
1

Control in Sequential Languages

John Mitchell

CS 242
Topics

uStructured Programming
• Go to considered harmful

uExceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

uContinuations
• Function representing the rest of the program

• Generalized form of tail recursion

uControl of evaluation order (force and delay)
• May not cover in lecture. Book section straightforward.

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

Similar structure may occur in assembly code

Historical Debate

uDijkstra, Go To Statement Considered Harmful
• Letter to Editor, C ACM , March 1968

• Link on CS242 web site

uKnuth, Structured Prog. with go to Statements
• You can use goto, but do so in structured way …

uContinued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

uGeneral questions
• Do syntactic rules force good programming style?
• Can they help?

Advance in Computer Science

uStandard constructs that structure jumps
if … then … else … end

while … do … end
for … { … }

case …

uModern style
• Group code in logical blocks

• Avoid explicit jumps except for function return
• Cannot jump into middle of block or function body

Exceptions: Structured Exit

uTerminate part of computation
• Jump out of construct

• Pass data as part of jump
• Return to most recent site set up to handle exception

• Unnecessary activation records may be deallocated
– May need to free heap space, other resources

uTwo main language constructs
• Declaration to establish exception handler

• Statement or expression to raise or throw exception

Often used for unusual or exceptional condition, but not necessarily

2

ML Example

exception Determinant; (* declare exception name *)
fun invert (M) = (* function to invert matrix *)

…
if …

then raise Determinant (* exit if Det=0 *)
else …

end;
...

invert (myMatrix) handle Determinant => … ;

Value for expression if determinant of myMatrix is 0

C++ Example

Matrix invert(Matrix m) {
if … throw Determinant;

…
};

try { … invert(myMatrix); …

}
catch (Determinant) { …

// recover from error
}

C++ vs ML Exceptions

uC++ exceptions
• Can throw any type

• Stroustrup: “I prefer to define types with no other purpose
than exception handling. This minimizes confusion about their
purpose. In particular, I never use a built-in type, such as int, as
an exception.” -- The C++ Programming Language, 3rd ed.

uML exceptions
• Exceptions are a different kind of entity than types.

• Declare exceptions before use

Similar, but ML requires the recommended C++ style.

ML Exceptions

uDeclaration
exception 〈name〉 of 〈 type〉

gives name of exception and type of data passed when raised

uRaise
raise 〈name〉 〈parameters〉

expression form to raise and exception and pass data

uHandler
〈exp1〉 handle 〈pattern〉 => 〈exp2〉

evaluate first expression
if exception that matches pattern is raised,

then evaluate second expression instead
General form allows multiple patterns.

Which handler is used?

exception Ovflw;
fun reciprocal(x) =

if x<min then raise Ovflw else 1/x;

(reciprocal(x) handle Ovflw=>0) / (reciprocal(y) handle Ovflw=>1);

uDynamic scoping of handlers
• First call handles exception one way
• Second call handles exception another

• General dynamic scoping rule
Jump to most recently established handler on run-time stack

uDynamic scoping is not an accident
• User knows how to handler error

• Author of library function does not

Exception for Error Condition

- datatype ‘a tree = LF of ‘a | ND of (‘a tree)*(‘a tree)
- exception No_Subtree;

- fun lsub (LF x) = raise No_Subtree
| lsub (ND(x,y)) = x;

> val lsub = fn : ‘a tree -> ‘a tree

• This function raises an exception when there is no
reasonable value to return

• We’ll look at typing later.

3

Exception for Efficiency

u Function to multiply values of tree leaves
fun prod(LF x) = x

| prod(ND(x,y)) = prod(x) * prod(y);

uOptimize using exception
fun prod(tree) =

let exception Zero
fun p(LF x) = if x=0 then (raise Zero) else x

| p(ND(x,y)) = p(x) * p(y)
in

p(tree) handle Zero=>0
end;

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

scope

handler

Which handler is used?

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

handler X 6

formal h
handler X 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Dynamic scope:
find first X handler,
going up the
dynamic call chain
leading to raise X.

handler X 4
access link

Compare to static scope of variables

exception X;

(let fun f(y) = raise X
and g(h) = h(1)

handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

val x=6;

(let fun f(y) = x
and g(h) = let val x=2 in

h(1)
in

let val x=4 in g(f)
end);

Static Scope of Declarations

val x=6;
(let fun f(y) = x

and g(h) = let val x=2 in
h(1)

in
let val x=4 in g(f)

end);

val x 6

formal h
val x 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Static scope: find
first x, following
access links from
the reference to X.

val x 4
access link

Typing of Exceptions

uTyping of raise 〈exn〉
• Recall definition of typing

– Expression e has type t if normal termination of e
produces value of type t

• Raising exception is not normal termination
– Example: 1 + raise X

uTyping of handle 〈exn〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement

• Examples
– 1 + ((raise X) handle X => e) Type of emust be int
– 1 + (e1 handle X => e2) Type of e1, e2 must be int

4

Exceptions and Resource Allocation

exception X;
(let

val x = ref [1,2,3]
in

let
val y = ref [4,5,6]

in
… raise X

end
end); handle X => ...

uResources may be
allocated between
handler and raise
uMay be “garbage”

after exception
uExamples

• Memory
• Lock on database

• Threads
• …

General problem: no obvious solution

Continuations

uGeneral technique using higher-order functions
• Allows “jump” or “exit” by function call

uUsed in compiler optimization
• Make control flow of program explicit

uGeneral transformation to “tail recursive form”
uIdea:

• The continuation of an expression is “the remaining
work to be done after evaluating the expression”

• Continuation of e is a function applied to e

Example of Continuation Concept

uExpression
• 2*x + 3*y + 1/x + 2/y

uWhat is continuation of 1/x?
• Remaining computation after division

let val before = 2*x + 3*y
fun continue(d) = before + d + 2/y

in
continue (1/x)

end

Example: Tail Recursive Factorial

uStandard recursive function
fact(n) = if n=0 then 1 else n*fact(n-1)

uTail recursive
f(n,k) = if n=0 then k else f(n-1, n*k)
fact(n) = f(n,1)

uHow could we derive this?
• Transform to continuation-passing form

• Optimize continuation functions to single integer

Continuation view of factorial

fact(n) = if n=0 then 1 else n*fact(n-1)

fact(9)

fact(8)

fact(7)

• This invocation multiplies by 9
and returns

• Continuation of fact(8) is λx. 9*x

• Multiplies by 8 and returns
• Continuation of fact(7) is

λy. (λx. 9*x) (8*y)

• Multiplies by 7 and returns
• Continuation of fact(6) is

λz. (λy. (λx. 9*x) (8*y)) (7*z)

return
n 9
...

return
n 8
...

return
n 7
...

Derivation of tail recursive form

uStandard function
fact(n) = if n=0 then 1 else n*fact(n-1)

uContinuation form
fact(n, k) = if n=0 then k(1)

else fact(n-1, λx.k (n*x))

fact(n, λx.x) computes n!

uExample computation

fact(3,λx.x) = fact(2, λy .((λx.x) (3*y)))

= fact(1, λx.((λy .3*y)(2*x)))

= λx.((λy .3*y)(2*x)) 1 = 6

continuation

5

Tail Recursive Form

uOptimization of continuations
fact(n,a) = if n=0 then a

else fact(n-1, n*a)

Each continuation is effectively λx.(a*x) for some a

uExample computation
fact(3,1) = fact(2, 3) was fact(2, λy .3*y)

= fact(1, 6) was fact(1, λx.6*x)

= 6

Other uses for continuations

uExplicit control
• Normal termination -- call continuation

• Abnormal termination -- do something else

uCompilation techniques
• Call to continuation is functional form of “go to”

• Continuation-passing style makes control flow explicit

MacQueen: “Callcc is the closest thing to a

‘come-from’ statement I’ve ever seen.”

Theme Song: Charlie on the MTA

u Let me tell you the story
Of a man named Charlie
On a tragic and fateful day
He put ten cents in his pocket,
Kissed his wife and family
Went to ride on the MTA

u Charlie handed in his dime
At the Kendall Square Station
And he changed for Jamaica Plain
When he got there the conductor told him,
"One more nickel."
Charlie could not get off that train.

u Chorus:
Did he ever return,
No he never returned
And his fate is still unlearn'd
He may ride forever
'neath the streets of Boston
He's the man who never returned.

Capturing Current Continuation

uLanguage feature (use open SMLofNJ; on Leland)

• callcc : call a function with current continuation

• Can be used to abort subcomputation and go on

uExamples
• callcc (fn k => 1);

> val it = 1 : int
– Current continuation is “fn x => print x”
– Continuation is not used in expression.

• 1 + callcc(fn k => 5 + throw k 2);
> val it = 3 : int

– Current continuation is “fn x => print 1+x”
– Subexpression throw k 2 applies continuation to 2

More with callcc

uExample
1 + callcc(fn k1=> …

callcc(fn k2 => …
if … then (throw k1 0)

else (throw k2 “stuck”)
))

uIntuition
• Callcc lets you mark a point in program that you can return to
• Throw lets you jump to that point and continue from there

Example

u Pass two continuations and choose one
fun f(x,k1,k2) = 3 + (if x>0 then throw k1(x)

else throw k2(x));
fun g(y,k1) = 2 + callcc(fn k2 => f(y,k1,k2));

fun h(z) = 1 + callcc(fn k1 => g(z+1,k1));

h(1);
h(~2);

Answers: h(1) ⇒ 3 h(~2) ⇒ 2

6

Continuations in Mach OS

uOS kernel schedules multiple threads
• Each thread may have a separate stack

• Stack a blocked thread is stored within the kernel

uMach “continuation” approach
• Blocked thread represented as

– Pointer to a continuation function, list of arguments
– Stack is discarded when thread blocks

• Programming implications
– Sys call such as msg_recv can block
– Kernel code calls msg_recv with continuation passed as arg

• Advantage/Disadvantage
– Saves a lot of space, need to write “continuation” functions

Continuations in compilation

uSML continuation-based compiler [Appel, Steele]
1) Lexical analysis, parsing, type checking

2) Translation to λ-calculus form
3) Conversion to continuation-passing style (CPS)

4) Optimization of CPS
5) Closure conversion – eliminate free variables

6) Elimination of nested scopes
7) Register spilling – no expression with >n free vars

8) Generation of target assembly language program
9) Assembly to produce target-machine program

Coroutines
u Homework Problem 8

datatype tree = leaf of int | node of tree*tree;

datatype coA = A of (int* coB) cont (* searchA wants int and B-cont*)
and coB = B of coA cont; (* searchB wants an A-continuation *)

fun resumeA(x, A k) = callcc(fn k' => throw k (x, B k'));
fun resumeB(B k) = callcc(fn k' => throw k (A k'));
exception DISAGREE; exception DONE;

fun searchA(leaf(x),(y, other: coB)) =
if x=y then resumeB(other) else raise DISAGREE

| searchA(node(t1,t2), other) = searchA(t2, searchA(t1, other));

fun searchB(leaf(x), other : coA) = resumeA(x,other)
| searchB(node(t1,t2), other) = searchB(t2, searchB(t1, other));

fun startB(t: tree) = callcc(fn k => (searchB(t, A k); raise DONE));
fun compare(t1,t2) = searchA(t1, startB(t2));

Summary

uStructured Programming
• Go to considered harmful

uExceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

uContinuations
• Function representing the rest of the program

• Generalized form of tail recursion
• Used in Lisp, ML compilation

