
1

Simula and Smalltalk

John Mitchell

CS 242
Simula 67

uFirst object-oriented language
uDesigned for simulation

• Later recognized as general-purpose prog language

uExtension of Algol 60
uStandardized as Simula (no “67”) in 1977
uInspiration to many later designers

• Smalltalk
• C++

• ...

Brief history

uNorwegian Computing Center
• Designers: Dahl, Myhrhaug, Nygaard

• Simula-1 in 1966 (strictly a simulation language)
• General language ideas

– Influenced by Hoare’s ideas on data types
– Added classes and prefixing (subtyping) to Algol 60

• Nygaard
– Operations Research specialist and political activist
– Wanted language to describe social and industrial systems
– Allow “ordinary people” to understand political (?) changes

• Dahl and Myhrhaug
– Maintained concern for general programming

Comparison to Algol 60

uAdded features
• class concept

• reference variables (pointers to objects)
• pass-by -reference

• char, text, I/O
• coroutines

uRemoved
• Changed default par passing from pass-by -name
• some var initialization requirements

• own (=C static) variables
• string type (in favor of text type)

Objects in Simula

uClass
• A procedure that returns a pointer to its activation record

uObject
• Activation record produced by call to a class

uObject access
• Access any local variable or procedures using dot

notation: object.

uMemory management
• Objects are garbage collected

– user destructors considered undesirable

Example: Circles and lines

uProblem
• Find the center and radius of the circle

passing through three distinct points, p,
q, and r

uSolution
• Draw intersecting circles Cp, Cq around

p,q and circles Cq’, Cr around q, r
(Picture assumes Cq = Cq’)

• Draw lines through circle intersections
• The intersection of the lines is the

center of the desired circle.

• Error if the points are colinear.

r

q

p

2

Approach in Simula

uMethodology
• Represent points, lines, and circles as objects.

• Equip objects with necessary operations.

uOperations
• Point

equality(anotherPoint) : boolean
distance(anotherPoint) : real (needed to construct circles)

• Line
parallelto(anotherLine) : boolean (to see if lines intersect)
meets(anotherLine) : REF(Point)

• Circle
intersects(anotherCircle) : REF(Line)

Simula Point Class

class Point(x,y); real x,y;
begin

boolean procedure equals(p); ref(Point) p;
if p =/= none then

equals := abs(x - p.x) + abs(y - p.y) < 0.00001
real procedure distance(p); ref(Point) p;

if p == none then error else
distance := sqrt((x - p.x)**2 + (y - p.y) ** 2);

end ***Point***

p :- new Point(1.0, 2.5);
q :- new Point(2.0,3.5);
if p.distance(q) > 2 then ...

formal p is pointer to Point

uninitialized ptr has
value none

pointer assignment

Representation of objects

Object is represented by activation record with access
link to find global variables according to static scoping

p access link
real x 1.0
real y 2.5

proc equals
proc distance

code for
equals

code for
distance

Simula line class

class Line(a,b,c); real a,b,c;
begin

boolean procedure parallelto(l); ref(Line) l;
if l =/= none then parallelto := ...

ref(Point) procedure meets(l); ref(Line) l;
begin real t;

if l =/= none and ~parallelto(l) then ...
end;

real d; d := sqrt(a**2 + b**2);
if d = 0.0 then error else

begin
d := 1/d;
a := a*d; b := b*d; c := c*d;

end;
end *** Line***

Procedures

Initialization:
“normalize” a,b,c

Local variables

line determined by
ax+by+c=0

Derived classes in Simula

uA class decl may be prefixed by a class name
class A

A class B
A class C

B class D

uAn object of a “prefixed class” is the
concatenation of objects of each class in prefix
• d :- new D(…) A part

B part
D partd

Subtyping

uThe type of an object is its class
uThe type associated with a subclass is treated

as a subtype of the type assoc with superclass
uExample:

class A(…); ...
A class B(…); ...
ref (A) a :- new A(…)
ref (B) b :- new B(…)
a := b /* legal since B is subclass of A */
...
b := a /* also legal, but run-time test */

3

Main object-oriented features

uClasses
uObjects
uInheritance (“class prefixing”)
uSubtyping
uVirtual methods

• A function can be redefined in subclass

uInner
• Combines code of superclass with code of subclass

uInspect/Qua
• run-time class/type tests

Features absent from Simula 67

uEncapsulation
• All data and functions accessible; no private, protected

uSelf/Super mechanism of Smalltalk
• But has an expression this〈class〉 to refer to object

itself, regarded as object of type 〈class〉. Not clear how
powerful this is…

uClass variables
• But can have global variables

uExceptions
• Not an OO feature anyway ...

Simula Summary

uClass
• ”procedure" that returns ptr to activation record

• initialization code always run as procedure body

uObjects: closure created by a class

uEncapsulation
• protected and private not recognized in 1967
• added later and used as basis for C++

uSubtyping: determined by class hierarchy

u Inheritance: provided by class prefixing

Smalltalk

uMajor language that popularized objects
uDeveloped at Xerox PARC

• Smalltalk -76, Smalltalk -80 were important versions

uObject metaphor extended and refined
• Used some ideas from Simula, but very different lang

• Everything is an object, even a class
• All operations are “messages to objects”

• Very flexible and powerful language
– Similar to “everything is a list” in Lisp, but more so
– Example: object can detect that it has received a message it

does not understand, can try to figure out how to respond.

Motivating application: Dynabook

uConcept developed by Alan Kay (now Disney?)
uSmall portable computer

• Revolutionary idea in early 1970’s
– At the time, a minicomputer was shared by 10 people,

stored in a machine room.

• What would you compute on an airplane?

uInfluence on Smalltalk
• Language intended to be programming language and

operating system interface
• Intended for “non-programmer”

• Syntax presented by language-specific editor

Smalltalk language terminology

uObject Instance of some class

uClass Defines behavior of its objects

uSelector Name of a message

uMessage Selector together with parameter values

uMethod Code used by a class to respond to message

uInstance variable Data stored in object

uSubclass Class defined by giving incremental
modifications to some superclass

4

Example: Point class

uClass definition written in tabular form

class var pi

super class Object

class name Point

instance var x y

class messages and methods

〈…names and code for methods...〉

instance messages and methods

〈…names and code for methods...〉

Class messages and methods

Three class methods
newX:xvalue Y:yvalue | |

^ self new x: xvalue
y: yvalue

newOrigin | |

^ self new x: 0
y: 0

initialize | |
pi <- 3.14159

Explanation
- selector is mix-fix newX:Y:

e.g, Point newX:3 Y:2
- symbol ^ marks return value

- new is method in all classes,
inherited from Object

- | | marks scope for local decl

- initialize method sets pi, called
automatically

- <- is syntax for assignment

Instance messages and methods

Five instance methods
x: xcoord y: ycoord | |

x <- xcoord
y <- ycoord

moveDx: dx Dy : dy | |
x <- dx + x

y <- dy + y
x | | ^x

y | | ̂ y
draw | |

〈 ...code to draw point...〉

Explanation
set x,y coordinates,

e.g, pt x:5 y:3

move point by given amount

return hidden inst var x

return hidden inst var y
draw point on screen

Run-time representation of point

class
x 3
y 2

x
y

newX:Y:
...

move

Point object

Point class
Template

Method dictionary

to superclass Object

code

...

code

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

Inheritance

uDefine colored points from points

class var

super class Point

class name ColorPoint

instance var color

class messages and methods

instance messages and methods

newX:xv Y:yv C:cv 〈 … code … 〉

draw 〈 … code … 〉

color | | ^color

new instance
variable

new method

override Point
method

Run-time representation

2
3

x
y newX:Y:

draw
move

Point object Point class Template
Method dictionary

...

4
5

x
y newX:Y:C:

color
draw

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

5

Encapsulation in Smalltalk

uMethods are public
uInstance variables are hidden

• Not visible to other objects
– pt x is not allowed unless x is a method

• But may be manipulated by subclass methods
– This limits ability to establish invariants
– Example:

• Superclass maintains sorted list of messages with some
selector, say insert

• Subclass may access this list directly, rearrange order

Object type

uEach object has interface
• Set of instance methods declared in class

• Example:
Point { x:y:, moveDx:Dy:, x, y, draw}
ColorPoint { x:y:, moveDx:Dy:, x, y, color, draw}

• This is a form of type
Names of methods, does not include type/protocol of arguments

uObject expression and type
• Send message to object

p draw p x:3 y:4
q color q moveDx: 5 Dy: 2

• Expression OK if message is in interface

Subtyping

uRelation between interfaces
• Suppose expression makes sense

p msg:pars -- OK if msg is in interface of p

• Replace p by q if interface of q contains interface of p

uSubtyping
• If interface is superset, then a subtype
• Example: ColorPoint subtype of Point

• Sometimes called “conformance”

Can extend to more detailed interfaces that include types of parameters

Subtyping and Inheritance

uSubtyping is implicit
• Not a part of the programming language

• Important aspect of how systems are built

uInheritance is explicit
• Used to implement systems

• No forced relationship to subtyping

Collection Hierarchy

Collection

Set

Sorted collection

Indexed

Array

Dictionary

Subtyping

Inheritance

Updatable

isEmpty, size, includes: , …

add:
remove:

sortBlock:
…

at:Put:

at:

associationAt:

replaceFrom:to:with :

Smalltalk Flexibility

uMeasure of PL expressiveness:
• Can constructs of the language be defined in the

language itself?
• Examples:

– Lisp cond: Lisp allows user-defined special forms
– ML datatype: sufficient to define polymorphic lists, equivalent

to built-in list type
– ML overloading: limitation, since not available to programmer
– C/C++: ???

uSmalltalk is expressive in this sense
• Many constructs that would be “primitives” other are

definable in Smalltalk
• Example: Booleans and Blocks

6

Smalltalk booleans and blocks

uBoolean value is object with ifTrue:ifFalse:
• Class boolean with subclasses True and False

• True ifTrue:B1 ifFalse:B2 executes B1
• False ifTrue:B1 ifFalse:B2 executes B2

uExample expression
i < j ifTrue: [i add 1] ifFalse: [j subtract 1]

• i < j is boolean expression, produces boolean object

• arg’s are blocks, objects with execute methods

uSince booleans and blocks are very common
• Optimization of boolean
• Special syntax for blocks

Self and Super

Factorial | |
self <= 1

ifTrue: [^1]
ifFalse: [^(self-1) factorial * self]

This method can be implemented in Integer, and works
even if SmallInt and LargeInt are represented differently.

C++ and Java type systems can’t really cope with this.

Integer

LargeIntSmallInt

Ingalls’ test

uDan Ingalls: principal designer Smalltalk system
• Grace Murray Hopper award for Smalltalk and bitmap

graphics work at Xerox PARC
• 1987 ACM Software Systems Award with Kay, Goldberg

u Proposed test for “object oriented”
• Can you define a new kind of integer, put your new

integers into rectangles (which are already part of the
window system), ask the system to blacken a rectangle,
and have everything work?

• Smalltalk passes, C++ fails this test

Smalltalk integer operations

uInteger expression
• x plus: 1 times: 3 plus: (y plus: 1) print

uProperties
• All operations are executed by sending messages
• If x is from some “new” kind of integer, expression

makes sense as long as x has plus, times, print
methods.

Actually, compiler does some optimization.
But will revert to this if x is not built-in integer.

Costs and benefits of “true OO”

uWhy is property of Ingalls test useful?
• Everything is an object

• All objects are accessed only through interface
• Makes programs extensible

uWhat is implementation cost?
• Every integer operation involves method call

– Unless optimizing compiler can recognize many cases

• Is this worth it?
– One application where it seems useful ?
– One application where it seems too costly?
– Are there other issues? Security? (wait for Java final classes…)

Smalltalk Summary

uClass
• creates objects that share methods

• pointers to template, dictionary, parent class

uObjects: created by a class, contains instance variables

uEncapsulation
• methods public, instance variables hidden

uSubtyping: implicit, no static type system

u Inheritance: subclasses, self, super
Single inheritance in Smalltalk-76, Smalltalk-80

