-Selection
Techniques for Text Manipulation." IEEE Transactions on Human
Factors in Electronics, volume 8, number 1, pages 21 thru 31, 1977.

5. Card, S, T Moran, and A Newell. "The Keystroke-Level Model for
User Performance Time with Interactive Systems." Communications of
the ACM, volume 23, number 7, July 1980.

6. Goldberg, A and D Robson. "A Metaphor for User-Interface Design."
Proceedings of the Twelfth Hawaii International Conference on System
Sciences, volume 6, number 1, pages 148 thru 157, 1979.

7. Borning, A. "ThingLab-A Constraint-Oriented Simulation
Laboratory." To appear in ACM Transactions on Programming
Languages and Systems (originally published as Stanford Computer
Science Report STAN-CS-79-746 and Xerox PARC Technical Report
SSL-79-3, July 1979, out of print).

Page 19 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

August 1981

photo_link (125 Kbytes)

Larry Tesler, Apple Computer, Inc., 10260 Bandley Dr.,
Cupertino, CA 95014.

Copyright © 2005 CMP Media LLC, Privacy Policy, Your California Privacy rights, Term
Site comments: webmaster@byte.com
SDMG Web Sites: BYTE.com, C/C++ Users Journal, Dr. Dobb's Journal, MSDN Magaz
Architect, SD Expo, SD Magazine, Sys Admin, The Perl Journal, UnixReview.com, Win
Network

Page 20 of 20BYTE.com

5/14/2006http://www.byte.com/art/9608/sec4/art3.htm

