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Types

John Mitchell

CS 242

Reading: Chapter 6

Type

A type is a collection of computable values that 
share some structural property.

Examples
• Integers
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, λx.x}
• Even integers
• {f:int → int | if x>3   

then f(x) > x*(x+1)}

Distinction between types and non-types is language 
dependent.

Uses for types 

Program organization and documentation
• Separate types for separate concepts

– Represent concepts from problem domain 

• Indicate intended use of declared identifiers
– Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computations such as  3 + true - “Bill”

Support optimization
• Example: short integers require fewer bits
• Access record component by known offset

Type errors

Hardware error
• function call x() where x is not a function
• may cause jump to instruction that does not contain 

a legal op code

Unintended semantics
• int_add(3, 4.5)
• not a hardware error, since bit pattern of float 4.5 

can be interpreted as an integer
• just as much an error as x() above

General definition of type error

A type error occurs when execution of program 
is not faithful to the intended semantics

Do you like this definition?
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern 

• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function, 

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5

Compile-time vs run-time checking

Lisp uses run-time type checking
(car x)    check first to make sure x is list

ML uses compile-time type checking
f(x) must have f : A → B and x : A

Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

Lisp list: elements can have different types
ML list: all elements must have same type 
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Expressiveness

In Lisp, we can write function like
(lambda (x)  (cond ((less x 10)  x)  (T  (car x))))

Some uses will produce type error, some will not

Static typing always conservative 
if  (big-hairy-boolean-expression) 

then  ((lambda (x) … )  5)
else   ((lambda (x) … )  10)

Cannot decide at compile time if run-time error will occur

Relative type-safety of languages 

Not safe: BCPL family, including C and C++
• Casts,  pointer arithmetic

Almost safe: Algol family, Pascal, Ada. 
• Dangling pointers. 

– Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p 

– No language with explicit deallocation of memory is fully 
type-safe

Safe: Lisp, ML, Smalltalk, and Java 
• Lisp, Smalltalk: dynamically typed 
• ML, Java: statically typed

Type checking and type inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types 
of identifies to check agreement.

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out 
what types could have been declared.

ML is designed to make type inference tractable.

Motivation

Types and type checking
• Type systems have improved steadily since Algol 60
• Important for modularity, compilation, reliability

Type inference
• A cool algorithm
• Widely regarded as important language innovation
• ML type inference gives you some idea of how many 

other static analysis algorithms work

ML Type Inference

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 
In many cases, unique type may be polymorphic.

Another presentation 

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?

x 

λ

@

@

+ 2

Assign types to leaves

: t

int → int → int
real → real→real

: int

Propagate to internal 
nodes and generate 
constraints

int (t = int)

int→int

t→int

Solve by substitution

= int→int

Graph for λx. ((plus 2) x)
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Application and Abstraction 

Application
• f must have function type   

domain→ range
• domain of f must be type 

of argument x 
• result type is range of f

Function expression
• Type is function type 

domain→ range
• Domain is type of variable x
• Range is type of function 

body e 

x

@

f x

λ

e: t: s : s : t

: r    (s = t→ r) : s → t

Types with type variables 

Example
- fun f(g) = g(2);
> val it = fn : (int → t) → t

How does this work?

2 

λ

@

g

Assign types to leaves

: int: sPropagate to internal 
nodes and generate 
constraints

t    (s = int→t)

s→t

Solve by substitution

= (int→t)→t

Graph for λg. (g 2)

Use of Polymorphic Function

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Possible applications
- fun add(x) = 2+x;
> val it = fn : int → int
- f(add);
> val it = 4 : int

- fun isEven(x) = ...;
> val it = fn : int → bool
- f(isEven);
> val it = true : bool

Recognizing type errors

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Incorrect use
- fun not(x) = if x then false else  true;
> val it = fn : bool → bool
- f(not);

Type error: cannot make bool → bool = int → t

Another Type Inference Example 

Function Definition
- fun f(g,x) = g(g(x));
> val it = fn : (t → t)*t → t

Type Inference

Solve by substitution

= (v→v)*v→v 
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v     (s = u→v)

s*t→v

u   (s = t→u)

Graph for λ〈g,x〉. g(g x)

Polymorphic Datatypes

Datatype with type variable    ’a is syntax for “type variable a”

- datatype ‘a list = nil | cons of ‘a*(‘a list)
> nil : ‘a list 
> cons : ‘a*(‘a list) → ‘a list

Polymorphic function
- fun length nil = 0

|    length (cons(x,rest)) = 1 + length(rest)
>  length : ‘a list → int

Type inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)
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Type inference with recursion

Second Clause
length(cons(x,rest)) = 
1 + length(rest)

Type inference
• Assign types to 

leaves, including 
function name

• Proceed as usual
• Add constraint that 

type of function body 
= type of function 
name

rest

x

@

lenght

@

cons

+ 1

@

@

: t

λ
‘a list→int = t

: ‘a*‘a list     
→‘a list

We do not expect you to master this.

Main Points about Type Inference

Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
May lead to better error detection than ordinary 
type checking
• Type may indicate a programming error even if there 

is no type error (example following slide).

Information from type inference

An interesting function on lists
fun reverse (nil) = nil
|     reverse (x::lst) = reverse(lst);

Most general type
reverse : ‘a list → ‘b list

What does this mean? 
Since reversing a list does not change its type, 
there must be an error in the definition of 
“reverse”

See Koenig paper on “Reading” page of CS242 site

Polymorphism vs Overloading

Parametric polymorphism
• Single algorithm may be given many types
• Type variable may be replaced by any type
• f : t→t => f : int→int, f : bool→bool, ...

Overloading
• A single symbol may refer to more than one algorithm
• Each algorithm may have different type
• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different
• + has types  int*int→int, real*real→real, no others

Parametric Polymorphism: ML vs C++

ML polymorphic function
• Declaration has no type information
• Type inference: type expression with variables
• Type inference: substitute for variables as needed

C++ function template
• Declaration gives type of function arg, result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML also has module system with explicit type parameters

Example: swap two values

ML
- fun swap(x,y) = 

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

C++
template <typename T>
void swap(T& , T& y){

T tmp = x;  x=y;  y=tmp;
}

Declarations look similar, but compiled is very differently
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Implementation

ML
• Swap is compiled into one function
• Typechecker determines how function can be used

C++
• Swap is compiled into linkable format
• Linker duplicates code for each type of use

Why the difference?
• ML ref cell is passed by pointer, local x is pointer to 

value on heap
• C++ arguments passed by reference (pointer), but 

local x is on stack, size depends on type

Another example

C++ polymorphic sort function
template <typename T>
void sort( int count, T * A[count] ) {

for (int i=0; i<count-1; i++)
for (int j=i+1; j<count-1; j++)

if (A[j] < A[i]) swap(A[i],A[j]);
}

What parts of implementation depend on type?
• Indexing into array
• Meaning and implementation of <

ML Overloading

Some predefined operators are overloaded
User-defined functions must have unique type
- fun plus(x,y) = x+y;
This is compiled to int or real function, not both

Why is a unique type needed?
• Need to compile code ⇒ need to know which +
• Efficiency of type inference
• Aside: General overloading is NP-complete

Two types, true and false
Overloaded functions

and : {true*true→true, false*true→false, …}

Summary 

Types are important in modern languages
• Program organization and documentation
• Prevent program errors
• Provide important information to compiler
Type inference
• Determine best type for an expression, based on 

known information about symbols in the expression
Polymorphism
• Single algorithm (function) can have many types
Overloading
• Symbol with multiple meanings, resolved at compile 

time


