
CS242: Autumn 1999
December 9, 1999

CS 242 Final Exam

1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . True or False
Mark each statement true or false, as appropriate.

(a) A partial function from A to B is the same as a total function from
a subset of A to B.Answer: TRUE

(b) Lisp (cond (x y) (true z) is equivalent to ML if x then y
else z , assuming that x is a boolean expression and y and z are
expressions that would have the same ML type. Answer: TRUE

(c) The variable x occurs free in (λy.((λx. y) x)) z. Answer: TRUE

(d) α-conversion only changes the names of bound variables. Answer:
TRUE

(e) The ML type inference algorithm can compute a type for expres-
sions that do not contain type informations about the variables
that appear in them.Answer: TRUE

(f) Concurrent garbage collection can proceed in parallel without stop-
ping the program.Answer: FALSE

(g) The Java compiler was the first programming language implemen-
tation to compile source code to bytecode.Answer: FALSE

(h) Java interfaces are more general than C++ abstract classes.Answer:
FALSE

(i) Garbage collection is easier for Java than for C++ because all Java
objects are on the heap, while C++ allows objects on the stack.Answer:
FALSE

(j) The Java memory model (specifying how threads may interact us-
ing shared memory) is simple and easy to understand.Answer:
FALSE

Answer:

2. (8 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compile time and run time
For each of the following program properties, check compile-time or run time or neither,
as appropriate. More specifically, if the property can be determined by some algorithm
that is given the program text but not the program input, check compile time. If the
property cannot be determined at compile time, but all violations of the property can be
determined while the program is running on specific input, check run time.



Property Compile time Run time
All variables are initialized where they are declared
Program execution halts
All array references are within declared array bounds
All casts in a Java program succeed without raising an exception
A given C++ program is statically type correct
Every variable that is declared also appears in some expression
Return values from system calls are checked in calling statements
Two variable names refer to the same location

Answer:

Property Compile time Run time
All variables are initialized where they are declared X
Program execution halts
All array references are within declared array bounds X
All casts in a Java program succeed without raising an exception X
A given C++ program is statically type correct X
Every variable that is declared also appears in some expression X
Return values from system calls are checked in calling statements X
Two variable names refer to the same location X
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3. (12 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Answer
Answer each question in a few words or phrases.

(a) (2 points) Why is tail recursion elimination useful?
Answer: Reduce space requirement of calls to tail-recursive functions.

(b) (2 points) What operations are needed to construct a circular list in Lisp?
Answer: Side effects.

(c) (2 points) When would you choose to use ML instead of Lisp?
Answer: Type checking, more expressive data-structuring mechanisms, etc.

(d) (2 points) When are static fields of a Java class initialized?
Answer: At class load time.

(e) (2 points) A Java programmer can start garbage collection by calling System.gc()
or Runtime.gc() . Why would a programmer want to start garbage collection in-
stead of waiting until the system decides that garbage collection is needed?
Answer: If finalize methods free system resources, other do other useful clean-
up.

(f) (2 points) A Java programmer decides to call the garbage collector after every
function return, so that objects allocated by the call will be collected after the re-
turn. Will this collect all of the objects allocated by the function call? Why or why
not?
Answer: If pointer to an object is passed out of function scope, then this object will
nto be garbage collected.

4. (8 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions
Define the following terms, in one or two sentences each.

(a) object: Answer: (see glossary)

(b) subtype: Answer: (see glossary)

(c) dynamic lookup: Answer: (see glossary)

(d) class interface: Answer: (see glossary)

5. (11 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Denotational Semantics
Perl is a programming language that was designed for scanning text files and extracting
information from them. Perl is often used to write CGI scripts, which may run in privi-
leged mode. For this reason, Perl programmers may be concerned that tricky text input
might cause their program to make undesirable system calls.

The Perl implementation performs a set of security checks when it is run in taint mode.
Taint checks are designed to make sure that arguments to system calls are not controlled
by user input in certain ways. More specifically, command line arguments, environment
variables, results of certain system calls, and all file input are marked as “tainted”.
Tainted data may not be used directly or indirectly in any command that invokes a sub-
shell, nor in any command that modifies files, directories, or processes. For example, if
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system(e) causes Perl to pass the string argument e to a shell for parsing and execution,
then e must be untainted.

In general, any variable set to a value derived from tainted data will be considered
tainted. However, untainted information can be extracted from a tainted variable using
string matching operations. Intuitively, the reason for this is that the programmer is as-
sumed to use string-matching patterns that will avoid security problems. For example, if
an Perl command will write to a file, then string matching can be used to make sure that
only characters appear in the user-supplied filename. This allows the programmer to
protect against embedded shell commands and other security problems that a malicious
user might try to place inside a file name.

Since we do not expect you to know Perl, we will present a simplified version of Perl
taint checking as a nonstandard denotational semantics for an expression language.
The expressions of our example language are given by the grammar

e ::= var | cst | concat(e, e) |match(e, e)
var ::= x | y | z | . . .
cst ::= ”symbols”
symbols ::= ε | a symbols | b symbols | c symbols | . . .

In words, an expression is a variable, constant, or expression formed using one of the two
string functions, concat or match. A variable is a single letter like x, y, or z, and a constant
is a sequence of symbols enclosed in double quotes. A string of symbols is either empty
(indicated by ε in this grammar) or a symbol followed by a string of symbols. While only
letters a, b, c, . . . are listed here, assume that strings can also contain other symbols such
as “.” and “*”.

The value of an expression is always a string, but may be the empty string. The value of
concat(e1, e2) is the concatenation of the two strings, and the value of match(e1, e2) is the
substring of e2 that matches the pattern e1. When string e1 is regarded as a pattern, the
letters match themselves, and other symbols may have special meanings.

In the denotational semantics of these expressions, the meaning of an expression e is
a function V[[e]] from environments to values, where an environment is a mapping from
variables to values. The non-standard semantics we will use in this problem has the
standard form, but the set of values we will use is simplified to the two possible values,

Values = {taint , untaint}

The meanings of variables and constants are

V[[var ]](η) = η(var)
V[[cst ]](η) = untaint

In words, a variable may be tainted or untainted (depending on how it was set), but
a constant is always untainted. The reason for considering every constant untainted
is that a constant is written as part of the program, and therefore does not come from
user input. Since Perl tainting assumes that the programmer writes programs carefully,
string constants written by the programmer are considered untainted. As described
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above, a concatenation involving a tainted string is tainted, but matching an untainted
pattern against any expression gives an untainted value.

V[[concat(e1, e2)]]η =

{
tainted if V[[e1]]η = tainted or V[[e2]]η = tainted
untainted otherwise

V[[match(e1, e2)]]η =

{
tainted if V[[e1]]η = tainted and V[[e2]]η = tainted
untainted otherwise

Questions:

(a) (3 points) Show how to determine whether the expression match(”ab∗cd”, concat(x, y))
is tainted in environment η0 with η0(x) = tainted and η0(y) = untainted .
Answer: V[[match(”ab ∗ cd”, concat(x, y))]]η0 = untainted since V[[”ab ∗ cd”]]η0 =
untainted

(b) (2 points) Show how to determine whether the expression match(x, concat(y, z)) is
tainted in environment η1 with η1(x) = tainted and η1(y) = η1(z) = untainted .
Answer: V[[match(x, concat(y, z))]]η1 = untainted since V[[concat]]η1 = untainted

(c) (2 points) A weakness in Perl tainting is that any expression can be converted to
an untainted expression. Assuming that the pattern .∗ matches any string, write
an expression containing e that will have the same string value as e, but will always
be untainted, regardless of whether e is tainted.
Answer: match(”. ∗ ”, e2)

(d) (4 points) We can describe a more conservative tainting method by distinguish-
ing between constant e1 and untainted e1 in match(e1, e2). Write clauses that are
consistent with the discussion of tainting above, and that (i) allow a match against
a constant pattern to be untainted if cst 6= ”. ∗ ”, and (ii) make a match of a non-
constant pattern against a tainted string tainted.
Answer:

V[[match(cst , e2)]]η =

{
tainted if cst = ”. ∗ ”
untainted otherwise

V[[match(e1, e2)]]η =

{
tainted if V[[e2]]η = tainted
untainted otherwise

6. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ML Type Checking
Consider the following ML code:

fun foo(x) = x + 3;
fun bar(f) = f(2) + 3;
fun f(g,h) = g(h) + 2;

(a) (4 points) Assuming that + denotes integer addition, what are the types of:

foo
bar
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Answer: int->int ,(int->int)->int

(b) (6 points) Use the parse graph below to calculate the ML type for the function

fun f(g,h) = g(h) + 2;
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Answer: ((’a->int) * ’a)->int
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7. (16 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nested functions in C
In ML, LISP, and most other functional languages, it is legal to declare a “local function,”
i.e., a function defined within the scope of another function. For example, in LISP, you
might write:

(define f (lambda ()
(let* ((i 3)

(g (lambda () i)))
(print (g))
g)))

(define main (lambda () (print (funcall (f)))))

This small program declares a function f which declares a local variable i and a local
function g. The function g simply returns the value of i . When run this program will
print 3 twice.

Because f returns a function, this program contains an example of the “upward funarg
problem.” As we discussed, ML solves this problem by placing both the activation record
for the call to f and the closure for g on the heap.
In ANSI/ISO C, there are no local functions, so there is no way to write an equivalent
program in C. However, the Free Software Foundation’s C compiler (known as GNU
CC, or GCC) does allow local function declarations. Here’s how you could write the
equivalent program in GNU C:

#include <stdio.h>
typedef int (*fn_t)();
fn_t f(){

int i = 3;
int g(){return i;}
printf ("%d\n", g ());
return &g;

}
int main () {

printf ("%d\n", (*f())());
}

GCC compiles local functions in the usual way, except that references to the activation
record of an enclosing function are done via a static link, like in ML. A particular in-
stance of a local function is a piece of code (called a “trampoline”) placed on the stack,
that sets the static chain and jumps to the beginning of the code for the compiled func-
tion. The trampoline serves the same purpose as a closure. Unlike ML and LISP, how-
ever, GCC places both records and trampolines on the stack and makes no specific effort
to solve the upward funarg problem.

7



(a) (5 points) The output of the GNU C program above is:
3
-1073743424

Explain why this program does not print 3 twice, as you might expect. Where does
the second number come from?
Answer: The environment of g is popped off the stack. The second value is some
random data sitting in the location where the code for g expected to find the value
of i .

(b) (4 points) Why do ML and LISP deviate from stack (“last-in/first-out”) storage
management for closures and activation records?
Answer: Lisp and ML preserve the static environment of locally-declared functions
by keeping closures and activation records allocated until the program is no longer
able to call the functions that use them.

(c) (3 points) What might be some advantages of placing trampolines and activation
records on the stack, even when local functions are used?
Answer: Simplicity and efficiency of implementation. Specifically, if activation
records are not on the stack, you would have to use garbage collection or some
other mechanisms to later decide when to deallocate them.

(d) (2 points) Do you think the decision that the GNU C designers made, namely the
decision to place trampolines and activation records on the stack, is consistent with
the basic design goals of C? Why or why not?
Answer: Yes. This keeps function calls efficient. It is also consistent with other C
design decisions to just do whatever is efficient and let the programmer figure out
how to cope.

(e) (2 points) Ignoring efficiency, what basic property of C would make it difficult to
use the kind of memory management techniques that are used in Lisp and ML?
Answer: Cannot do garbage collection easily in C if pointers are not distinct from
data.

8. (15 points) . . . . . . . . . . . . . . . . Data Representation in Scheme and Java
In Lisp, Scheme, and ML, polymorphism requires a uniform representation of data. In
Lisp and Scheme, for example, the car and cdr of a cons cell may contain any value of
any type, This means that values of any type must be able to fit into the storage allocated
for the slots of the cons cell. Since the parameter of a function can have any type, the
code implementing a function call must similarly be able to accept any type of value.
Lisp, Scheme, and ML implementations solve the one-size-fits-all problem by represent-
ing all values with exactly one machine word:

• If a value is smaller than a single word, then some bits are set in a specific pattern
that identifies the type of the value. For example, some Scheme implementations
represent data such as characters, 30-bit integers, the empty list, and booleans as
32-bit patterns whose least-significant bit is zero. The next bit is zero if the 32-bit
pattern represents a 30-bit integer. Otherwise, the second least-significant bit is
one and the next six bits are used to provide the type information, leaving three
bytes for the actual data.
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• If a value is larger than a single word (e.g., a cons cell or double-precision floating-
point number), it is ”boxed” – that is, the actual data for the value is stored in
memory, and the value is represented by a pointer to that region of memory.

(a) (2 points) Why do you think that the small-integer type tag bits are “00”? (Hint:
How does this make integer addition easier to compute on stock hardware?)
Answer: Can use standard addition from underlying machine. If “01” were used,
would have to modify the value before and after the addition is performed.

(b) (2 points) How would you compute the product of two small integers, if the least-
significant bits of the data representation are two zeros that are not part of the
numeric value?
Answer: Multiplication requires one normalizing shift before the multiply.

(c) (2 points) Why do you think type tags are needed for Scheme data values?
Answer: Run-time type testing, garbage collection.

(d) (2 points) Do you think ML needs more or less run-time type information than
Scheme? Why?
Answer: Less, due to the static type system. You only need to distinguish pointers
from non-pointers.

(e) (3 points) Suppose we wish to compile Lisp or Scheme source code to bytecode that
will run on the Java virtual machine. One way to tag values is to represent different
types of values as sub-classes of the Java Object class. For example, small integers
could be represented as Java Int objects. The Java virtual machine provides run-
time tests that determine whether an object is of a given sub-class. This could
be used to perform the run-time type tests as needed. Do you think this will be
acceptably efficient? Why or why not?
Answer: Without in-word tags, the boxing/unboxing costs for small data can swamp
the actual cost of computing. For example, adding two small integers would involve
two memory fetches to unbox the addends, an add instruction, and then an alloca-
tion to box the new value. Also there is a method call for each operation. String and
character processing will have similar overheads. In short, while large, composite
data structures remain fairly efficient, it becomes much more expensive to compute
with the primitive scalar data values.

(f) (2 points) What extensions to the Java virtual machine might make it easier to
compile languages like Lisp, Scheme, and ML to Java bytecode? Only consider
extensions that will not effect the way that existing Java bytecode programs are
executed?
Answer: Add new bytecodes that allow basic data to be tagged.

(g) (2 points) Name one feature common to Lisp, Scheme and ML that is not related
to integers or strings and that will be difficult to compile to Java.
Answer: Function arguments and results.

9. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Java and C++ Array Subtyping
In the following Java code, class B is a subclass of A. The Java static type checker there-
fore considers B arrays a subtype of A arrays. As a result, the following program fragment
would be pass the type-checking phase and be compiled to executable bytecode.
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class A { ... };
class B extends A { ... };
B[] bArray = new B[10];
A[] aArray = bArray;
A x = new A();
if ( ... ) x = new B();
aArray[5] = x;

In addition to asking about type checking for this Java code, this question asks about
the following C++ code which uses the equivalence between arrays and pointers to pass
an array to a function.

class A {...};
class B : public A {...};
void f(A* b){b[13]=b[12];}
B friday[100];
f(friday);

(a) (3 points) Explain why line 4 of the Java code, A[] aArray = bArray; is con-
sidered well-typed in Java.
Answer: In Java, if B <: A then the type checker considers B[] <: A[] .

(b) (3 points) Under what conditions could the assignment aArray[5] = x; lead to
a run-time type error? Explain.
Answer: If x points to an A object. The problem is not that an A object can be
reached through aArray . The problem is that the static type of bArray is B[] and
bArray now contains an object that is not of type B.

(c) (1 point) What does Java do to manage this problem with the assignment aArray[5]
= x?
Answer: The Java compiler inserts a run-time type check at the assignment aArray[5]
= x .

(d) (1 point) If this Java code were translated into C++, would the type checker accept
it? Why or why not (in a few words)?
Answer: In C++, the analog of this Java code would not type check since C++ does
not use array subtyping.

(e) (2 points) The C++ code above illustrates a different example of subtyping, where
array types and pointer types are used. Explain why the assignment b[13]=b[12]
could lead to errors when friday is used after the call to f(friday) . (Hint: which
element of friday is changed by the assignment in the body of f ?)
Answer: The assignment uses the size of A objects to index into an array of B
objects. As a result, the assignment may copy the contents of memory locations that
contain part of a B object into memory that previously contained part of another B
objects, without respecting the layout of these objects. More specifically, b[13] =
*(b + B * sizeof(B)) , which is less than A[13] .

10


