
1

Review

John Mitchell

CS 242

Final Exam
Wednesday Dec 8

8:30 – 11:30 AM
Gates B01, B03

Thanks!

Teaching Assistants
• Mike Cammarano
• TJ Giuli
• Hendra Tjahayadi

Graders
• Andrew Adams Tait Larson
• Kenny Lau Aman Naimat
• Vishal Patel Justin Pettit
• and more …

Course Goals

Understand how programming languages work
Appreciate trade-offs in language design
Be familiar with basic concepts so you can
understand discussions about
• Language features you haven’t used
• Analysis and environment tools
• Implementation costs and program efficiency
• Language support for program development

There are many programming languages

Early languages
• Fortran, Cobol, APL, ...

Algol family
• Algol 60, Algol 68, Pascal, …, PL/1, … Clu, Ada, Modula,

Cedar/Mesa, ...

Functional languages
• Lisp, FP, SASL, ML, Miranda, Haskell, Scheme, Setl, ...

Object-oriented languages
• Smalltalk, Self, Cecil, …
• Modula-3, Eiffel, Sather, …
• C++, Objective C, …. Java

Concurrent languages
• Actors, Occam, ...
• Pai-Lisp, …

Proprietary and special purpose languages
• TCL, Applescript, Telescript, ...
• Postscript, Latex, RTF, …
• Domain-specific language

Specification languages
• CORBA IDL, ...
• Z, VDM, LOTOS, VHDL, …

General Themes in this Course

Language provides an abstract view of machine
• We don’t see registers, length of instruction, etc.
The right language can make a problem easy;
wrong language can make a problem hard
• Could have said a lot more about this
Language design is full of difficult trade-offs
• Expressiveness vs efficiency, ...
• Important to decide what the language is for
• Every feature requires implementation data structures

and algorithms

2

Good languages designed with specific
goals (often an intended application)

• C: systems programming
• Lisp: symbolic computation, automated reasoning
• FP: functional programming, algebraic laws
• ML: theorem proving
• Clu, ML modules: modular programming
• Simula: simulation
• Smalltalk: Dynabook,
• C++: add objects to C
• Java: set-top box, internet programming

A good language design presents abstract
machine, an idealized view of computer

• Lisp: cons cells, read-eval-print loop
• FP: ??
• ML: functions are basic control structure, memory model

includes closures and reference cells
• C: the underlying machine + abstractions
• Simula: activation records and stack; object references
• Smalltalk: objects and methods
• C++: ??
• Java: Java virtual machine

Design Issues

Language design involves many trade-offs
• space vs. time
• efficiency vs. safety
• efficiency vs. flexibility
• efficiency vs. portability
• static detection of type errors vs. flexibility
• simplicity vs. "expressiveness" etc

These must be resolved in a manner that is
• consistent with the language design goals
• preserves the integrity of abstract machine

In general, high-level languages/features are:
• slower than lower-level languages

– C slower than assembly
– C++ slower than C
– Java slower than C++

• provide for programs that would be
difficult/impossible otherwise

– Microsoft Word in assembly language?
– Extensible virtual environment without objects?
– Concurrency control without semaphores or monitors?

Many program properties are undecidable
(can't determine statically)

• Halting problem
• nil pointer detection
• alias detection
• perfect garbage detection
• etc.

Static type systems
• detect (some) program errors statically
• can support more efficient implementations
• are less flexible than either no type system or a

dynamic one

Languages are still evolving

• Object systems
• Adoption of garbage collection
• Concurrency primitives; abstract view of concurrent

systems
• Domain-specific languages
• Network programming
• Aspect-oriented programming and many other “fads”

– Every good idea is a fad until is sticks

3

Summary of the course

Lisp, 1960
Fundamentals
• lambda calculus
• denotational semantics
• functional prog

ML and type systems
Block structure and
activation records
Exceptions and
continuations

Modularity and objects
• encapsulation
• dynamic lookup
• subtyping
• inheritance

Simula and Smalltalk
C++
Java
Concurrency

Lisp Summary

Successful language
• Symbolic computation, experimental programming

Specific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Idea of garbage collection.

Fundamentals

Grammars, parsing
Lambda calculus
Denotational semantics
Functional vs. Imperative Programming
• Is implicit parallelism a good idea?
• Is implicit anything a good idea?

Algol Family and ML

Evolution of Algol family
• Recursive functions and parameter passing
• Evolution of types and data structuring

ML: Combination of Lisp and Algol-like features
• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions

Types and Type Checking

Types are important in modern languages
• Program organization and documentation
• Prevent program errors
• Provide important information to compiler
Type inference
• Determine best type for an expression, based on

known information about symbols in the expression
Polymorphism
• Single algorithm (function) can have many types
Overloading
• Symbol with multiple meanings, resolved at compile

time

Type inference algorithm

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?

x

λ

@

@

+ 2

Assign types to leaves

: t

int → int → int
real → real→real

: int

Propagate to internal
nodes and generate
constraints

int (t = int)

int→int

t→int

Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

4

Block structure and storage mgmt

Block-structured languages and stack storage
In-line Blocks
• activation records
• storage for local, global variables

First-order functions
• parameter passing
• tail recursion and iteration

Higher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Summary of scope issues

Block-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …
• Also pointers to enclosing scope

Several different parameter passing mechanisms
Tail calls may be optimized
Function parameters/results require closures
• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call
• Closures not needed if functions not in nested blocks

Control

Structured Programming
• Go to considered harmful

Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

Continuations
• Function representing the rest of the program
• Generalized form of tail recursion

Modularity and Data Abstraction

Step-wise refinement and modularity
• History of software design

Language support for information hiding
• Abstract data types
• Datatype induction
• Packages and modules

Generic abstractions
• Datatypes and modules with type parameters
• Design of STL

Concepts in OO programming

Four main language ideas
• Encapsulation
• Dynamic lookup
• Subtyping
• Inheritance

Why OOP ?
• Extensible abstractions; separate interface from impl

Compare oo to conventional (non-oo) lang
• Can represent encapsulation and dynamic lookup
• Need inheritance and subtyping as basic constructs

Simula 67

First object-oriented language
Designed for simulation
• Later recognized as general-purpose prog language

Extension of Algol 60
Standardized as Simula (no “67”) in 1977
Inspiration to many later designers
• Smalltalk
• C++
• ...

5

Objects in Simula

Class
• A procedure that returns a pointer to its activation record

Object
• Activation record produced by call to a class

Object access
• Access any local variable or procedures using dot

notation: object.

Memory management
• Objects are garbage collected
• Simula Begin pg 48-49: user destructors undesirable

Smalltalk

Major language that popularized objects
Developed at Xerox PARC 1970’s (Smalltalk-80)

Object metaphor extended and refined
• Used some ideas from Simula, but very different lang
• Everything is an object, even a class
• All operations are “messages to objects”
• Very flexible and powerful language

– Similar to “everything is a list” in Lisp, but more so

Method dictionary and lookup procedure
• Run-time search; no static type system

Independent subtyping and inheritance

C++

Design Principles: Goals, Constraints

Object-oriented features
• Some good decisions, some problem areas

Classes, Inheritance and Implementation
• Base class and Derived class (inheritance)
• Run-time structures: offset known at compile time

Subtyping
• Subtyping principles
• Abstract base classes
• Specializing types of public members

Multiple Inheritance

Examples

If circle <: shape, then

C++ compilers recognize limited forms of function subtyping

circle → shape

shape → shape circle → circle

shape → circle

Subtyping with functions

In principle: can have ColorPoint <: Point

In practice: some compilers allow, others have not
This is covariant case; contravariance is another story

class Point {
public:

int getX();
virtual Point *move(int);

protected: ...
private: ...

};

class ColorPoint: public Point {
public:

int getX();
int getColor();
ColorPoint * move(int);
void darken(int);

protected: ...
private: ...

};

Inherited, but repeated
here for clarity

Java function subtyping

Signature Conformance
• Subclass method signatures must conform to those of

superclass

Argument types, Return type, Exceptions:
How much conformance is really needed?

Java rule
• Arguments and returns must have identical types,

may remove exceptions

6

vtable for Multiple Inheritance

class A {
public:

int x;
virtual void f();

};
class B {

public:
int y;
virtual void g();
virtual void f();

};

class C: public A, public B {
public:

int z;
virtual void f();

};

C *pc = new C;
B *pb = pc;
A *pa = pc;

Three pointers to same object,
but different static types.

Object and classes

Offset δ in vtbl is used in call to pb->f, since C::f may
refer to A data that is above the pointer pb
Call to pc->g can proceed through C-as-B vtbl

C object

C

A B

vptr

B data
vptr

A data

C data

B object

A object
& C::f 0

C-as-A vtbl

C-as-B vtbl
& B::g 0
& C::f δ

δ
pa, pc

pb

Java Summary

Objects
• have fields and methods
• alloc on heap, access by pointer, garbage collected

Classes
• Public, Private, Protected, Package (not exactly C++)
• Can have static (class) members
• Constructors and finalize methods

Inheritance
• Single inheritance
• Final classes and methods

Java Summary (II)

Subtyping
• Determined from inheritance hierarchy
• Class may implement multiple interfaces

Virtual machine
• Load bytecode for classes at run time
• Verifier checks bytecode
• Interpreter also makes run-time checks

– type casts
– array bounds
– …

• Portability and security are main considerations

Concurrency

Concurrent programming requires
• Ability to create processes (threads)
• Communication
• Synchronization
• Attention to atomicity

– What if one process stops in a bad state, another continues?

Language support
• Synchronous communication
• Semaphore: list of waiting processes
• Monitor: synchronized access to private data

Concurrency (II)

Actors
• Simple object-based metaphor

Concurrent ML
• Threads, synchronous communication, events

Java language
• Threads: objects from subclass of Thread
• Communication: shared variables, method calls
• Synchronization: every object has a lock
• Atomicity: no explicit support for rollback

Java memory model
• Separate cache for each thread; coherence issues

7

Good Luck!

Think about main points of course
• Homework made you think about certain details
• What’s the big picture?
• What would you like to remember 5 years from now?
• Look at homework and sample exams

– Some final exam problems will resemble homework
– Some may ask you to use what you learned in this course to

understand language combinations or features we did not
talk about

I hope course will be useful to you in the future
• Send me email in 1 year, 2 years, 5 years

