
1

Modularity and Object-Oriented
Programming

John Mitchell

CS 242

Reading: Chapter 10 and parts of Chapter 9

Topics

Modular program development
• Step-wise refinement
• Interface, specification, and implementation

Language support for modularity
• Procedural abstraction
• Abstract data types

– Representation independence
– Datatype induction

• Packages and modules
• Generic abstractions

– Functions and modules with type parameters

Stepwise Refinement

Wirth, 1971
• “… program ... gradually developed in a sequence of

refinement steps”
• In each step, instructions … are decomposed into

more detailed instructions.

Historical reading on web (CS242 Reading page)
• N. Wirth, Program development by stepwise

refinement, Communications of the ACM, 1971
• D. Parnas, On the criteria to be used in decomposing

systems into modules, Comm ACM, 1972
• Both ACM Classics of the Month

Dijkstra’s Example (1969)

begin
print first 1000 primes

end begin
variable table p
fill table p with first 1000

primes
print table p

end
begin

int array p[1:1000]
make for k from 1 to 1000

p[k] equal to k-th prime
print p[k] for k from 1 to 1000

end

Program Structure

Main Program

Sub-program Sub-program Sub-program

Sub-programSub-program

Data Refinement

Wirth, 1971 again:
• As tasks are refined, so the data may have to be

refined, decomposed, or structured, and it is natural
to refine program and data specifications in parallel

2

Example

For level 2, represent account
balance by integer variable
For level 3, need to maintain
list of past transactions

Bank Transactions

Deposit Withdraw Print Statement

Print transaction
history

Modular program design

Top-down design
• Begin with main tasks, successively refine

Bottom-up design
• Implement basic concepts, then combine

Prototyping
• Build coarse approximation of entire system
• Successively add functionality

Modularity: Basic Concepts

Component
• Meaningful program unit

– Function, data structure, module, …

Interface
• Types and operations defined within a component

that are visible outside the component

Specification
• Intended behavior of component, expressed as

property observable through interface

Implementation
• Data structures and functions inside component

Example: Function Component

Component
• Function to compute square root

Interface
• float sqroot (float x)

Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}

Example: Data Type

Component
• Priority queue: data structure that returns elements

in order of decreasing priority

Interface
• Type pq
• Operations empty : pq

insert : elt * pq → pq
deletemax : pq → elt * pq

Specification
• Insert add to set of stored elements
• Deletemax returns max elt and pq of remaining elts

Heap sort using library data structure

Priority queue: structure with three operations
empty : pq
insert : elt * pq → pq
deletemax : pq → elt * pq

Algorithm using priority queue (heap sort)
begin
empty pq s
insert each element from array into s
remove elements in decreasing order and place in array

end

This gives us an O(n log n) sorting algorithm (see HW)

3

Language support for info hiding

Procedural abstraction
• Hide functionality in procedure or function

Data abstraction
• Hide decision about representation of data structure

and implementation of operations
• Example: priority queue can be binary search tree or

partially-sorted array

In procedural languages, refine a procedure or data type
by rewriting it. Incremental reuse later with objects.

Abstract Data Types

Prominent language development of 1970’s
Main ideas:
• Separate interface from implementation

– Example:
• Sets have empty, insert, union, is_member?, …
• Sets implemented as … linked list …

• Use type checking to enforce separation
– Client program only has access to operations in interface
– Implementation encapsulated inside ADT construct

Modules

General construct for information hiding
Two parts
• Interface:

A set of names and their types

• Implementation:
Declaration for every entry in the interface
Additional declarations that are hidden

Examples:
• Modula modules, Ada packages, ML structures, ...

Modules and Data Abstraction

module Set
interface

type set
val empty : set
fun insert : elt * set -> set
fun union : set * set -> set
fun isMember : elt * set -> bool

implementation
type set = elt list
val empty = nil
fun insert(x, elts) = ...
fun union(…) = ...
...

end Set

Can define ADT
• Private type
• Public operations
More general
• Several related types

and operations
Some languages
• Separate interface

and implementation
• One interface can

have multiple
implementations

Generic Abstractions

Parameterize modules by types, other modules
Create general implementations
• Can be instantiated in many ways

Language examples:
• Ada generic packages, C++ templates, ML functors, …
• ML geometry modules in course reader
• C++ Standard Template Library (STL) provides

extensive examples

C++ Templates

Type parameterization mechanism
• template<class T> … indicates type parameter T
• C++ has class templates and function templates

Instantiation at link time
• Separate copy of template generated for each type
• Why code duplication?

– Size of local variables in activation record
– Link to operations on parameter type

4

Example (discussed in earlier lecture)

Monomorphic swap function
void swap(int& x, int& y){

int tmp = x; x = y; y = tmp;
}

Polymorphic function template
template<class T>
void swap(T& x, T& y){

T tmp = x; x = y; y = tmp;
}

Call like ordinary function
float a, b; … ; swap(a,b); …

Standard Template Library for C++

Many generic abstractions
• Polymorphic abstract types and operations

Useful for many purposes
• Excellent example of generic programming

Efficient running time (but not always space)
Written in C++
• Uses template mechanism and overloading
• Does not rely on objects – No virtual functions

Architect: Alex Stepanov

Main entities in STL

Container: Collection of typed objects
• Examples: array, list, associative dictionary, ...

Iterator: Generalization of pointer or address
Algorithm
Adapter: Convert from one form to another
• Example: produce iterator from updatable container

Function object: Form of closure (“by hand”)
Allocator: encapsulation of a memory pool
• Example: GC memory, ref count memory, ...

Example of STL approach

Function to merge two sorted lists
• merge : range(s) × range(t) × comparison(u)

→ range(u)
This is conceptually right, but not STL syntax.

Basic concepts used
• range(s) - ordered “list” of elements of type s, given

by pointers to first and last elements
• comparison(u) - boolean-valued function on type u
• subtyping - s and t must be subtypes of u

How merge appears in STL

Ranges represented by iterators
• iterator is generalization of pointer
• supports ++ (move to next element)

Comparison operator is object of class Compare
Polymorphism expressed using template
template < class InputIterator1, class InputIterator2,

class OutputIterator, class Compare >
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator1 last2,
OutputIterator result, Compare comp)

Comparing STL with other libraries

C:
qsort((void*)v, N, sizeof(v[0]), compare_int);

C++, using raw C arrays:
int v[N];

sort(v, v+N);

C++, using a vector class:
vector v(N);

sort(v.begin(), v.end());

5

Efficiency of STL

Running time for sort
N = 50000 N = 500000

C 1.4215 18.166
C++ (raw arrays) 0.2895 3.844
C++ (vector class) 0.2735 3.802

Main point
• Generic abstractions can be convenient and efficient !
• But watch out for code size if using C++ templates…

Boost Lambda Library

C++ library providing lambda expressions
Example

for_each(a.begin(), a.end(), std::cout << _1 << ' ');
Function expression
• Function arguments _1, _2, _3, … , _9
• Call using usual syntax (std::cout << _1 << ' ')(5)

– Too many arguments – OK
– Too few arguments – Compile-time error

• Implementation uses overloading
– cout << _1 is a function expression because << is

overloaded so that if one operand is a function expression,
the result is a function expression

function expression

Object-oriented programming

Primary object-oriented language concepts
• dynamic lookup
• encapsulation
• inheritance
• subtyping

Program organization
• Work queue, geometry program, design patterns

Comparison
• Objects as closures?

Objects

An object consists of
• hidden data

instance variables, also called
member data

hidden functions also possible

• public operations
methods or member functions
can also have public variables

in some languages

Object-oriented program:
• Send messages to objects

hidden data

method1msg1

.

methodnmsgn

What’s interesting about this?

Universal encapsulation construct
• Data structure
• File system
• Database
• Window
• Integer

Metaphor usefully ambiguous
• sequential or concurrent computation
• distributed, sync. or async. communication

Object-Orientation

Programming methodology
• organize concepts into objects and classes
• build extensible systems

Language concepts
• dynamic lookup
• encapsulation
• subtyping allows extensions of concepts
• inheritance allows reuse of implementation

6

Dynamic Lookup

In object-oriented programming,
object message (arguments)

code depends on object and message

In conventional programming,
operation (operands)

meaning of operation is always the same

Fundamental difference between abstract data types and objects

Example

Add two numbers x add (y)
different add if x is integer, complex

Conventional programming add (x, y)
function add has fixed meaning

Very important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time

Language concepts

“dynamic lookup”
• different code for different object
• integer “+” different from real “+”

encapsulation
subtyping
inheritance

Encapsulation

Builder of a concept has detailed view
User of a concept has “abstract” view
Encapsulation separates these two views
• Implementation code: operate on representation
• Client code: operate by applying fixed set of

operations provided by implementer of abstraction

message Object

Comparison with Abstract Data Types

Traditional (non-OO) approach to encapsulation
is through abstract data types
Advantage
• Separate interface from implementation
Disadvantage
• Not extensible in the way that OOP is

We will look at ADT’s example to see what problem is
Better: some HW involving C++ classes w/o virt fctn

Abstract Data Types

Guarantee invariants of data structure
• only functions of the data type have access to the

internal representation of data

Limited “reuse”
• Cannot apply queue code to pqueue, except by

explicit parameterization, even though signatures
identical

• Cannot form list of points, colored points

Data abstraction is important part of OOP,
innovation is that it occurs in an extensible form

7

Language concepts

“Dynamic lookup”
• different code for different object
• integer “+” different from real “+”

Encapsulation
• Implementer of a concept has detailed view
• User has “abstract” view
• Encapsulation separates these two views

Subtyping
Inheritance

Subtyping and Inheritance

Interface
• The external view of an object

Subtyping
• Relation between interfaces

Implementation
• The internal representation of an object

Inheritance
• Relation between implementations

Object Interfaces

Interface
• The messages understood by an object

Example: point
• x-coord : returns x-coordinate of a point
• y-coord : returns y-coordinate of a point
• move : method for changing location

The interface of an object is its type.

Subtyping

If interface A contains all of interface B, then
A objects can also be used B objects.

Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

Inheritance

Implementation mechanism
New objects may be defined by reusing
implementations of other objects

Example

class Point
private

float x, y

public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

Subtyping
• Colored points can be

used in place of points

• Property used by client
program

Inheritance
• Colored points can be

implemented by resuing
point implementation

• Propetry used by
implementor of classes

8

OO Program Structure

Group data and functions
Class
• Defines behavior of all objects that are instances of

the class

Subtyping
• Place similar data in related classes

Inheritance
• Avoid reimplementing functions that are already

defined

Example: Geometry Library

Define general concept shape
Implement two shapes: circle, rectangle
Functions on implemented shapes

center, move, rotate, print

Anticipate additions to library

Shapes

Interface of every shape must include
center, move, rotate, print

Different kinds of shapes are implemented
differently
• Square: four points, representing corners
• Circle: center point and radius

Subtype hierarchy

Shape

Circle Rectangle

General interface defined in the shape class
Implementations defined in circle, rectangle
Extend hierarchy with additional shapes

Code placed in classes

Dynamic lookup
• circle move(x,y) calls function c_move

Conventional organization
• Place c_move, r_move in move function

r_printr_rotater_mover_centerRectangle

c_printc_rotatec_movec_centerCircle

printrotatemove center

Example use: Processing Loop

Remove shape from work queue
Perform action

Control loop does not know the
type of each shape

9

Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance

Design Patterns

Classes and objects are useful organizing
concepts
Culture of design patterns has developed
around object-oriented programming
• Shows value of OOP for program organization and

problem solving

What is a design pattern?

General solution that has developed from
repeatedly addressing similar problems.
Example: singleton
• Restrict programs so that only one instance of a class

can be created
• Singleton design pattern provides standard solution

Not a class template
• Using most patterns will require some thought
• Pattern is meant to capture experience in useful form

Standard reference: Gamma, Helm, Johnson, Vlissides

OOP in Conventional Language

Records provide “dynamic lookup”
Scoping provides another form of encapsulation

Try object-oriented programming in ML.

Will it work? Let’s see what’s fundamental to OOP

Dynamic Lookup (again)

receiver operation (arguments)

code depends on receiver and operation

This is may be achieved in conventional languages
using record with function components

Stacks as closures

fun create_stack(x) =
let val store = ref [x] in

{push = fn (y) =>
store := y::(!store),

pop = fn () =>
case !store of

nil => raise Empty |
y::m => (store := m; y)

} end;

val stk = create_stack(1);
stk = {pop=fn,push=fn} : {pop:unit -> int, push:int -> unit}

10

Does this work ???

Depends on what you mean by “work”
Provides
• encapsulation of private data
• dynamic lookup

But
• cannot substitute extended stacks for stacks
• only weak form of inheritance

– can add new operations to stack
– not mutually recursive with old operations

Varieties of OO languages

class-based languages
• behavior of object determined by its class

object-based
• objects defined directly

multi-methods
• operation depends on all operands

This course: class-based languages

History

Simula 1960’s
• Object concept used in simulation

Smalltalk 1970’s
• Object-oriented design, systems

C++ 1980’s
• Adapted Simula ideas to C

Java 1990’s
• Distributed programming, internet

Next lectures

Simula and Smalltalk
C++
Java

Summary

Object-oriented design
Primary object-oriented language concepts
• dynamic lookup
• encapsulation
• inheritance
• subtyping

Program organization
• Work queue, geometry program, design patterns

Comparison
• Objects as closures?

