
1

Lisp

John Mitchell

CS 242

Reading: Chapter 3 Homework 1: due Oct 6

Announcements

Exam dates
• Midterm: Wednesday Oct 27, 7-9 PM
• Final: Wednesday Dec 8, 8:30-11:30 AM
• Conflicts – send email to cs242@cs now!
Homework graders - email to cs242@cs
Submit homework from far away (SCPD)
• Fax (650) 736-1266 by 5PM the day it is due
• We will return graded HW by courier
Reading
• Will add reading assignment to slides, hw
My office hours: will set next week after a trip

Lisp, 1960

Look at Historical Lisp
• Perspective

– Some old ideas seem old
– Some old ideas seem new

• Example of elegant, minimalist language
• Not C, C++, Java: a chance to think differently
• Illustrate general themes in language design
Supplementary reading (optional)
• McCarthy, Recursive functions of symbolic

expressions and their computation by machine,
Communications of the ACM, Vol 3, No 4, 1960.

John McCarthy

Pioneer in AI
• Formalize common-

sense reasoning

Also
• Proposed timesharing
• Mathematical theory
• ….

Lisp
stems from interest in
symbolic computation
(math, logic)

Lisp summary

Many different dialects
• Lisp 1.5, Maclisp, …, Scheme, ...
• CommonLisp has many additional features
• This course: a fragment of Lisp 1.5, approximately

But ignore static/dynamic scope until later in course

Simple syntax
(+ 1 2 3)
(+ (* 2 3) (* 4 5))
(f x y)

Easy to parse (Looking ahead: programs as data)

Atoms and Pairs

Atoms include numbers, indivisible “strings”
<atom> ::= <smbl> | <number>
<smbl> ::= <char> | <smbl><char> | <smbl><digit>
<num> ::= <digit> | <num><digit>

Dotted pairs
• Write (A . B) for pair
• Symbolic expressions, called S-expressions:

<sexp> ::= <atom> | (<sexp> . <sexp>)

2

Basic Functions

Functions on atoms and pairs:
cons car cdr eq atom

Declarations and control:
cond lambda define eval quote

Example
(lambda (x) (cond ((atom x) x) (T (cons ‘A x))))
function f(x) = if atom(x) then x else cons(“A”,x)

Functions with side-effects
rplaca rplacd set setq

Evaluation of Expressions

Read-eval-print loop
Function call (function arg1 ... argn)
• evaluate each of the arguments
• pass list of argument values to function

Special forms do not eval all arguments
• Example (cond (p1 e1) ... (pn en))

– proceed from left to right

– find the first pi with value true, eval this ei

• Example (quote A) does not evaluate A

Examples

(+ 4 5)
expression with value 9

(+ (+ 1 2) (+ 4 5))
evaluate 1+2, then 4+5, then 3+9 to get value

(cons (quote A) (quote B))
pair of atoms A and B

(quote (+ 1 2))
evaluates to list (+ 1 2)

'(+ 1 2)
same as (quote (+ 1 2))

McCarthy’s 1960 Paper

Interesting paper with
• Good language ideas, succinct presentation
• Some feel for historical context
• Insight into language design process

Important concepts
• Interest in symbolic computation influenced design
• Use of simple machine model
• Attention to theoretical considerations

Recursive function theory, Lambda calculus

• Various good ideas: Programs as data, garbage collection

Motivation for Lisp

Advice Taker
• Process sentences as input, perform logical reasoning
Symbolic integration, differentiation
• expression for function --> expression for integral

(integral ‘(lambda (x) (times 3 (square x))))
Motivating application part of good lang design
• Keep focus on most important goals
• Eliminate appealing but inessential ideas

Lisp symbolic computation, logic, experimental prog.
C Unix operating system
Simula simulation
PL/1 “kitchen sink”, not successful in long run

Execution Model (Abstract Machine)

Language semantics must be defined
• Too concrete

– Programs not portable, tied to specific architecture
– Prohibit optimization (e.g., C eval order undefined in expn)

• Too abstract
– Cannot easily estimate running time, space

Lisp: IBM 704, but only certain ideas …
• Address, decrement registers -> cells with two parts
• Garbage collection provides abstract view of memory

3

Abstract Machine

Concept of abstract machine:
• Idealized computer, executes programs directly
• Capture programmer’s mental image of execution
• Not too concrete, not too abstract
Examples
• Fortran

– Flat register machine; memory arranged as linear array
– No stacks, no recursion.

• Algol family
– Stack machine, contour model of scope, heap storage

• Smalltalk
– Objects, communicating by messages.

Theoretical Considerations

“ … scheme for representing the partial
recursive functions of a certain class of symbolic
expressions.”
Lisp uses
• Concept of computable (partial recursive) functions

– Want to express all computable functions

• Function expressions
– known from lambda calculus (developed A. Church)
– lambda calculus equivalent to Turing Machines, but provide

useful syntax and computation rules

Innovations in the Design of Lisp

Expression-oriented
• function expressions
• conditional expressions
• recursive functions

Abstract view of memory
• Cells instead of array of numbered locations
• Garbage collection

Programs as data
Higher-order functions

Parts of Speech

Statement load 4094 r1
• Imperative command
• Alters the contents of previously-accessible memory

Expression (x+5)/2
• Syntactic entity that is evaluated
• Has a value, need not change accessible memory
• If it does, has a side effect

Declaration integer x
• Introduces new identifier
• May bind value to identifier, specify type, etc.

Function Expressions

Example:
(lambda (parameters) (function_body))

Syntax comes from lambda calculus:
λf. λx. f (f x)

(lambda (f) (lambda (x) (f (f x))))

Function expression defines a function but does not give a name to it

((lambda (f) (lambda (x) (f (f x))))
(lambda (y) (+ 2 y)))

)

Conditional Expressions in Lisp

Generalized if-then-else
(cond (p1 e1) (p2 e2) … (pn en))

– Evaluate conditions p1 … pn left to right

– If pi is first condition true, then evaluate ei

– Value of ei is value of expression

Undefined if no pi true, or
p1 … pi false and pi+1 undefined, or
relevant pi true and ei undefined

Conditional statements in assembler
Conditional expressions apparently new in Lisp

4

Examples

(cond ((<2 1) 2) ((<1 2) 1))

has value 1

(cond ((<2 1) 2) ((<3 2) 3))

is undefined

(cond (diverge 1) (true 0))

is undefined, where diverge is undefined

(cond (true 0) (diverge 1))

has value 0

Strictness

An operator or expression form is strict if it can
have a value only if all operands or
subexpressions have a value.
Lisp cond is not strict, but addition is strict
• (cond (true 1) (diverge 0))
• (+ e1 e2)

Lisp Memory Model

Cons cells
Atoms and lists represented by cells

Address Decrement

Atom A

Atom B

Atom C

0

Sharing

(a) (b)

Both structures could be printed as (A.B).(A.B)

Which is result of evaluating
(cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

A B A B A B

Garbage Collection

Garbage:
At a given point in the execution of a program P, a
memory location m is garbage if no continued execution
of P from this point can access location m.

Garbage Collection:
• Detect garbage during program execution
• GC invoked when more memory is needed
• Decision made by run-time system, not program

This is can be very convenient. Example: in building text-formatting
program, ~40% of programmer time on memory management.

Examples

(car (cons (e1) (e2)))
Cells created in evaluation of e2 may be garbage,
unless shared by e1 or other parts of program

((lambda (x) (car (cons (… x…) (... x ...)))
'(Big Mess))

The car and cdr of this cons cell may point to
overlapping structures.

5

Mark-and-Sweep Algorithm

Assume tag bits associated with data

Need list of heap locations named by program

Algorithm:
• Set all tag bits to 0.

• Start from each location used directly in the program.
Follow all links, changing tag bit to 1

• Place all cells with tag = 0 on free list

Why Garbage Collection in Lisp?

McCarthy's paper says this is
• “… more convenient for the programmer than a

system in which he has to keep track of and erase
unwanted lists."

Does this reasoning apply equally well to C?

Is garbage collection "more appropriate" for
Lisp than C? Why?

What I hate about teaching CS …

From: …
Newsgroup: su.market
Subject: WTB Rockin Out Book

Does anyone want to sell their old copy of the Rock,
Sex, and Rebellion textbook?

Programs As Data

Programs and data have same representation
Eval function used to evaluate contents of list
Example: substitute x for y in z and evaluate
(define substitute (lambda (x y z)

(cond ((atom z) (cond ((eq z y) x) (T z)))
(T (cons (substitute x y (car z))

(substitute x y (cdr z))))))
(define substitute-and-eval

(lambda (x y z) (eval (substitute x y z))))

Recursive Functions

Want expression for function f such that
(f x) = (cond ((eq x 0) 0) (true (+ x (f (- x 1)))))

Try
(lambda (x) (cond ((eq x 0) 0) (true (+ x (f (- x

1))))))

but f in function body is not defined.

McCarthy's 1960 solution was operator “label”
(label f

(lambda (x) (cond ((eq x 0) 0) (true (+ x (f (- x
1)))))))

Higher-Order Functions

Function that either
• takes a function as an argument
• returns a function as a result

Example: function composition
(define compose

(lambda (f g) (lambda (x) (f (g x)))))

Example: maplist
(define maplist (f x)

(cond ((null x) nil)
(true (cons (f (car x)) (maplist f (cdr

x))))))

6

Efficiency and Side-Effects

Pure Lisp: no side effects
Additional operations added for “efficiency”
(rplaca x y) replace car of cell x with y

(rplacd x y) replace cdr of cell x with y

What does “efficiency” mean here?
• Is (rplaca x y) faster than (cons y (cdr x)) ?

• Is faster always better?

Language speeds

www.bagley.org/~doug/shoutout: Completely Random and Arbitrary Point System

Summary: Contributions of Lisp

Successful language
• symbolic computation, experimental programming

Specific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Idea of garbage collection.

