
Homework 9
Handout 27

CS242: Autumn 2002
5 December

Solutions

1. Actor computing

(a) A sequence number can be added to each task. When
�

first receives a task, it can check the
sequence number. If this is not the first task, or the next one to be processed, then

�
should

store the task and process it later in order.
(b) One protocol, similar to TCP, is for

�
to acknowledge each received message (by sequence

number). To avoid flooding the communication mechanism, � can send a few messages,
then wait for acknowledgements to arrive before proceeding with additional messages. If
� receives acknowledgements for several messages with sequence numbers greater than � ,
then � can suspect that message � is delayed and resend it.

(c) The I’m done message should have a sequence number too.

2. Concurrent access to objects

(a) Two threads might change top at the same time.
(b) Use synchronized methods.
(c) No, because it’s okay to access one side of the queue while another thread is accessing the

other side of the queue. One alters back while the other alters front.

3. Java syncronized objects

(a) The thread calling put waits until someone calls get and makes space available in the
buffer.

(b) Wake up any thread waiting to call the synchronized method.
(c) Two threads could call get at the same time. Both could increment count before either

store, causing both assignments buffer[putIn] = value to store into the same location.
Since the second assignment overwrites the first, data is lost.

(d) It should be possible to allow the two to run in parallel if � �����
	���
�������������������� , where
difference is computed modulo numSlots.

(e) We need to change the test � �����
	���
���������� �������!� in put.

4. Resources and Java Garbage Collection
(a) When the object is garbage collected (which is when the finalize method is called).
(b) Suppose one object tries to acquire the camera while the object which holds the camera is

uncollected garbage. If the garbage collector only runs when there is a memory shortage,
there will be a deadlock because the program will not make any further progress and, thus,
will not consume any more memory thereby never reaching a situation where the collector
decides to collect outstanding garbage.

(c) No, forcing the call to garbage collection only lets the JVM know it’s a good time to do it, it
doesn’t force garbage collection to actually happen.

(d) Add another method called (e.g., dispose), and call this explicitly when the camera should
be released. This may also require adding some internal flags to make sure the camera
doesn’t get released twice.

1

(e) A multi-threaded JVM could probably avoid this problem, since presumably if all the other
threads were suspended (due to being blocked), then the garbage collector thread would run
and would collect the object, freeing the lock. But since not all JVM’s are multi-threaded, a
portable implementation should not rely on this behavior.

5. Java memory model

(a) This is the straight forward mapping of the code to the dependency graph. Notice that " and#
do not show up since they are thread local variables and do not change the shared memory

state.

assign y

store y

write y

assign x

store x

write x

Shared MemoryTransferT1 Cache T2 CacheTransfer

read x
load x

use x

read y
load y

use y

(b) The only difference between this and part a) is that the constraint between the assign and
store for both $ and % are removed. The prescient store means that these could actually take
place before the read of $ and % happen. This is emphasized in the drawing by moving the
store and write for $ and % to the top.

assign y assign x

store y

write y

store x

write x

read x
load x

use x

read y
load y

use y

Shared MemoryTransfer T2 CacheTransferT1 Cache

2

