
Homework 2
Due 15 October

Handout 3
CS242: Autumn 2002

8 October

Reading

1. Read Chapter 3 on Lisp and Sections 4.1–4.2 on syntax and lambda calculus for this homework.
Read Sections 4.3–4.4 for the next lecture.

Problems

1. Parsing and Precedence
Draw parse tress for the following expressions, assuming the grammar and precedence described
in Example 4.2:

(a)
���������

.
(b)

���������
.

(c)
���	���
���	���
�

, if we give
�

higher precedence than
�

.

2. Lambda Calculus Reduction
Use lambda calculus reduction to find a shorter expression for ������ ����� ������������� ����� . Begin by renam-
ing bound variables. You should do all possible reductions to get the shortest possible expression.
What goes wrong if you do not rename bound variables?

3. Lambda Reduction with Sugar
Here is a “sugared” lambda-expression using let declarations:

����� �"!$#&%�!$'�(*) ��+,�"�.-��/�����"+��0-����2143�����657) �����8� � �9143�"!$#&%�!:';(�5&5=<

The “de-sugared” lambda-expression, obtained by replacing each �����?>@)BA 143.C by
��� > �"C?� A is

��� �"!$#&%�!$'�(�
��� 5 � �"!$#&%�!$'�(D5E5F< �G�����H� � �,�
��+,�"�.-��/�����"+��0-I�,�J�

This is written using the same variable names as the let-form in order to make it easier to read
the expression.
Simplify the desugared lambda expression using reduction. Write one or two sentences explain-
ing why the simplified expression is the answer you expected.

4. Translation into Lambda Calculus
A programmer is having difficulty debugging the following C program. In theory, on an “ideal”
machine with infinite memory, this program would run forever. (In practice, this program crashes
because it runs out of memory, since extra space is required every time a function call is made.)

int f(int (*g)(...)){ /* g points to a function that returns an int */
return g(g);

}

1

int main(){
int x;
x = f(f);
printf("Value of x = %d\n", x);
return 0;

}

Explain the behavior of the program by translating the definition of � into lambda calculus and
then reducing the application � � � � . This program assumes that the type checker does not check
the types of arguments to functions.

5. Denotational Semantics
The text describes a denotational semantics for the simple imperative language given by the
grammar � ���) �

�)���� �	��
��� ��������������� ��� ������� �� � �!�������"�$#�% �
Each program denotes a function from states to states, where a state is a function from variables
to values.

(a) Calculate the meaning &(' ' � �) �
 � �) � � �
*)) �,+.-:� in approximately the same detail as the ex-
amples given in the text, where +�-) �0/21436587:9�5<;>= (J' ��? giving every variable the value 0.

(b) Denotational semantics is sometimes used to justify ways of reasoning about programs.
Write a few sentences, referring to your calculation in part (a), explaining why

&(' ' � �) �
 � �) � ���
�)) ��+:�) &(' ' � �)A@
�))
��+:�

for every state + .
6. Denotational Semantics and Linux Bugs

This problem will discuss a nonstandard denotational semantics related to finding null-pointer
bugs. Dereferencing a NULL pointer will cause a segmentation fault, and in operating system
kernel code, this will generally cause the machine to reboot. Despite this disastrous effect, the
code for Linux may dereference pointers that are potentially NULL. Let’s take a look at an example
in the SCSI driver (drivers/scsi/hosts.c):

170: shn = (Scsi_Host_Name*) kmalloc(sizeof(Scsi_Host_Name), GFP_ATOMIC);
171: shn->name = kmalloc(hname_len + 1, GFP_ATOMIC);

Notice that the variable, shn, is immediately dereferenced after being assigned the return value
from kmalloc, the Linux memory allocator. If the call to kmalloc fails and returns NULL, this
code will produce a segmentation fault and cause your machine to reboot. Rebooting is not only
inconvenient, but an impediment to debugging since the state of the machine is lost. The code
should read:

170: shn = (Scsi_Host_Name*) kmalloc(sizeof(Scsi_Host_Name), GFP_ATOMIC);
171: if (shn != NULL)
172: shn->name = kmalloc(hname_len + 1, GFP_ATOMIC);

Your goal, in this problem, is to complete the definition of a denotational semantics that statically
analyzes C code to catch these kinds of null pointer errors in Linux kernel or related code.

(a) In denotational semantics, the meaning of each program is a function from states to states.
If we want to understand changes in the values of variables, then a state will be a mapping
from variables to values. In this problem, we want to keep track of whether a pointer has a

2

been set to something other than null. As in the semantics tracking uninitialized variables,
we also want to consider a program erroneous if an error appears anywhere in the program.
Fill in the blank in the definition of state for the semantics below:� ��� ���) � ��� �836587:9�5<;>= (�'��	��
�����!���������
 = = ���,!�����
 = = � �
Remember that Variables here include any pointer that can be dereferenced.

(b) The
�

operator on states is used to combine possible states that could arise at the same point
in the execution of the program. For example, if a program contains if (...)

�
...

�
;

else
�
...

� , then we do not know which branch will be taken at run time. Therefore, the
semantics will combine state ������� � arising from the “then” branch and �!� "$#%� arising from the
“else” branch and use state �����&�%� � ��� "$#%� as the program state after the if-then-else.
Fill in the blanks (column 3) of this table:� �

� �,� �
� ��� �'� � � �

��� �,�

unknown unknown

unknown null

unknown notnull

null null

null notnull

notnull notnull

This definition is part of what makes our analysis conservative in detecting errors. Recall
that a conservative analysis is one that allows an error to be reported in a program that
doesn’t necessarily have one, but assures that every program with an error will be reported
as such.

(c) Fill in the blanks of the given commands.

� � �)(' ' *),+)) �) - if . ' ' +)) �) ��/�/�0�/
modify �'� � * � � otherwise

� @ �)(' ' *)214365.���87�9 � � � � �)) �) modify ��� � * � �

� < �)(' ' � *)2:;5.�4<��)) �) => ? if . ' ' *)) �)
or . ' ' *)) �)� otherwise

�A@��B(' ' � �
 � @)) �) C �8D�D�%�D if (' ' � �)) �)(' ' � @)) � � otherwise

��E �B(2' ' 1 � ��*))2F�G�HIH � � � �.�;J � � @)) �) - (' ' � �)) modify ��� � � � �
� (' ' � @)) modify ��� � � � �

(d) Calculate the meaning of:

0: {
1: int* x;

3

2: x = kmalloc (4, GFP_ATOMIC);
3: if (x == NULL)
4: printf ("no mem\n");
5: else
6: *x = 5;
7: }

You may assume that statements and expressions that are not defined in our semantics have
no effect on the state (e.g., printf) and that the initial state has the variable, x, with the
value notnull. Show the main steps. You may use the line number in the commands instead
of writing out the entire code. For example, your first step will start out like this:(' ' � @
 � < ���)) �) � � � (Command #)

where L2 is line 2 (the statement with call to kmalloc) and L3-6 is lines 3 through 6 (the if
statement). Please use the numbers of the commands that we provide in your calculation.
When you apply the

�
operator, indicate that with (+) to the right of the calculation. Feel

free to rename states at various points in your calculation.
(e) Now assume that we add a new command:

� � �B(2' ' 3��&3 J ��� �A* ����� J 1�� � �)) �) (' ' � *)��)) �
for any value of size. Calculate the meaning of the following code, which is taken directly
from Linux 2.4.1 in net/sched/sch gred.c):

439: if (table->tab[table->def] == NULL)
{

440: table->tab[table->def] = kmalloc(sizeof(struct gred_sched_data),
441: GFP_KERNEL);
442: if (table->tab[ctl->DP] == NULL)
443: return -ENOMEM;
444:
445: memset(table->tab[table->def], 0, (sizeof(struct gred_sched_data)));

}

You may assume that the initial state, � , has variables mapped to values as follows:� � table->tab[table->def]�)
�I�4�,!4���� � table->tab[ctl->DP] �)
�I�4�,!4���
Again, statements and expressions that are not defined in our semantics have no effect on
the state. Show all steps as you did for the last part of the problem.

(f) If we change line 442 to:

if (table->tab[table->def] == NULL)

the bug in the code would be fixed.
Would your final state in part (e) change?
If your answer is yes, show your recalculation of the meaning. If your answer is no, explain
in one sentence how you must change the denotational semantics to demonstrate that the
bug has been fixed.

4

7. Lazy Evaluation and Parallelism
In a “lazy” language, a function call � � � � is evaluated by passing the unevaluated argument to
the function body. If the value of the argument is needed, then it is evaluated as part of the
evaluation of the body of � . For example, consider the function � defined by

fun � �A* � + � = if *) �
then �
else if * � +I) �

then @
else < ;

In a lazy language, the call � ��� ��� ��� � is evaluated by passing some representation of the expres-
sions < and @ � @ to � . The test *) � is evaluated using the argument < . If it were true, the
function would return

�
without ever computing @ � @ . Since the test is false, the function must

evaluate * � + , which now causes the actual parameter @ � @ to be evaluated. Some examples
of lazy functional languages are Miranda, Haskell and Lazy ML; these languages do not have
assignment or other imperative features with side effects.
If we are working in a pure functional language without side-effects, then for any function call� � � � ��� � , we can evaluate ��� before �
	 or �
	 before ��� . Since neither can have side-effects, neither
can affect the value of the other. However, if the language is lazy, we might not need to evaluate
both of these expression. Therefore, something can go wrong if we evaluate both expressions and
one of them does not terminate.
As Backus argues in his Turing Award lecture, an advantage of pure functional languages is
the possibility of parallel evaluation. For example, in evaluating a function call � � � � � � � we can
evaluate both �

�
and �

in parallel. In fact, we could even start evaluating the body of � in parallel

as well.

(a) Assume we evaluate � � � � ��� � by starting to evaluate � , �
�
, and �

in parallel, where � is

the function defined above. Is it possible that one process will have to wait for another to
complete? How can this happen?

(b) Now, suppose the value of �
�

is zero and evaluation of �

terminates with an error. In
the normal (i.e., eager) evaluation order that is used in C and other common languages,
evaluation of the expression � � � � ��� � will terminate in error. What will happen with lazy
evaluation? Parallel evaluation?

(c) Suppose you want the same value, for every expression, as lazy evaluation, but you want to
evaluate expressions in parallel to take advantage of your new pocket-sized multiprocessor.
What actions should happen, if you evaluate � � � � ��� � by starting � , �

�
, and �

in parallel, if

the value of �
�

is zero and evaluation of �

terminates in an error?
(d) Suppose, now, that the language contains side-effects. What if �

�
is > , and �

contains an

assignment to > . Can you still evaluate the arguments of � � � � ��� � in parallel? How? Or why
not?

5

