CS 242

Types

o T A TS L S Tt S S BT S S B T S AR

John Mitchell

Type

o TS A TSR S T S S £ BT S S B TS AL AL

A type is a collection of computable values that
share some structural property.

@ Examples @ “Non-examples”
* Integers e {3, true, | x.x}
e Strings « Even integers
e int ® bool e {fiint® int | if x>3

- (int ® int) ® bool then f(x) > x*(x+1)}

Distinction between types and non-types is language
dependent.

Uses for types

o TS A TSR S T S S £ BT S S B TS AL AL

@ Program organization and documentation
« Separate types for separate concepts
— Represent concepts from problem domain
 Indicate intended use of declared identifiers
— Types can be checked, unlike program comments
@ Identify and prevent errors
« Compile-time or run-time checking can prevent
meaningless computations such as 3 + true - “Bill”
@ Support optimization
« Example: short integers require fewer bits
« Access record component by known offset

Type errors

o TS A TSR S T S S £ BT S S B TS AL AL

@ Hardware error
« function call x() where x is not a function

e may cause jump to instruction that does not contain
a legal op code

@ Unintended semantics
 int_add(3, 4.5)
« not a hardware error, since bit pattern of float 4.5
can be interpreted as an integer
e just as much an error as x() above

General definition of type error

o TS A TSR S T S S £ BT S S B TS AL AL

@ A type error occurs when execution of program
is not faithful to the intended semantics

@ Do you like this definition?
« Store 4.5in memory as a floating-point number
— Location contains a particular bit pattern
« To interpret bit pattern, we need to know the type
< If we pass bit pattern to integer addition function,
the pattern will be interpreted as an integer pattern
— Type error if the pattern was intended to represent 4.5

Compile-time vs run-time checking
@ Lisp uses run-time type checking
(car x) check first to make sure x is list
@ ML uses compile-time type checking
f(x) must have f: A® Band x: A
@ Basic tradeoff
* Both prevent type errors
* Run-time checking slows down execution

« Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type

Expressiveness
@ In Lisp, can write function like
(lambda (x) (cond ((less x 10) x) (T (car x))))
@ Static typing always conservative
if (big-hairy-boolean-expression)
then 3+5
else 4+true

Cannot determine statically whether error will occur at run-time

Relative type-safety of languages

o TS A TSR S T S S £ BT S S B TS AL AL

@ Not safe: BCPL family, including C and C++
e Casts, pointer arithmetic

@ Almost safe: Algol family, Pascal, Ada.
« Dangling pointers.

— Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p

— No language with explicit deallocation of memory is fully
type-safe

@ Safe: Lisp, ML, Smalltalk, and Java
e Lisp, Smalltalk: dynamically typed
e ML, Java: statically typed

Type checking and type inference
@ Standard type checking

int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2;};

» Look at body of each function and use declared types
of identifies to check agreement.

@ Type inference
NEOF(IAtX) { return x+1; };
%Q(%y) { return f(y+1)*2;};

« Look at code without type information and figure out
what types could have been declared.

ML is designed to make type inference tractable.

ML Type Inference

o TS A TSR S T S S £ BT S S B TS AL AL

®Example
- fun f(x) = 2+x;
>valit="fn:int® int
® How does this work?
e + has two types: int*int ® int, real*real® real
e 2 :int has only one type
e This implies + : int*int ® int
e From context, need x: int
e Therefore f(x:int) = 2+x has type int ® int

Overloaded + is unusual. Most ML symbols have unique type.

Ty CaSE STty pe Ty b oty ToT e

Another presentation
¥ Example
- fun f(x) = 2+x; Graph for | x. ((plus 2) x)
>valit=fn:int® int
@ How does this work?

® int = int® int

) int (t=int)
Assign types to leaves

Propagate to internal
nodes and generate
constraints

t® int X -

+ 2:int
int*int ® int

o real*real® real
Solve by substitution

Application and Abstraction

o TS A TSR S T S S £ BT S S B TS AL AL

%szt@r) /I s®t

@ Application @ Function expression
« f must have function type = Type is function type
domain® range domain® range
« domain of f must be type « Domain is type of variable x

of argument x Range is type of function
« result type is range of f body e

Types with type variables
¥ Example

- funf(g) = 9(2);
>valit=fn: (int® t)® t

How does this work?

Graph for | g. (g 2)

@t = (iN@ et

(s =int®t)
Assign types to leaves

Propagate to internal g:s 2 1int
nodes and generate
constraints

Solve by substitution

Use of Polymorphic Function

o TS A TSR S T S S £ BT S S B TS AL AL

@ Function
- fun f(9) = 9(2);
>valit=fn: (int® t)® t

@ Possible applications
- fun add(x) = 2+x; - funisEven(x) = ...;
>valit="fn:int® int >val it =fn : int® bool
- f(add); - f(isEven);
>valit=4:int > val it = true : bool

Recognizing type errors
@ Function
- funf(g) = 9(2);
>valit=fn: (int® t)® t
@ Incorrect use
- fun not(x) = if x then false else true;
>val it = fn : bool ® bool
- f(not);

Type error: cannot make bool ® bool =int® t

Another Type Inference Example
@ Function Definition

- fun f(g.x) = g(9(x));
>valit=fn: (t® t)*t® t

@ Type Inference

Graph for | &, g(g x)

Assign types to leaves

Propagate to internal
nodes and generate
constraints

Solve by substitution

Polymorphic Datatypes

o TS A TSR S T S S £ BT S S B TS AL AL

ODatatype with type variable ais syntax for “type variable a”
- datatype ‘a list = nil | cons of ‘a*(‘a list)
> nil : ‘a list
> cons : ‘a*(‘a list) ® ‘a list
@ Polymorphic function
- fun length nil =0
| length (cons(x,rest)) = 1 + length(rest)
> length : ‘alist ® int
@ Type inference
« Infer separate type for each clause

= Combine by making two tynes equial (if necessary)

Type inference with recursion

o TS A TSR S T S S £ BT S S B TS AL AL

@ Second Clause
length(cons(x,rest)) =
1 + length(rest)
@ Type inference
* Assign types to

leaves, including

: s i
function name : ‘a*a list
® ‘a list

list®int =t

cons

1 lenght rest

- Proceed as usual it

* Add constraint that
type of function body
= type of function
name We do not expect you to master this.

Main Points about Type Inference

o TS A TSR S T S S £ BT S S B TS AL AL

@ Compute type of expression
« Does not require type declarations for variables
« Find most general type by solving constraints
e Leads to polymorphism
@ Static type checking without type specifications
@ May lead to better error detection than ordinary
type checking

* Type may indicate a programming error even if there
is no type error (example following slide).

Information from type inference

o TS A TSR S T S S £ BT S S B TS AL AL

@ An interesting function on lists
fun reverse (nil) = nil
| reverse (x::lst) = reverse(Ist);
@ Most general type
reverse : ‘a list ® ‘b list
@ What does this mean?

Since reversing a list does not change its type,
there must be an error in the definition of
“reverse”

Polymorphism vs Overloading

o TS A TSR S T S S £ BT S S B TS AL AL

@ Parametric polymorphism
« Single algorithm may be given many types
« Type variable may be replaced by any type
e f:t®t =>f:int®int, f: bool® bool, ...
@ Overloading
« A single symbol may refer to more than one algorithm
« Each algorithm may have different type
« Choice of algorithm determined by type context
* Types of symbol may be arbitrarily different
e + has types int*int® int, real*real® real, no others

ML Overloading

o TS A TSR S T S S £ BT S S B TS AL AL

@ Some predefined operators are overloaded

@ User-defined functions must have unique type
- fun plus(x,y) = x+vy;
> Error: overloaded variable cannot be resolved: +
@ Why is a unique type needed?
* Need to compile code b need to know which +
 Efficiency of type inference
« Aside: General overloading is NP-complete
Two types, true and false

Overloaded functions
and : {true*true® true, false*true® false, ...}

Main Points about ML

o TS A TSR S T S S £ BT S S B TS AL AL

@ General-purpose procedural language

* We have looked at “core language” only

« Also: abstract data types, modules, concurrency,....
@ Well-designed type system

* Type inference

e Polymorphism

« Reliable -- no loopholes

e Limited overloading

e Q: what is cost associated with polymorphism?
Compare: C++ templates are expanded at compile-time

o TS A TSR S T S S £ BT S S B TS AL AL

