
Homework 4
Due 29 October

Handout 10
CS242: Autumn 2002

22 October

Reading

1. Read Chapter 7, Scope, Functions, and Storage Management.

Problems

1. Activation Records for Inline Blocks
You are helping a friend debug a C program. The debugger (e.g., gdb) lets you set breakpoints in
the program, so the program stops at certain points. When the program stops at a breakpoint,
you can examine the values of variables. If you want, you can compile the programs given in this
problem and run them under a debugger yourself. However, you should be able to figure out the
answers to the questions by thinking about how activation records work.

(a) Your friend comes to you with the following function (times), which is supposed to calculate
and print the product of its inputs, x and n (i.e. x * n). Your friend then writes a small test
program to exercise the times function:

1: void times(int x, int n)
2: {
3: int i;
4: int prod = 0;
5: for (i = 0; i < n; i++)
6: {
7: int prod = prod + x;
8: }
9: printf ("The product is %d.\n", prod);
10:}
11:int main(void)
12:{
13: times(2, 3);
14: return 0;
15:}

Your friend complains that this program just doesn’t work and shows you some sample out-
put:

cardinal:˜> gcc -g test.c
cardinal:˜> ./a.out
The product is 0.

Being a careful student, your friend has also used the debugger to try to track down the
problem. Your friend sets breakpoints at lines 7 and 9 and looks at the address of prod.
Here is the debugger output:

cardinal:˜> gdb a.out
(gdb) br test.c:7
(gdb) br test.c:9
(gdb) r
Starting program:

Breakpoint 1, times (x=2, n=3) at test.c:7

1

7 int prod = prod + x;
(gdb) print &prod
$1 = (int *) 0xbffff59c
(gdb) del 1
(gdb) c
Continuing.

Breakpoint 2, times (x=2, n=3) at test.c:9
9 printf ("The product is %d.\n", prod);
(gdb) print &prod
$2 = (int *) 0xbffff5a0

Your friend swears that the computer must be broken, since it is changing the address of the
variable prod. Using the information provided by the debugger and the concept of activation
records, give your friend a 3 or 4 sentence explanation of what the problem is and why the
output is 0.

(b) Your explanation must not have been that good, because your friend attempts to fix the
program and produces the following:

1: void times(int x, int n)
2: {
3: int i;
4: for (i = 0; i < n; i++)
5: {
6: int prod = prod + x;
7: }
8: {
9: int prod;
10: printf ("The product is %d.\n", prod);
11: }
12:}
13:int main(void)
14:{
15: times(2, 3);
16: return 0;
17:}

This program sill does not work. Explain why it does not work (in 3 sentences or less), and
write a formula for the printed value of prod. Your formula can include constants with an
unknown value as long as you explain where the value of those constants comes from (e.g.,� , where � is an uninitialized value on the stack).

(c) Your friend makes one last stab at getting the program to work, and produces the following;

1: void times(int x, int n)
2: {
3: {
4: int prod = x * n;
5: }
6:
7: {
8: int prod;
9: printf ("The product is %d.\n", prod);
10: }
11: }
12:int main(void)
13:{
14: times(2, 3);
15: return 0;
16:}

2

This program seems to work. Why?
(d) Imagine that line 6 of the program in part (c) were split into three lines:

6a: {
6b: ...
6c: }

Write a single line of code to replace the ... that would guarantee this program would NEVER
print the right product.

2. Time and Space Requirements
This question asks you to compare two functions for finding the middle element of a list. (In the
case of an even-length list of

���
elements, both functions return the

�����
st.) The first uses two

local recursive functions, �
	�� and �	�� . The �
	�� function finds the length of a list and �	����������
�
returns the � th element of list � . The second middle function uses a subsidiary function � that
recursively traverses two lists, taking two elements off the first list and one off the second until
the first list is empty. When this occurs, the first element of the second list is returned.

exception Empty;

fun middle1(l) =
let fun len(nil) = 0

| len(x::l) = 1+len(l)
and get(n,nil) = raise Empty
| get(n,x::l) = if n=1 then x else get(n-1,l)

in
get((len(l) div 2)+1, l)

end;

fun middle2(l) =
let fun m(x,nil) = raise Empty

| m(nil,x::l) = x
| m([y],x::l) = x
| m(y::(z::l1),x::l2) = m(l1,l2)

in
m(l,l)

end;

Assume that both are compiled and executed using a compiler that optimizes use of activation
records or “stack frames.”

(a) Describe the approximate running time and space requirements of middle1 for a list of
length

�
. Just count the number of calls to each function and the maximum number of

activation records that must be placed on the stack at any time during the computation.
(b) Describe the approximate running time and space requirements of middle2 for a list of

length
�

. Just count the number of calls to m and the maximum number of activation records
that must be placed on the stack at any time during the computation.

(c) Would an iterative algorithm with two pointers, one moving down the list twice as fast as
the other, be significantly more or less efficient than middle2? Explain briefly in one or two
sentences.

3

3. Parameter passing comparison
For the following Algol-like program, write the number printed by running the program under
each of the listed parameter passing mechanisms. In pass-by-value/result, the formal parameter
is initialized to the value of the actual. Changes to the formal parameter within the subroutine
do not immediately change the value of the actual parameter. When the subroutine returns,
the value of the formal parameter is then copied back into the actual. This parameter-passing
scheme is sometimes referred to as copy-in/copy-out.

begin
integer i;

procedure pass (x, y);
integer x, y; // types of the formal parameters
begin

x := x + 1;
y := x + 1;
x := y;
i := i + 1

end

i := 1;
pass (i, i);
print i

end

(a) pass-by-value
(b) pass-by-reference
(c) pass-by-value/result

4. Static and Dynamic Scope
Consider the following program fragment, written both in ML and in pseudo-C:

1 let x = 2 in { int x = 2; {
2 let val fun f(y) = x + y in int f (int y) { return x + y; } {
3 let val x = 7 in int x = 7; {
4 x + x +
5 f(x) f(x);
6 end }
7 end }
8 end; }

The C version would be legal in a version of C with nested functions.

(a) Under static scoping, what is the value of � ��� ����� in this code? During the execution of this
code, the value of x is needed three different times (on lines 2, 4, and 5). For each line where
x is used, state what numeric value is used when the value of x is requested and explain
why these are the appropriate values under static scoping.

(b) Under dynamic scoping, what is the value of � ��� ����� in this code? For each line where x
is used, state which value is used for x and explain why these are the appropriate values
under dynamic scoping.

4

5. Eval and Scope
Many compilers look at programs and eliminate any unused variables. For example, in the fol-
lowing program, x is unused so it could be eliminated:

let x = 5 in f(0) end

Some languages, including Lisp and Scheme, have a way to construct and evaluate expressions
at run-time. Constructing programs at run-time is useful in certain kinds of problems, such as
symbolic mathematics and genetic algorithms.
The following program evaluates the string bound to s, inside the scope of two declarations:

let s = read_text_from_user() in
let x = 5 and y = 3 in eval s end

end

If s were bound to "1+x*y" then eval would return
���

. Assume that eval is a special language
feature and not simply a library function.

(a) The “unused variable” optimization and the “eval” construct are not compatible. The iden-
tifiers x and y do not appear in the body of the inner let (the part between in and end),
yet an optimizing compiler cannot eliminate them because the eval might need them. In
addition to the values and ! , what information does the language implementation need to
store for eval that would not be needed in a language without eval?

(b) A clever compiler might look for eval in the scope of the let. If eval does not appear, then
it may be safe to perform the optimization. The compiler could eliminate any variables that
do not appear in the scope of the let declaration. Does this optimization work in a statically
scoped language? Why or why not?

(c) Does the optimization suggested in part (b) work in a dynamically scoped language? Why or
why not?

6. Function Calls and Memory Management
This question asks about memory management in the evaluation of the following statically-
scoped ML expression.

val x = 5;
fun f(y) = (x+y)-2;
fun g(h) = let val x = 7 in h(x) end;
let val x = 10 in g(f) end;

(a) Fill in the missing information in the following depiction of the run-time stack after the call
to h inside the body of . Remember that function values are represented by closures, and
that a closure is a pair consisting of an environment (pointer to an activation record) and
compiled code.
In this drawing, a bullet (") indicates that a pointer should be drawn from this slot to the
appropriate closure or compiled code. Since the pointers to activation records cross and could
become difficult to read, each activation record is numbered at the far left. In each activation
record, place the number of the activation record of the statically enclosing scope in the slot
labeled “access link.” The first two are done for you. Also use activation record numbers for
the environment pointer part of each closure pair. Write the values of local variables and
function parameters directly in the activation records.

5

Activation Records Closures Compiled Code
#%$'&

access link ��()�
x#+*,&
access link � � �
f "#+-,&
access link �.� /��.���0"21
g " code for f#435&
access link �.� /��.���0"21
x#+6,&

g(f) access link ()
h " code for g
x#+7,&

h(x) access link ()
y

(b) What is the value of this expression? Why?

7. Closures and Returning a Function
Consider the following code:

fun g(f) =
let val x : int ref = ref (f(1))
in

fn(y) => (x := (!x) * y; !x)
end;

val x = 1;
fun s(y) = y + x;
val h = g(s);
val z = h(3);

(a) What are the types of g, h, and z?
(b) What is the value of z?
(c) Draw the run-time structures that result from the execution of this code, by adding to the

following diagram.
Activation Records Closures and Heap Cells Compiled Code

#%$'&
access link ��(8�
g "#+*,&
access link () /��9���0":1 code for g
x . . .#+-,&
access link ()
s " /;�9���0":1 code for s#435&
access link () . . .
h "#+6,&

g(s) access link ()
f " /;�9���0":1 code for <;=?>
x " ����@BAC�'D ����>�>E>B�#+7,&
access link ()
z#+F,&

h(3) access link ()
y

6

