
1

Scope, Function Calls and
Storage Management

John Mitchell

CS 242
Revised class schedule

uFriday Oct 17
• No lecture; discussion section as usual

uFriday Oct 24
• No section

uMonday Oct 27
• Review section during class meeting time, Gates B01

uWednesday Oct 29
• No lecture

• Evening exam: 7PM, Gates B01 and B03

Topics

uBlock-structured languages and stack storage
uIn-line Blocks

• activation records

• storage for local, global variables

uFirst-order functions
• parameter passing
• tail recursion and iteration

uHigher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Block-Structured Languages

uNested blocks, local variables
• Example

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
– Enter block: allocate space for variables
– Exits block: some or all space may be deallocated

new variables declared in nested blocks

inner
block

outer
block

local variable

global variable

Examples

uBlocks in common languages
• C { … }

• Algol begin … end
• ML let … in … end

uTwo forms of blocks
• In-line blocks
• Blocks associated with functions or procedures

uTopic: block-based memory management,
access to local variables, parameters,global vars

Simplified Machine Model

Registers

Environment
Pointer

Program
Counter

DataCode

Heap

Stack

2

Interested in Memory Mgmt Only

uRegisters, Code segment, Program counter
• Ignore registers

• Details of instruction set will not matter

uData Segment
• Stack contains data related to block entry/exit

• Heap contains data of varying lifetime
• Environment pointer points to current stack position

– Block entry: add new activation record to stack
– Block exit: remove most recent activation record

Some basic concepts

uScope
• Region of program text where declaration is visible

uLifetime
• Period of time when location is allocated to program

• Inner declaration of x hides outer one.
• Called “hole in scope”
• Lifetime of outer x includes time when

inner block is executed
• Lifetime ≠ scope
• Lines indicate “contour model” of scope.

{ int x = … ;
{ int y = … ;

{ int x = … ;
….
};

};
};

In-line Blocks

uActivation record
• Data structure stored on run-time stack

• Contains space for local variables

uExample

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Activation record for in-line block

uControl link
• pointer to previous record

on stack

uPush record on stack:
• Set new control link to

point to old env ptr

• Set env ptr to new record

uPop record off stack
• Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

Example

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment
Pointer

1

-1

Control link

z -1

Scoping rules

uGlobal and local variables
{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

• x, y are local to outer block
• z is local to inner bock
• x, y are global to inner block

uStatic scope
• global refers to declaration in closest enclosing block

uDynamic scope
• global refers to most recent activation record

These are same until we consider function calls.

3

Functions and procedures

uSyntax of procedures (Algol) and functions (C)
procedure P (<pars>) <type> function f(<pars>)

begin {
<local vars> <local vars>

<proc body> <function body>
end; };

uActivation record must include space for
• parameters
• return address

• return value
(an intermediate result)

• location to put return
value on function exit

Activation record for function

uReturn address
• Location of code to

execute on function return

uReturn-result address
• Address in activation

record of calling block to
receive return address

uParameters
• Locations to contain data

from calling block

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return-result addr

Example

uFunction
fact(n) = if n<= 1 then 1

else n * fact(n-1)

uReturn result address
• location to put fact(n)

uParameter
• set to value of n by calling

sequence

uIntermediate result
• locations to contain value

of fact(n-1)

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Function call

Return address omitted; would
be ptr into code segment

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

fact(n) = if n<= 1 then 1

else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment
Pointer

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

Function return next slide →

Function return

Control link

fact(n-1)
n

Return result addr
3

fact(3)

Control link

fact(n-1)
n

Return result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return result addr
1

fact(1)

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return result addr

1
2

fact(2)

Topics for first-order functions

uParameter passing
• use ML reference cells to describe pass-by -value,

pass-by -reference

uAccess to global variables
• global variables are contained in an activation record

higher “up” the stack

uTail recursion
• an optimization for certain recursive functions

See this yourself: write factorial and run under debugger

4

ML imperative features (review)

uGeneral terminology: L-values and R-values
• Assignment y := x+3

– Identifier on left refers to location, called its L-value
– Identifier on right refers to contents, called R-value

uML reference cells and assignment
• Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer
!y the contents
ref x expression creating new cell initialized to x

• ML form of assignment
y := x+3 place value of x+3 in location (cell) y
y := !y + 3 add 3 to contents of y and store in location y

Parameter passing

uPass-by-reference
• Caller places L-value (address)

of actual parameter in activation record
• Function can assign to variable that is passed

uPass-by-value
• Caller places R-value (contents)

of actual parameter in activation record

• Function cannot change value of caller’s variable
• Reduces aliasing (alias: two names refer to same loc)

Example

function f (x) =
{ x := x+1; return x };

var y : int = 0;
print f(y)+y;

fun f (x : int ref) =
(x := !x+1; !x);

y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
let x = ref z in

x := !x+1; !x
end;

y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML

pass -by-ref

pass -by-value

Access to global variables

uTwo possible scoping conventions
• Static scope: refer to closest enclosing block

• Dynamic scope: most recent activation record on stack

uExample

int x=1;
function g(z) = x+z;
function f(y) =

{ int x = y+1;
return g(y*x) };

f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

Activation record for static scope

uControl link
• Link to activation record of

previous (calling) block

uAccess link
• Link to activation record of

closest enclosing block in
program text

uDifference
• Control link depends on

dynamic behavior of prog
• Access link depends on

static form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

Complex nesting structure

int x=1;
function g(z) = x+z;

function f(y) =
{ int x = y+1;
return g(y*x) };

f(3);

function m(…) {
int x=1;
…
function n(…){
function g(z) = x+z;
…
{ …

function f(y) {
int x = y+1;
return g(y*x) };

…
f(3); … }

… n(…) …}
… m(…)

Simplify to

Simplified code has same block nesting,
if we follow convention that each
declaration begins a new block.

5

Static scope with access links

int x=1;
function g(z) = x+z;

function f(y) =
{ int x = y+1;
return g(y*x) };

f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control link

Use access link to find global variable:
– Access link is always set to frame

of closest enclosing lexical block
– For function body, this is block

that contains function declaration

Tail recursion (first-order case)

uFunction g makes a tail call to function f if
• Return value of function f is return value of g

uExample

fun g(x) = if x>0 then f(x) else f(x)*2

uOptimization
• Can pop activation record on a tail call

• Especially useful for recursive tail call
– next activation record has exactly same form

tail call not a tail call

Example Calculate least power of 2 greater than y

fun f(x,y) = if x>y
then x

else f(2*x, y);
f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3) Optimization
• Set return

value address
to that of caller

Question
• Can we do the

same with
control link?

Optimization
• avoid return to

caller

Tail recursion elimination

fun f(x,y) = if x>y
then x

else f(2*x, y);
f(1,3);

control
return val
x 1
y 3

f(4,3)

Optimization
• pop followed by push =

reuse activation record in place

Conclusion
• Tail recursive function equiv to

iterative loop

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

Tail recursion and iteration

fun f(x,y) = if x>y

then x
else f(2*x, y);

f(1,y);

control
return val
x 1
y 3

f(4,3)

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

fun g(y) = {

x := 1;
while not(x>y) do

x := 2*x;

return x;
};initial value

loop body

test

Higher-Order Functions

uLanguage features
• Functions passed as arguments

• Functions that return functions from nested blocks
• Need to maintain environment of function

uSimpler case
• Function passed as argument
• Need pointer to activation record “higher up” in stack

uMore complicated second case
• Function returned as result of function call

• Need to keep activation record of returning function

6

Example

uMap function
fun map (f, nil) = nil | map(f, x::xs) = f(x) :: map(f,xs)

uModify repeated elements in list
fun modify(l) =

let val c = ref (hd l)

fun f(y) = ((if y = !c then c:=y+1 else c:=y); !c)
in

(hd l) :: map(f, tl l)
end;

modify [1,2,2,3,4] => [1,2,3,4,5]
Exercise: pure functional version of modify

Why this example here at this
point in the lecture???? Pass function as argument

val x = 4;
fun f(y) = x*y;

fun g(h) = let
val x=7
in
h(3) + x;

g(f);

There are two declarations of x
Which one is used for each occurrence of x?

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int→int h) {
int x=7;
return h(3) + x;

}
g(f);

} } }

Static Scope for Function Argument

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

Static Scope for Function Argument

{ int x = 4;
{ int f(int y) {return x*y;}

{ int g(int→int h) {

int x=7;
return h(3) + x;

}
g(f);

} } }

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

Closures

uFunction value is pair closure = 〈env, code 〉
uWhen a function represented by a closure is

called,
• Allocate activation record for call (as always)

• Set the access link in the activation record using the
environment pointer from the closure

Function Argument and Closures

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

access link set
from closure

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

7

{ int x = 4;

{ int f(int y){return x*y;}

{ int g(int→int h) {

int x=7;

return h(3)+x;

}

g(f);

}}}

Function Argument and Closures

x 4

access link set
from closure

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

Summary: Function Arguments

uUse closure to maintain a pointer to the static
environment of a function body
uWhen called, set access link from closure
uAll access links point “up” in stack

• May jump past activ records to find global vars

• Still deallocate activ records using stack (lifo) order

Return Function as Result

uLanguage feature
• Functions that return “new” functions
• Need to maintain environment of function

uExample
fun compose(f,g) = (fn x => g(f x));

uFunction “created” dynamically
• expression with free variables

values are determined at run time
• function value is closure = 〈env , code〉
• code not compiled dynamically (in most languages)

Example: Return fctn with private state

fun mk_counter (init : int) =
let val count = ref init

fun counter(inc:int) =

(count := !count + inc; !count)
in

counter
end;

val c = mk_counter(1);
c(2) + c(2);

• Function to “make counter”
returns a closure

• How is correct value of
count determined in c(2) ?

Example: Return fctn with private state

{int→int mk_counter (int init) {
int count = init;

int counter(int inc) { return count += inc;}
return counter}

int→int c = mk_counter(1);
print c(2) + c(2);

}

Function to “make counter” returns a closure
How is correct value of count determined in call c(2) ?

Function Results and Closures
fun mk_counter (init : int) =

let val count = ref init
fun counter(inc:int) = (count := !count + inc; !count)

in counter end

end;
val c = mk_counter(1);

c(2) + c(2); c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

8

Function Results and Closures

c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

{int→int mk_counter (int init) {
int count = init; int counter(int inc) { return count+=inc;}
}

int→int c = mk_counter(1);
print c(2) + c(2);

}

Summary: Return Function Results

uUse closure to maintain static environment
uMay need to keep activation records after return

• Stack (lifo) order fails!

uPossible “stack” implementation
• Forget about explicit deallocation

• Put activation records on heap
• Invoke garbage collector as needed

• Not as totally crazy as is sounds
May only need to search reachable data

Summary of scope issues

uBlock-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …

• Also pointers to enclosing scope

uSeveral different parameter passing mechanisms
uTail calls may be optimized
uFunction parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call

• Closures not needed if functions not in nested blocks

