
1

Programming Languages

John Mitchell

CS 242

Course web site: http://www.stanford.edu/class/cs242/

A little about myself …

Research Interests:
Computer security: access control, cryptographic
protocols and mobile code security.

Programming languages, type systems, object
systems, and formal methods.

Applications of logic to CS.
B.S. Stanford University; M.S., Ph.D. MIT.

How I spend my time
• Teaching classes
• Working with graduate students
• Writing papers, going to conferences, giving talks
• Departmental committees, other stuff outside Stanford:

conferences organization, journals, public service, …

Course Goals

Programming Language Culture
• A language is a “conceptual universe” (Perlis)

– Learn what is important about various languages
– Understand the ideas and programming methods

• Understand the languages you use (C, C++, Java) by
comparison with other languages

• Appreciate history, diversity of ideas in programming
• Be prepared for new programming methods, paradigms

Critical thought
• Properties of language, not documentation

Language and implementation
• Every convenience has its cost

– Recognize the cost of presenting an abstract view of machine
– Understand trade-offs in programming language design

Transference of Lang. Concepts

Parable
• I started programming in 1970’s

– Dominant language was Fortran; no recursive functions

• My algorithms and data structure instructor said:
– Recursion is a good idea even though inefficient
– You can use idea in Fortran by storing stack in array

• Today: recursive functions everywhere

Moral
• World changes; useful to understand many ideas

More current example: function passing
• Pass functions in C by building your own closures, as in STL

“function objects”

Alternate Course Organizations

Language-based organization
• Algol 60, Algol 68, Pascal
• Modula, Clu, Ada
• Additional languages grouped by paradigm

– Lisp/Scheme/ML for functional languages
– Prolog and Logic Programming
– C++, Smalltalk and OOP
– Concurrency via Ada rendez-vous

My opinion:
– Historical concepts are same across many languages

• Block structure, scope, memory management
– OOP deserves greater emphasis

For comparison, see Sethi’s book ...

Alternate Course II

Concept-based organization
• Use single language like Lisp/Scheme
• Present PL concepts by showing how to define them

Advantages:
• Uniform syntax, easy to compare features

Disadvantages
• Miss a lot of the culture associated with languages
• Some features hard to add

– Type systems, program-structuring mechanisms
– Works best for “local” features, not global structure

Examples: Abelson/Sussman, Friedman et al.

2

Organization of this course

Programming in the small
• Cover traditional Algol, Pascal constructs in ML

– Block structure, activation records
– Types and type systems, ...

• Lisp/Scheme concepts in ML too
– higher-order functions and closures, tail recursion
– exceptions, continuations

Programming in the large
• Modularity and program structure
• Specific emphasis on OOP

– Smalltalk vs C++ vs Java
– Language design and implementation

Course Organization (cont’d)

Concurrent and distributed programming
• General issues in concurrent programming
• Actor languages: an attempt at idealization
• Concurrent ML
• Java threads

Do we emphasize C?
• Important, practical language
• We discuss other languages, compare to C as we go

– “Intro to C for Java programmers”?

• We do cover the ++ part of C++ in some detail

Languages in common use (I)

Compiled by François Labelle from statistics on open-source projects at SourceForge

Languages in common use (II)

-0.43%1.634%C#10

-0.55%2.693%SQL9

+4.17%5.597%Python8

+4.28%5.865%Delphi/Pascal/Kylix7

+2.80%8.231%PHP6

+0.87%8.968%Perl5

+4.47%11.650%(Visual) Basic4

-2.62%14.916%C++3

-6.35%15.896%Java2

-0.65%17.122%C1

Delta 1
Year

RatingsProgramming
Language

Delta 1
Year

Position

TPC index based on world-wide availability of skilled engineers, courses, and third
party vendors, determined by using Google and Yahoo! search engines

Language groups

Multi-purpose languages
• C, C++, Java
• Visual Basic
• Object Pascal: Delphi, Kylix, …
• Lisp, Scheme, ML
Scripting languages
• Perl, PHP
• Shell
Special-purpose languages
• SQL
• Prolog

What’s new in programming languages

Commercial trend over past 5 years
• Increasing use of Java, C#, … type-safe languages
• Scripting languages, other languages for web applications

Teaching trends
• Java replacing C as most common intro language

– Less emphasis on how data, control represented in machine

Research and development trends
• Modularity

– Java, C++: standardization of new module features

• Program analysis
– Automated error detection, programming env, compilation

• Isolation and security
– Sandboxing, language-based security, …

3

What’s worth studying?

Dominant languages and paradigms
• C, C++, Java
• Imperative and Object-oriented languages

Important implementation ideas
Performance challenges
• Concurrency

Design tradeoffs
Concepts that research community is exploring
for new programming languages and tools

Some research directions

Proof-Carrying Code (PCC)
CCured
Typed Assembly Language (TAL)
Race-condition checkers
Model-checking C code
Static analysis, sandboxing for memory safety

ACM SIGPLAN

Conferences
• Principles of Programming Languages (POPL)
• Programming Language Design and Implementation (PLDI)
• Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA
• International Symposium on Memory Management (ISMM)
• Languages, Compilers, and Tools for Embedded Systems

(LCTES)
• Functional Programming (ICFP)
• Java Grande
• Principles and Practices of Parallel Programming (PPOPP)

See http://www.acm.org/sigs/sigplan/conferences.htm

First half of course

Lisp (2 lectures)
Foundations (2 lectures)
• Lambda Calculus
• Denotational Semantics
• Functional vs Imperative Programming

Conventional prog. language concepts (6 lectures)
• ML/Algol language summary (1 lecture)
• Types and type inference (1 lecture)
• Block structure and memory management (2 lectures)
• Control constructs (2 lectures)

--------------------- Midterm Exam ------------------------

Second half of course

Modularity and data abstraction (1 lecture)
Object-oriented languages (6 lectures)
• Introduction to objects (1 lecture)
• Simula and Smalltalk (2 lectures)
• C++ (1.5 lectures)
• Java (1.5 lectures)

Concurrent and distributed programming (1 lecture)
Conclusions and review (1 lecture)

--------------------- Final Exam ------------------------

General suggestions

Read ahead
• Some details are only in HW and reading

There is something difficult about this course
• May be hard to understand homework questions

Thought questions: cannot run and debug
May sound like there is no right answer, but some answers are

better than others

• Many of you may be used to overlooking language
problems, so it takes a few weeks to see the issues

4

Course Logistics

Homework and Exams
• HW handed out and due on Wednesdays
• Midterm Wed Oct 29 7-9PM ???, Final Monday Dec 8, 8:30AM
• Honor Code, Collaboration Policy

Homework grader?
• Send email to cs242@cs email addr (operational shortly)

TA’s, Office hours, Email policy, …
Section
• Friday afternoons
• Optional discussion and review; no new material

Reading material
• Book available in bookstore

Look at web site…

Questions?

