
Homework 9
Due Never

Handout 24
CS242: Autumn 2002

3 December

Reading

1. Read Chapter 14

Problems

1. Actor computing
The Actor mail system provides asynchronous buffered communication and does not guarantee
that messages (tasks in Actor terminology) are delivered in the order they are sent. Suppose actor�

sends tasks ���������	����
	�����
� to actor � and we want actor � to process tasks in the order
�

sends
them.

(a) What extra information could be added to each task so that � can tell whether it receives
a task out of order? What should � do with a task when it first receives it, before actually
performing the computation associated with the task?

(b) Since the Actor model does not impose any constraints on how soon a task must be delivered,
a task could be delayed an arbitrary amount of time. For example, suppose actor

�
sends

tasks ��������������
��
�����
��������� and actor � receives the tasks ��������
	�����
��������� without receiving task ��� .
Since � would like to proceed with some of these tasks, it makes sense for � to ask

�
to

resend task ��� . Describe a protocol for
�

and � that will add resend requests to the approach
you described in part (a) of this problem.

(c) Suppose � wants to do a final action when
�

has finished sending tasks to � . How can
�

notify � when
�

is done? Be sure to consider the fact that if
�

sends I’m done to � after
sending task � ����� , the I’m done message may arrive before � ����� .

2. Concurrent access to objects
This question asks about synchronizing methods for stack and queue objects.

(a) Bounded stacks can be defined as objects, each containing an array of up to � items. Here is
pseudo-code for one form of stack class.

class Stack
private

contents : array[1..n] of int
top : int

constructor
stack () = top := 0

public
push (x:int) : unit =

if top < n then
top := top + 1;
contents[top] := x

else raise stack_full;
pop () : int =

if top > 0 then
top := top - 1:
return contents[top+1]

1

else raise stack_empty;
end Stack

If stacks are going to be used in a concurrent programming language, what problem might
occur if two threads invoke push and pop simultaneously? Explain.

(b) How would you solve this problem using Java concurrency concepts? Explain.
(c) Suppose that instead of stacks, we have queues:

class Queue
private

contents : array[1..n] of int
front, back : int

constructor
queue() = front := back := 1

public
insert (x:int) : unit =

if back+1 mod n != front then
back := back+1 mod n;
contents[back] := x

else raise queue_full;
remove () : int =

if front != back then
front := front+1 mod n;
return contents[front]

else raise queue_empty;
end Queue

Suppose that five elements have been inserted into a queue object and none of them have
been removed. Do we have the same concurrency problem as we did with push and popwhen
one thread invokes insert and another thread simultaneously invokes remove? Assume
that n is 10. Explain.

3. Java syncronized objects
This question asks about the following Java implementation of a bounded buffer. A bounded
buffer is a FIFO data structure that can be accessed by multiple threads.

class BoundedBuffer {
// designed for multiple producer threads and
// multiple consumer threads
protected int numSlots = 0;
protected int[] buffer = null;
protected int putIn = 0, takeOut = 0;
protected int count = 0;

public BoundedBuffer(int numSlots) {
if (numSlots <= 0)

throw new IllegalArgumentException("numSlots <= 0");
this.numSlots = numSlots;
buffer = new int[numSlots];

}
public synchronized void put(int value)

throws InterruptedException {
while (count == numSlots) wait();
buffer[putIn] = value;
putIn = (putIn + 1) % numSlots;

2

count++;
notifyAll();

}
public synchronized int get()

throws InterruptedException {
int value;
while (count == 0) wait();
value = buffer[takeOut];
takeOut = (takeOut + 1) % numSlots;
count--;
notifyAll();
return value;

}
}

(a) What is the purpose of while (count == numSlots) wait() in put?
(b) What does notifyAll() do in this code?
(c) Describe one way that the buffer would fail to work properly if all synchronization code is

removed from put.
(d) Suppose a programmer wants to alter this implementation so that one thread can call put

at the same time as another calls get. This causes a problem in some situation but not in
others. Assume that some locking may be done at entry to put and get to make sure the
concurrent-execution test is satisfied. You may also assume that increment or decrement
of an integer variable is atomic and that only one call to get and one call to put may be
executed at any given time. What test involving putIn and takeOut can be used to decide
whether put and get can proceed concurrently?

(e) The changes in part (d) will improve performance of the buffer. List one reason that leads
to this performance advantage. Despite this win, some programmers may choose to use the
original method anyway. List one reason why they might make this choice.

4. Resources and Java Garbage Collection
Suppose we are writing an application that uses a video camera which is attached to the com-
puter. Our application, written in Java, has multiple threads, which means that separate parts of
the application may run concurrently. The camera is a shared resource that can only be used by
one thread at a time and our multithreaded application may try to use the camera concurrently
from multiple threads.
The camera library (provided by the camera manufacturer) contains methods that will ensure
that only one thread can use the camera at a time. These methods are called:

camera.AcquireCamera()
camera.ReleaseCamera()

A thread that tries to acquire the camera while another object has acquired it will be blocked
until camera.ReleaseCamera() has been called. When a thread is blocked, it simply stops
without executing any further commands until it becomes unblocked.
You decide to structure your code so that you create a MyCamera object whenever a thread wants
to use the camera, and you “delete” the object (by leaving the scope that contains a pointer to it)
when that thread is done with the camera. The object calls camera.AcquireCamera() in the
constructor and calls camera.ReleaseCamera() in the finalize method, as follows:

import camera // imports the camera library

3

class MyCamera {
...
MyCamera() {

...
camera.AcquireCamera();
...

}
... // (other methods that use the camera go here)
finalize() {

...
camera.ReleaseCamera();
...

}
}

Here is some sample code that would use the Mycamera object:

{
...
MyCamera c = new MyCamera();

... // (code that uses the camera)
} // end of scope so object is no longer reachable

In this question, we will say that a deadlock occurs if all threads are waiting to acquire the
camera, but camera.ReleaseCamera is never called.

(a) When does camera.ReleaseCamera actually get called?
(b) This code can cause a deadlock situation in some Java implementations. Explain how.
(c) Does calling the garbage collector using Runtime.getRuntime().gc() after leaving the

scope where the camera is reachable solve this problem?
(d) How can you fix this problem by modifying your program (without trying to force garbage

collection or using synchronized) so deadlock will not occur?
(e) Suppose you had a multi-threaded Java implementation with the garbage collector running

concurrently as a separate thread. Assume the garbage collector is always running, but
it may run slowly in the background if the program is active. This will eventually garbage
collect every unreachable object, but not necessarily as soon as it becomes unreachable. Does
deadlock, as defined above, occur (in the original code above) in this implementation? Why
or why not?

5. Java memory model
This program with two threads is discussed in the text.

x = 0; y = 0;
Thread 1: a = x; y = 1;
Thread 2: b = y; x = 1;

Draw a box-and-arrow illustration showing the order constraints on the memory actions (read,
load, use, assign, store, write) associated with the four assignments that appear in the two
threads. (You do not need to show these actions for the two assginments setting x and y to
0.)

(a) Without prescient stores.
(b) With prescient stores.

4

