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Types

John Mitchell

CS 242
Type

A type is a collection of computable values that 
share some structural property.

uExamples
• Integers
• Strings

• int → bool
• (int → int) →bool

u“Non-examples”
• {3, true, λx.x}
• Even integers

• {f:int → int | if x>3   
then f(x) > x*(x+1)}

Distinction between types and non-types is language 
dependent.

Uses for types 

uProgram organization and documentation
• Separate types for separate concepts

– Represent concepts from problem domain 

• Indicate intended use of declared identifiers
– Types can be checked, unlike program comments

uIdentify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computations such as  3 + true - “Bill”

uSupport optimization
• Example: short integers require fewer bits

• Access record component by known offset

Type errors

uHardware error
• function call x() where x is not a function

• may cause jump to instruction that does not contain 
a legal op code

uUnintended semantics
• int_add(3, 4.5)

• not a hardware error, since bit pattern of float 4.5 
can be interpreted as an integer

• just as much an error as x() above

General definition of type error

uA type error occurs when execution of program 
is not faithful to the intended semantics

uDo you like this definition?
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern 

• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function, 

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5

Compile-time vs run-time checking

uLisp uses run-time type checking
(car x)    check first to make sure x is list

uML uses compile-time type checking
f(x) must have f : A → B and x : A

uBasic tradeoff
• Both prevent type errors
• Run-time checking slows down execution

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type 
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Expressiveness

uIn Lisp, we can write function like
(lambda (x)  (cond ((less x 10)  x)  (T  (car x))))

Some uses will produce type error, some will not

uStatic typing always conservative 
if  (big-hairy -boolean-expression) 

then  ((lambda (x) … )  5)
else   ((lambda (x) … )  10)

Cannot decide at compile time if run-time error will occur

Relative type-safety of languages 

uNot safe: BCPL family, including C and C++
• Casts,  pointer arithmetic

uAlmost safe: Algol family, Pascal, Ada. 
• Dangling pointers. 

– Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p 

– No language with explicit deallocation of memory is fully 
type-safe

uSafe: Lisp, ML, Smalltalk, and Java 
• Lisp, Smalltalk: dynamically typed 

• ML, Java: statically typed

Type checking and type inference

uStandard type checking
int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2;};
• Look at body of each function and use declared types 

of identifies to check agreement.

uType inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out 
what types could have been declared.

ML is designed to make type inference tractable.

ML Type Inference

uExample
- fun f(x) = 2+x;

> val it = fn : int → int

uHow does this work?
• + has two types: int* int → int, real*real→real

• 2 : int has only one type
• This implies + : int* int → int

• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 
In many cases, unique type may be polymorphic.

Another presentation 

uExample
- fun f(x) = 2+x;

> val it = fn : int → int

uHow does this work?

x 

λ

@

@

+ 2

Assign types to leaves

: t

int → int → int
real → real→real

: int

Propagate to internal 
nodes and generate 
constraints

int (t = int)

int→int

t→int

Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

Application and Abstraction 

u Application

• f must have function type   
domain→ range

• domain of f must be type 
of argument x 

• result type is range of f

u Function expression
• Type is function type 

domain→ range
• Domain is type of variable x
• Range is type of function 

body e 

x

@

f x

λ

e: t: s : s : t

: r    (s = t→ r) : s → t
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Types with type variables 

uExample
- fun f(g) = g(2);

> val it = fn : (int → t) → t

uHow does this work?

2 

λ

@

g

Assign types to leaves

: int: sPropagate to internal 
nodes and generate 
constraints

t    (s = int→t )

s→t

Solve by substitution

= (int→t)→t

Graph for λg. (g 2)

Use of Polymorphic Function

uFunction
- fun f(g) = g(2);

> val it = fn : (int → t) → t

uPossible applications
- fun add(x) = 2+x;

> val it = fn : int → int
- f(add);

> val it = 4 : int

- fun isEven(x) = ...;
> val it = fn : int → bool

- f(isEven);
> val it = true : bool

Recognizing type errors

uFunction
- fun f(g) = g(2);

> val it = fn : (int → t) → t

uIncorrect use
- fun not(x) = if x then false else  true;

> val it = fn : bool → bool
- f(not);

Type error: cannot make bool → bool = int → t

Another Type Inference Example 

uFunction Definition
- fun f(g,x) = g(g(x));

> val it = fn : (t → t)*t → t

uType Inference

Solve by substitution

= (v →v)*v→v  
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v     (s = u→v )

s*t→v

u   (s = t→u)

Graph for λ〈 g,x〉 . g(g x)

Polymorphic Datatypes

uDatatype with type variable    ’a is syntax for “type variable a”

- datatype ‘a list = nil | cons of ‘a*(‘a list)

> nil : ‘a list 
> cons : ‘a*(‘a list) → ‘a list

u Polymorphic function
- fun length nil = 0

|    length (cons(x,rest)) = 1 + length(rest)

>  length : ‘a list → int

uType inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)

Type inference with recursion

uSecond Clause
length(cons(x,rest)) = 

1 + length(rest)

uType inference
• Assign types to 

leaves, including 
function name

• Proceed as usual
• Add constraint that 

type of function body 
= type of function 
name

rest

x

@

lenght

@

cons

+ 1

@

@

: t

λ
‘a list→int = t

: ‘a*‘a list     
→‘a list

We do not expect you to master this.
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Main Points about Type Inference

uCompute type of expression
• Does not require type declarations for variables

• Find most general type by solving constraints
• Leads to polymorphism

uStatic type checking without type specifications
uMay lead to better error detection than ordinary 

type checking
• Type may indicate a programming error even if there 

is no type error (example following slide).

Information from type inference

uAn interesting function on lists
fun reverse (nil) = nil

|     reverse (x::lst) = reverse(lst);

uMost general type
reverse : ‘a list → ‘b list

uWhat does this mean? 
Since reversing a list does not change its type, 
there must be an error in the definition of 
“reverse”

Compare C++ templates

uSec 6.4.1 – Parametric polymorphism
uSec 6.4.2 – Implementation of parametric poly

Polymorphism vs Overloading

uParametric polymorphism
• Single algorithm may be given many types

• Type variable may be replaced by any type
• f : t→t => f : int→int, f : bool→bool, ...

uOverloading
• A single symbol may refer to more than one algorithm
• Each algorithm may have different type

• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different

• + has types  int* int→int, real*real→real, no others

Parametric Polymorphism: ML vs C++

uML polymorphic function
• Declaration has no type information

• Type inference: type expression with variables
• Type inference: substitute for variables as needed

uC++ function template
• Declaration gives type of function arg, result
• Place inside template to define type variables

• Function application: type checker does instantiation

ML also has module system with explicit type parameters

Example: swap two values

uML
- fun swap(x,y ) = 

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

uC++
template <typename T>
void swap(T& , T& y){

T tmp = x;  x=y;  y=tmp;
}

Declarations look similar, but compiled is very differently
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Implementation

uML
• Swap is compiled into one function

• Typechecker determines how function can be used

uC++
• Swap is compiled into linkable format

• Linker duplicates code for each type of use

uWhy the difference?
• ML ref cell is passed by pointer, local x is pointer to 

value on heap

• C++ arguments passed by reference (pointer), but 
local x is on stack, size depends on type

Another example

uC++ polymorphic sort function
template <typename T>

void sort( int count, T * A[count] ) {
for (int i=0; i<count -1; i++)

for (int j=i+1; j<count-1; j++)
if (A[j ] < A[i]) swap(A[i],A[j ]);

}

uWhat parts of implementation depend on type?
• Indexing into array

• Meaning and implementation of <

ML Overloading

uSome predefined operators are overloaded
uUser-defined functions must have unique type

- fun plus(x,y) = x+y;

> Error: overloaded variable cannot be resolved: +

uWhy is a unique type needed?
• Need to compile code ⇒ need to know which +
• Efficiency of type inference

• Aside: General overloading is NP-complete
Two types, true and false
Overloaded functions

and : {true*true→true, false*true→false, …}

Main Points about ML

uGeneral-purpose procedural language
• We have looked at “core language” only

• Also: abstract data types, modules, concurrency,….

uWell-designed type system
• Type inference 

• Polymorphism
• Reliable -- no loopholes

• Limited overloading


