
1

CS 242

Concurrency

John Mitchell

Announcements

Last graded homework due November 24
• May turn in Monday Nov 29, after Thanksgiving
• Ungraded study questions instead of HW 8

Schedule for rest of the quarter
• Wed 11/24 – Java concurrency
• Mon 11/29 – Interoperability
• Wed 12/1 – HW and Sample solutions, Review

Final exam – Wednesday, December 8
• 8:30-11:30 AM in Gates B01, B03

Concurrency

Multiprogramming
• A single computer runs

several programs at the
same time

• Each program proceeds
sequentially

• Actions of one program
may occur between two
steps of another

Multiprocessors
• Two or more processors

may be connected
• Programs on one processor

communicate with
programs on another

• Actions may happen
simultaneously

Two or more sequences of events occur in parallel

Process: sequential program running on a processor

The promise of concurrency

Speed
• If a task takes time t on one processor, shouldn’t it

take time t/n on n processors?

Availability
• If one process is busy, another may be ready to help

Distribution
• Processors in different locations can collaborate to

solve a problem or work together

Humans do it so why can’t computers?
• Vision, cognition appear to be highly parallel activities

Challenges

Concurrent programs are harder to get right
• Folklore: Need an order of magnitude speedup (or

more) to be worth the effort

Some problems are inherently sequential
• Theory – circuit evaluation is P-complete
• Practice – many problems need coordination and

communication among sub-problems

Specific issues
• Communication – send or receive information
• Synchronization – wait for another process to act
• Atomicity – do not stop in the middle and leave a mess

Why is concurrent programming hard?

Nondeterminism
• Deterministic: two executions on the same input it

always produce the same output
• Nondeterministic: two executions on the same input

may produce different output

Why does this cause difficulty?
• May be many possible executions of one system
• Hard to think of all the possibilities
• Hard to test program since some errors may occur

infrequently

2

Example

Cache coherence protocols in multiprocessors
• A set of processors share memory
• Access to memory is slow, can be bottleneck
• Each processor maintains a memory cache
• The job of the cache coherence protocol is to

maintain the processor caches, and to guarantee that
the values returned by every load/store sequence
generated by the multiprocessor are consistent with
the memory model.

Cache filled by read

PEA reads loc x
• Copy of x put in

PEA's cache.

PEB also reads x
• Copy of x put in

PEB's cache too.

Cache modified by write

PEA adds 1 to x
• x is in PEA's cache, so

there's a cache hit

If PEB reads x from
cache, may be wrong
• OK if program

semantics allows PEB
read before PEA write

Need protocol to avoid
using stale values

State diagram for cache protocol

Necessary for multiprocessor; hard to get right.

Basic question for this course

How can programming languages make
concurrent and distributed programming easier?
• Can do concurrent, distributed programming in C

using system calls
• Is there something better?

What could languages provide?

Abstract model of system
• abstract machine => abstract system

Example high-level constructs
• Process as the value of an expression

– Pass processes to functions
– Create processes at the result of function call

• Communication abstractions
– Synchronous communication
– Buffered asynchronous channels that preserve msg order

• Mutual exclusion, atomicity primitives
– Most concurrent languages provide some form of locking
– Atomicity is more complicated, less commonly provided

3

Basic issue: conflict between processes

Critical section
• Two processes may access shared resource
• Inconsistent behavior if two actions are interleaved
• Allow only one process in critical section

Deadlock
• Process may hold some locks while awaiting others
• Deadlock occurs when no process can proceed

Cobegin/coend

Limited concurrency primitive
Example
x := 0;
cobegin

begin x := 1; x := x+1 end;
begin x := 2; x := x+1 end;

coend;
print(x);

execute sequential
blocks in parallel

x := 0
x := 2

x := 1

print(x)

x := x+1

x := x+1

Atomicity at level of assignment statement

Mutual exclusion

Sample action
procedure sign_up(person)

begin
number := number + 1;
list[number] := person;

end;
Problem with parallel execution
cobegin

sign_up(fred);
sign_up(bill);

end;

bob fred
bill
fred

Locks and Waiting

<initialze concurrency control>
cobegin

begin
<wait>
sign_up(fred); // critical section
<signal>

end;
begin

<wait>
sign_up(bill); // critical section
<signal>

end;
end;

Need atomic operations to implement wait

Mutual exclusion primitives

Atomic test-and-set
• Instruction atomically reads and writes some location
• Common hardware instruction
• Combine with busy-waiting loop to implement mutex

Semaphore
• Avoid busy-waiting loop
• Keep queue of waiting processes
• Scheduler has access to semaphore; process sleeps
• Disable interrupts during semaphore operations

– OK since operations are short

Monitor Brinch-Hansen, Dahl, Dijkstra, Hoare

Synchronized access to private data. Combines:
• private data

• set of procedures (methods)

• synchronization policy
– At most one process may execute a monitor procedure at a

time; this process is said to be in the monitor.

– If one process is in the monitor, any other process that calls
a monitor procedure will be delayed.

Modern terminology: synchronized object

4

Deadlock

Possible with any mutual exclusion primitive

Example
• Dining philosophers
• Each needs two forks

to eat a plate of pasta
• Each picks up fork to

left, all at same time
• None one can eat

Some entertaining Java animations on web

Reality

Concurrent programming is difficult
• Race conditions, deadlock are pervasive in Java

libraries, etc.

Languages should be able to help
• Capture useful paradigms, patterns, abstractions

Other tools are needed
• Testing is difficult for multi-threaded programs
• Many race-condition detectors being built today

Concurrent language examples

Language Examples
• Cobegin/coend
• Actors (C. Hewitt)

• Concurrent ML
• Java

Main features to compare
• Threads
• Communication
• Synchronization
• Atomicity

Cobegin/coend

Limited concurrency primitive
Example
x := 0;
cobegin

begin x := 1; x := x+1 end;
begin x := 2; x := x+1 end;

coend;
print(x);

execute sequential
blocks in parallel

x := 0
x := 2

x := 1

print(x)

x := x+1

x := x+1

Atomicity at level of assignment statement

Properties of cobegin/coend

Advantages
• Create concurrent processes
• Communication: shared variables

Limitations
• Mutual exclusion: none
• Atomicity: none
• Number of processes is fixed by program structure
• Cannot abort processes

– All must complete before parent process can go on

History: Concurrent Pascal, P. Brinch Hansen, Caltech, 1970’s

Actors [Hewitt, Agha, Tokoro, Yonezawa, ...]

Each actor (object) has a script
In response to input, actor may atomically
• create new actors
• initiate communication
• change internal state

Communication is
• Buffered, so no message is lost
• Guaranteed to arrive, but not in sending order

– Order-preserving communication is harder to implement
– Programmer can build ordered primitive from unordered
– Inefficient to have ordered communication when not needed

5

Example

1, 4, 7

Insert 2

2, 4, 7

1, 2, 4, 7
Get_Min

1

Actor program

Stack node
a stack_node with acquaintances content and link

if operation requested is a pop and content != nil then
become forwarder to link
send content to customer

if operation requested is push(new_content) then
let P=new stack_node with current acquaintances
become stack_node with acquaintances new_content and P

Hard to read but it does the “obvious” thing, except
that the concept of forwarder is unusual….

parameters

(a clone)

Forwarder

Stack after pop

3 4 5 nil

forwarder 4 5 nil

Stack before pop

• Node “disappears” by becoming a forwarder node.
The system manages forwarded nodes in a way that
makes them invisible to the program. (Exact mechanism
doesn’t really matter since we’re not that interested in Actors.)

Concurrency and Distribution

Several actors may operate concurrently

Concurrency not forced by program
• Depends on system scheduler

Distribution not controlled by programmer
Attractive idealization, but too “loose” in practice

Concurrent ML [Reppy, Gansner, …]

Threads
• New type of entity

Communication
• Synchronous channels

Synchronization
• Channels
• Events

Atomicity
• No specific language support

Threads

Thread creation
• spawn : (unit → unit) → thread_id

Example code
CIO.print "begin parent\n";

spawn (fn () => (CIO.print "child 1\n";));
spawn (fn () => (CIO.print "child 2\n";));

CIO.print "end parent\n“

Result

end parent

child 2

child 1

begin parent

6

Channels

Channel creation
• channel : unit → ‘a chan
Communication
• recv : ‘a chan → ‘a
• send : (‘a chan * ‘a) → unit
Example

ch = channel();
spawn (fn()=> … <A> … send(ch,0); … …);
spawn (fn()=> … <C> … recv ch; … <D> …);

Result
send/recv

<C>

<A>

<D>

CML programming

Functions
• Can write functions : channels → threads
• Build concurrent system by declaring channels and

“wiring together” sets of threads

Events
• Delayed action that can be used for synchronization
• Powerful concept for concurrent programming

Sample Application
• eXene – concurrent uniprocessor window system

Sample CML programming

Function to create squaring process
fun square (inCh, outCh) =

forever () (fn () =>
send (outCh, square(recv(inCh))));

Put processes together
fun mkSquares () =
let

val outCh = channel()
and c1 = channel()

in
numbers(c1);
square(c1, outCh);
outCh

end;

Problem: Producer-Consumer

Easy with buffered asynchronous communication
Requires buffer if synchronous communication

Producer

Producer

Producer

Consumer

Buffer Consumer

Consumer

Synchronous consumer or buffer ???

Code probably looks like this:
for i = 1 to n

receive(… producer[i] …)

What’s the problem?
• Synchronous receive blocks waiting for sender
• Deadlock if

– Producer 1 is ready to send
– Producer 2 is finished (nothing left to send)
– Consumer or queue decides to receive from Producer 2

How do we solve this problem?

Guarded Commands [Dijkstra]

Select one available command; non-blocking test
do

Condition ⇒ Command
…
Condition ⇒ Command

od

Outline of producer-consumer buffer
do

Producer ready and queue not full ⇒
Receive from waiting producer and store in queue

Consumer ready and queue not empty ⇒
Send to waiting consumer and remove from queue

od

7

Expressiveness of CML

How do we write choice of guarded commands?
• Events and “choose” function
CML Event = “delayed” action
• ‘a event

– the type of actions that return an ‘a when executed
• sync : ‘a event → ‘a

– Function that synchronizes on an ‘a event and returns an ‘a
• fun recv(ch) = sync (recvEvt (ch));
Choice
• choose : ‘a event list → ‘a event

Does not seem possible to do producer-consumer in CML without choose

CML from continuations

Continuation primitives
• callcc : ('a cont → 'a) → 'a

Call function argument with current continuation
• throw : 'a cont -> 'a -> 'b
• Curried function to invoke continuation with arg

Example
fun f(x,k) = throw k(x+3);
fun g(y,k) = f(y+2,k) + 10;
fun h(z) = z + callcc(fn k => g(z+1,k));
h(1);

A CML implementation (simplified)

Use queues with side-effecting functions
datatype 'a queue = Q of {front: 'a list ref, rear: 'a list ref}
fun queueIns (Q(…))(…) = (* insert into queue *)
fun queueRem (Q(…)) = (* remove from queue *)

And continuations
val enqueue = queueIns rdyQ
fun dispatch () = throw (queueRem rdyQ) ()
fun spawn f = callcc (fn parent_k =>

(enqueue parent_k; f (); dispatch()))

Source: Appel, Reppy

Java Concurrency

Threads
• Create process by creating thread object

Communication
• shared variables
• method calls

Mutual exclusion and synchronization
• Every object has a lock (inherited from class Object)

– synchronized methods and blocks

• Synchronization operations (inherited from class Object)

– wait : pause current thread until another thread calls notify
– notify : wake up waiting threads

Java Threads

Thread
• Set of instructions to be executed one at a time, in a

specified order

Java thread objects
• Object of class Thread
• Methods inherited from Thread:

– start : method called to spawn a new thread of control;
causes VM to call run method

– suspend : freeze execution
– interrupt : freeze execution and throw exception to thread
– stop : forcibly cause thread to halt

Example subclass of Thread

class PrintMany extends Thread {
private String msg;
public PrintMany (String m) {msg = m;}
public void run() {

try { for (;;){ System.out.print(msg + “ “);
sleep(10);

}
} catch (InterruptedException e) {

return;
}

} (inherits start from Thread)

8

Interaction between threads

Shared variables
• Two threads may assign/read the same variable
• Programmer responsibility

– Avoid race conditions by explicit synchronization !!

Method calls
• Two threads may call methods on the same object

Synchronization primitives
• Each object has internal lock, inherited from Object
• Synchronization primitives based on object locking

Synchronization example

Objects may have synchronized methods
Can be used for mutual exclusion
• Two threads may share an object.
• If one calls a synchronized method, this locks object.
• If the other calls a synchronized method on same

object, this thread blocks until object is unlocked.

Synchronized methods

Marked by keyword
public synchronized void commitTransaction(…) {…}

Provides mutual exclusion
• At most one synchronized method can be active
• Unsynchronized methods can still be called

– Programmer must be careful

Not part of method signature
• sync method equivalent to unsync method with body

consisting of a synchronized block
• subclass may replace a synchronized method with

unsynchronized method

Example [Lea]

class LinkedCell { // Lisp-style cons cell containing
protected double value; // value and link to next cell
protected LinkedCell next;
public LinkedCell (double v, LinkedCell t) {

value = v; next = t;
}
public synchronized double getValue() {

return value;
}
public synchronized void setValue(double v) {

value = v; // assignment not atomic
}
public LinkedCell next() { // no synch needed

return next;
}

Join, another form of synchronization

Wait for thread to terminate
class Future extends Thread {

private int result;
public void run() { result = f(…); }
public int getResult() { return result;}

}
…
Future t = new future;
t.start() // start new thread
…
t.join(); x = t.getResult(); // wait and get result

Producer-Consumer?

Method call is synchronous
How do we do this in Java?

Producer

Producer

Producer

Consumer

Buffer Consumer

Consumer

9

Condition rechecks

Want to wait until condition is true
public synchronized void lock() throws InterruptedException {

if (isLocked) wait();
isLocked = true;

}
public synchronized void unLock() {

isLocked = false;
notify();

}
But need loop since another process may run
public synchronized void lock() throws InterruptedException {

while (isLocked) wait();
isLocked = true;

}

Aspects of Java Threads

Portable since part of language
• Easier to use in basic libraries than C system calls
• Example: garbage collector is separate thread

General difficulty combining serial/concur code
• Serial to concurrent

– Code for serial execution may not work in concurrent sys

• Concurrent to serial
– Code with synchronization may be inefficient in serial

programs (10-20% unnecessary overhead)

Abstract memory model
• Shared variables can be problematic on some implementations

Priorities

Each thread has a priority
• Between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY

– These are 1 and 10, respectively
– Main has default priority Thread.NORM_PRIORITY (=5)

• New thread has same priority as thread created it
• Current priority accessed via method getPriority
• Priority can be dynamically changed by setPriority

Schedule gives preference to higher priority

ThreadGroup

Every Thread is a member of a ThreadGroup
• Default: same group as creating thread
• ThreadGroups nest in a tree-like fashion

ThreadGroup support security policies
• Illegal to interrupt thread not in your group
• Prevents applet from killing main screen display update thread

ThreadGroups not normally used directly
• collection classes (for example java.util.Vector) are better

choices for tracking groups of Thread objects

ThreadGroup provides method uncaughtException
• invoked when thread terminates due to uncaught unchecked

exception (for example a NullPointerException)

Problem with language specification

Java Lang Spec allows access to partial objects
class Broken {

private long x;
Broken() {

new Thread() {
public void run() { x = -1; }

}.start();
x = 0;

} }

Thread created within constructor can access the object not fully constructed

Allen Holub, Taming Java Threads

Nested Monitor Lockout Problem

class Stack {
LinkedList list = new LinkedList();
public synchronized void push(Object x) {

synchronized(list) {
list.addLast(x); notify();

} }
public synchronized Object pop() {

synchronized(list) {
if(list.size() <= 0) wait();
return list.removeLast();

} }
} Releases lock on Stack object but not lock on list;

a push from another thread will deadlock

10

Immutable objects

What is an immutable object?
• State does not change

Immutable objects useful in programming
• Simple to construct, test, and use
• Always thread-safe; no synchronization issues
• Do not need a copy constructor
• Do not need an implementation of clone
• Do not need to be copied defensively when used as a field
• Good Map keys and Set elements (objects must not change

state while in the collection)
• Class invariant is established by construction, does not need to

be checked as state changes (since it doesn’t)

Concurrent garbage collector

How much concurrency?
• Need to stop thread while mark and sweep
• Other GC: may not need to stop all program threads

Problem
• Program thread may change objects during collection

Solution
• Prevent read/write to memory area
• Details are subtle; generational, copying GC

– Modern GC distinguishes short-lived from long-lived objects
– Copying allows read to old area if writes are blocked …
– Relatively efficient methods for read barrier, write barrier

Some rough spots in Java concurrency

Class may have synchronized, unsynch methods
• No notion of a class that is a monitor
• Not preserved by inheritance (bug or feature?)
Immutable objects
• If declared in program, could minimize locking
Fairness is not guaranteed
• Chose arbitrarily among equal priority threads
Wait set is not a FIFO queue
• notifyAll notifies all waiting threads, not necessarily

highest priority, one waiting longest, etc.
Condition rechecks essential
• use loop (previous slide)

Java progress: util.concurrent

Doug Lea’s utility classes, basis for JSR 166
• A few general-purpose interfaces
• Implementations tested over several years

Principal interfaces and implementations
• Sync: acquire/release protocols
• Channel: put/take protocols
• Executor: executing Runnable tasks

Sync

Main interface for acquire/release protocols
• Used for custom locks, resource management, other

common synchronization idioms
• Coarse-grained interface

– Doesn’t distinguish different lock semantics

Implementations
• Mutex, ReentrantLock, Latch, CountDown,

Semaphore, WaiterPreferenceSemaphore,
FIFOSemaphore, PrioritySemaphore

– Also, utility implementations such as ObservableSync,
LayeredSync that simplifycomposition and instrumentation

11

Channel

Main interface for buffers, queues, etc.

Implementations
• LinkedQueue, BoundedLinkedQueue, BoundedBuffer,

BoundedPriorityQueue, SynchronousChannel, Slot

Producer Channel Consumer

put, offer take, poll

Executor

Main interface for Thread-like classes
• Pools
• Lightweight execution frameworks
• Custom scheduling

Need only support execute(Runnable r)
• Analogous to Thread.start

Implementations
• PooledExecutor, ThreadedExecutor, QueuedExecutor,

FJTaskRunnerGroup
• Related ThreadFactory class allows most Executors to use

threads with custom attributes

Example: Concurrent Hash Map

Implements a hash table
• Insert and retrieve data elements by key
• Two items in same bucket placed in linked list
• Allow read/write with minimal locking

Tricky
“ConcurrentHashMap is both a very useful class for many
concurrent applications and a fine example of a class that
understands and exploits the subtle details of the Java Memory
Model (JMM) to achieve higher performance. … Use it, learn
from it, enjoy it – but unless you're an expert on Java
concurrency, you probably shouldn't try this on your own.”

See http://www-106.ibm.com/developerworks/java/library/j-jtp08223

ConcurrentHashMap

Concurrent operations
• read: no problem
• read/write: OK if different lists
• read/write to same list: clever tricks sometimes avoid locking

Array Linked lists

Data Data Data

Data Data Data

Data Data

Data

ConcurrentHashMap Tricks

Immutability
• List cells are immutable, except for data field
⇒ read thread sees linked list, even if write in progress

Add to list
• Can cons to head of list, like Lisp lists

Remove from list
• Set data field to null, rebuild list to skip this cell
• Unreachable cells eventually garbage collected

Array Linked lists

Data Data Data

More info: see study questions

Java memory model

Main ideas
• Threads have local memory (cache)
• Threads fill/flush from main memory

Interaction restricted by constraints on actions
• Use/assign are local thread memory actions
• Load/store fill or flush local memory
• Read/write are main memory actions

12

Thread

Memory Hierarchy

Thread Cache

Shared
Memory

Cache

code

code

use/assign
load/store

read/write

Example

Program
r.i = r.i+1

load r.i

store r.i

use r.i

assign r.i

write r.i

read r.i

The value of field i of object i is
• read from main memory
• loaded into the local cache of the thread
• used in the addition r.i+1

Similar steps to place the value of r.i in shared memory

Java Memory Model [Java Lang Spec]

Example constraints on use, assign, load, store:
• use and assign actions by thread must occur in the order

specified by the program
• Thread is not permitted to lose its most recent assign

• Thread is not permitted to write data from its working memory
to main memory for no reason

• New thread starts with an empty working memory
• New variable created only in main memory, not thread working

memory

“Provided that all the constraints are obeyed, a load or
store action may be issued at any time by any thread on
any variable, at the whim of the implementation.”

Access to Main Memory

Constraints on load, store, read ,write
• For every load, must be a preceding read action
• For every store, must be a following write action
• Actions on master copy of a variable are performed

by the main memory in order requested by thread

Prescient stores

Under certain conditions …
• Store actions (from cache to shared memory) may

occur earlier than you would otherwise expect
• Purpose:

– Allow optimizations that make properly synchronized
programs run faster

– These optimizations may allow out-of-order operations for
programs that are not properly synchronized

Details are complicated. Main point: there’s more to
designing a good memory model than you might think!

Criticism [Pugh]

Model is hard to interpret and poorly understood
Constraints
• prohibit common compiler optimizations
• expensive to implement on existing hardware

Not commonly followed
• Java Programs

– Sun Java Development Kit not guaranteed valid by the existing
Java memory model

• Implementations not compliant
– Sun Classic Wintel JVM, Sun Hotspot Wintel JVM, IBM 1.1.7b

Wintel JVM, Sun production Sparc Solaris JVM, Microsoft JVM

13

Prescient stores anomaly [Pugh]

Program
x = 0; y = 0;
Thread 1: a = x; y = 1;
Thread 2: b = y; x = 1;

Without prescient stores
• Either a=b=0, or a=0 and b=1, or a=1 and b=0

With prescient stores
• Write actions for x,y may occur before either read
• Threads can finish with a=b=1

Homework: draw out ordering on memory operations

Over-constrained actions [Pugh]

Program
// p & q are aliased
i = r.y;
j = p.x;
// concurrent write to p.x from another thread
k = q.x;
p.x = 42;

Problem
• Memory model is too constrained

– Programmer will be happy if j, k get same value
– Memory model prevents this

Constraints on memory actions

// p & q are aliased
i = r.y;
j = p.x;
// concurrent write
k = q.x;
p.x = 42;

load p.x

use q.x

load r.y

load q.x

store p.x

use r.y

assign p.x

use p.x

write p.x

read q/p.x

read p.x

write p.x

read r.y

Write from another threadUnnecessary order

Summary

Concurrency
• Powerful computing idea
• Requires time and effort to use effectively

Actors
• High-level object-oriented form of concurrency

Concurrent ML
• Threads and synchronous events

Java concurrency
• Combines thread and object-oriented approaches
• Some good features, some rough spots
• Experience leads to programming methods, libraries

Example: ConcurrentHashMap

