
1

Review

John Mitchell

CS 242

Final Exam
Thursday December 12

3:30-6:30 PM
TCSEQ200

Course Goals

uUnderstand how programming languages work
uAppreciate trade-offs in language design
uBe familiar with basic concepts so you can

understand discussions about
• Language features you haven’t used
• Analysis and environment tools
• Implementation costs and program efficiency
• Language support for program development

There are many programming languages

uEarly languages
• Fortran, Cobol, APL, ...

uAlgol family
• Algol 60, Algol 68, Pascal, …, PL/1, … Clu, Ada, Modula,

Cedar/Mesa, ...

uFunctional languages
• Lisp, FP, SASL, ML, Miranda, Haskell, Scheme, Setl, ...

uObject-oriented languages
• Smalltalk, Self, Cecil, …
• Modula-3, Eiffel, Sather, …
• C++, Objective C, …. Java

uConcurrent languages
• Actors, Occam, ...
• Pai-Lisp, …

uProprietary and special purpose languages
• TCL, Applescript, Telescript, ...
• Postscript, Latex, RTF, …
• Domain-specific language

uSpecification languages
• CORBA IDL, ...
• Z, VDM, LOTOS, VHDL, …

General Themes in this Course

uLanguage provides an abstract view of machine
• We don’t see registers, length of instruction, etc.

uThe right language can make a problem easy;
wrong language can make a problem hard
• Could have said a lot more about this

uLanguage design is full of difficult trade-offs
• Expressiveness vs efficiency, ...
• Important to decide what the language is for

Good languages designed with specific
goals (often an intended application)

• C: systems programming
• Lisp: symbolic computation, automated reasoning
• FP: functional programming, algebraic laws
• ML: theorem proving
• Clu, ML modules: modular programming
• Simula: simulation
• Smalltalk: Dynabook,
• C++: add objects to C
• Java: set-top box, internet programming

2

A good language design presents abstract
machine, an idealized view of computer

• Lisp: cons cells, read-eval-print loop
• FP: ??
• ML: functions are basic control structure, memory model

includes closures and reference cells
• C: the underlying machine + abstractions
• Simula: activation records and stack; object references
• Smalltalk: objects and methods
• C++: ??
• Java: Java virtual machine

Design Issues

uLanguage design involves many trade-offs
• space vs. time
• efficiency vs. safety
• efficiency vs. flexibility
• efficiency vs. portability
• static detection of type errors vs. flexibility
• simplicity vs. "expressiveness" etc

uThese must be resolved in a manner that is
• consistent with the language design goals
• preserves the integrity of abstract machine

uIn general, high-level languages/features are:
• slower than lower-level languages

– C slower than assembly
– C++ slower than C
– Java slower than C++

• provide for programs that would be
difficult/impossible otherwise

– Microsoft Word in assembly language?
– Extensible virtual environment without objects?

Many program properties are undecidable
(can't determine statically)

• Halting problem
• nil pointer detection
• alias detection
• perfect garbage detection
• etc.

Static type systems
• detect (some) program errors statically
• can support more efficient implementations
• are less flexible than either no type system or a

dynamic one

Some language features go together well

• garbage collection and exception mechanisms
• garbage collection and first-class functions

Languages are still evolving

• Object systems
• Adoption of garbage collection
• Concurrency primitives; abstract view of concurrent

systems
• Domain-specific languages
• Network programming

3

Summary of Course

uLisp, 1960
uFundamentals

• lambda calculus
• denotational semantics
• functional prog

uML and type systems
uBlock structure and

activation records
uExceptions and

continuations

uModularity and
Abstractions
uOO concepts

• encapsulation
• dynamic lookup
• subtyping
• inheritance

uSimula and Smalltalk
uC++
uJava
uConcurrency

Lisp Summary

uSuccessful language
• Symbolic computation, experimental programming

uSpecific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Idea of garbage collection.

Fundamentals

uGrammars, parsing
uLambda calculus
uDenotational semantics
uFunctional vs. Imperative Programming

• Is implicit parallelism a good idea?
• Is implicit anything a good idea?

Algol Family and ML

uEvolution of Algol family
• Recursive functions and parameter passing
• Evolution of types and data structuring

uML: Combination of Lisp and Algol-like features
• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions

Goals in study of ML

uSurvey a modern procedural language
uDiscuss general programming languages issues

• Types and type checking
– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management
– Static scope and block structure
– Function activation records, higher-order functions

• Control
– Force and delay
– Exceptions
– Tail recursion and continuations

Main Points about ML

uGeneral-purpose procedural language
• We have looked at “core language” only
• Also: abstract data types, modules, concurrency,….

uWell-designed type system
• Type inference
• Polymorphism
• Reliable -- no loopholes
• Limited overloading
• Q: what is cost associated with polymorphism?

Compare: C++ templates are expanded at compile-time

4

Block structure and storage mgmt

uBlock-structured languages and stack storage
uIn-line Blocks

• activation records
• storage for local, global variables

uFirst-order functions
• parameter passing
• tail recursion and iteration

uHigher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Summary of scope issues

uBlock-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …
• Also pointers to enclosing scope

uSeveral different parameter passing mechanisms
uTail calls may be optimized
uFunction parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call
• Closures not needed if functions not in nested blocks

Control

uStructured Programming
• Go to considered harmful

uExceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

uContinuations
• Function representing the rest of the program
• Generalized form of tail recursion

Modularity and Data Abstraction

uStep-wise refinement and modularity
• History of software design

uLanguage support for information hiding
• Abstract data types
• Datatype induction
• Packages and modules

uGeneric abstractions
• Datatypes and modules with type parameters
• Design of STL

Concepts in OO programming

uFour main language ideas
• Encapsulation
• Dynamic lookup
• Subtyping
• Inheritance

uWhy OOP ?
• Extensible abstractions; separate interface from impl

uCompare oo to conventional (non-oo) lang
• Can represent encapsulation and dynamic lookup
• Need inheritance and subtyping as basic constructs

Simula 67

uFirst object-oriented language
uDesigned for simulation

• Later recognized as general-purpose prog language

uExtension of Algol 60
uStandardized as Simula (no “67”) in 1977
uInspiration to many later designers

• Smalltalk
• C++
• ...

5

Objects in Simula

uClass
• A procedure that returns a pointer to its activation record

uObject
• Activation record produced by call to a class

uObject access
• Access any local variable or procedures using dot

notation: object.

uMemory management
• Objects are garbage collected
• Simula Begin pg 48-49: user destructors undesirable

Smalltalk

uMajor language that popularized objects
uDeveloped at Xerox PARC 1970’s (Smalltalk-80)

uObject metaphor extended and refined
• Used some ideas from Simula, but very different lang
• Everything is an object, even a class
• All operations are “messages to objects”
• Very flexible and powerful language

– Similar to “everything is a list” in Lisp, but more so

uMethod dictionary and lookup procedure
• Run-time search; no static type system

uIndependent subtyping and inheritance

C++

uDesign Principles: Goals, Constraints

uObject-oriented features
• Some good decisions, some problem areas

uClasses, Inheritance and Implementation
• Base class and Derived class (inheritance)
• Run-time structures: offset known at compile time

uSubtyping
• Subtyping principles
• Abstract base classes
• Specializing types of public members

uMultiple Inheritance

uHi Professor Mitchell,
uI was hoping you could review the following two

in today's review lecture:
• 1. function subtyping (especially contravariance) with

examples. Also in context of C++ and Java and their
design choices regarding contravariance.

• 2. Multiple inheritance vtable structure in C++, how
'delta' is used.

uThanks!
Ashmi

Examples

uIf circle <: shape, then

C++ compilers recognize limited forms of function subtyping

circle → shape

shape → shape circle → circle

shape → circle

Subtyping with functions

uIn principle: can have ColorPoint <: Point

uIn practice: some compilers allow, others have not
This is covariant case; contravariance is another story

class Point {
public:

int getX();

virtual Point *move(int);
protected: ...

private: ...

};

class ColorPoint: public Point {
public:

int getX();
int getColor();
ColorPoint * move(int);
void darken(int);

protected: ...
private: ...

};

Inherited, but repeated
here for clarity

6

Java function subtyping

uSignature Conformance
• Subclass method signatures must conform to those of

superclass

uArgument types, Return type, Exceptions:
How much conformance is really needed?

uJava rule
• Arguments and returns must have identical types,

may remove exceptions

vtable for Multiple Inheritance

class A {
public:

int x;
virtual void f();

};
class B {

public:
int y;
virtual void g();
virtual void f();

};

class C: public A, public B {
public:

int z;
virtual void f();

};

C *pc = new C;
B *pb = pc;
A *pa = pc;

Three pointers to same object,
but different static types.

Object and classes

uOffset δ in vtbl is used in call to pb->f, since C::f may
refer to A data that is above the pointer pb

uCall to pc->g can proceed through C-as-B vtbl

C object

C

A B

vptr

B data

vptr

A data

C data

B object

A object
& C::f 0

C-as-A vtbl

C-as-B vtbl

& B::g 0

& C::f δ

δ
pa, pc

pb

Java Summary

uObjects
• have fields and methods
• alloc on heap, access by pointer, garbage collected

uClasses
• Public, Private, Protected, Package (not exactly C++)
• Can have static (class) members
• Constructors and finalize methods

uInheritance
• Single inheritance
• Final classes and methods

Java Summary (II)

uSubtyping
• Determined from inheritance hierarchy
• Class may implement multiple interfaces

uVirtual machine
• Load bytecode for classes at run time
• Verifier checks bytecode
• Interpreter also makes run-time checks

– type casts
– array bounds
– …

• Portability and security are main considerations

Concurrency

uConcurrent programming requires
• Ability to create processes (threads)
• Communication
• Synchronization
• Attention to atomicity

– What if one process stops in a bad state, another continues?

uLanguage support
• Synchronous communication
• Semaphore: list of waiting processes
• Monitor: synchronized access to private data

7

Concurrency (II)

uActors
• Simple object-based metaphor

uConcurrent ML
• Threads, synchronous communication, events

uJava language
• Threads: objects from subclass of Thread
• Communication: shared variables, method calls
• Synchronization: every object has a lock
• Atomicity: no explicit support for rollback

uJava memory model
• Separate cache for each thread; coherence issues

Good Luck!

uThink about main points of course
• Homework made you think about certain details
• What’s the big picture?
• What would you like to remember 5 years from now?
• Look at homework and sample exams

– Some final exam problems will resemble homework
– Some may ask you to use what you learned in this course to

understand language combinations or features we did not
talk about

uI hope course will be useful to you in the future
• Send me email in 1 year, 2 years, 5 years

