
1

Concepts in Object-Oriented
Programming Languages

John Mitchell

CS 242
Outline of lecture

uObject-oriented design
uPrimary object-oriented language concepts

• dynamic lookup
• encapsulation
• inheritance
• subtyping

uProgram organization
• Work queue, geometry program, design patterns

uComparison
• Objects as closures?

Objects

uAn object consists of
• hidden data

instance variables, also called
member data

hidden functions also possible

• public operations
methods or member functions
can also have public variables

in some languages

uObject-oriented program:
• Send messages to objects

hidden data

method1msg1

.

methodnmsgn

What’s interesting about this?

uUniversal encapsulation construct
• Data structure
• File system
• Database
• Window
• Integer

uMetaphor usefully ambiguous
• sequential or concurrent computation
• distributed, sync. or async. communication

Object-oriented programming

uProgramming methodology
• organize concepts into objects and classes
• build extensible systems

uLanguage concepts
• encapsulate data and functions into objects
• subtyping allows extensions of data types
• inheritance allows reuse of implementation

Object-oriented Method [Booch]

uFour steps
• Identify the objects at a given level of abstraction
• Identify the semantics (intended behavior) of objects
• Identify the relationships among the objects
• Implement these objects

uIterative process
• Implement objects by repeating these steps

uNot necessarily top-down
• “Level of abstraction” could start anywhere

2

This Method

uBased on associating objects with components
or concepts in a system
uWhy iterative?

• An object is typically implemented using a number of
constituent objects

• Apply same methodology to subsystems, underlying
concepts

uCar object:
• Contains list of main parts (each an object)

– chassis, body, engine, drive train, wheel assemblies

• Method to compute weight
– sum the weights to compute total

uPart objects:
• Each may have list of main sub-parts
• Each must have method to compute weight

Example: Compute Weight of Car

Comparison to top-down design

u Similarity:
• A task is typically accomplished by completing a

number of finer-grained sub-tasks

uDifferences:
• Focus of top-down design is on program structure
• OO methods are based on modeling ideas
• Combining functions and data into objects makes

data refinement more natural (I think)

Object-Orientation

uProgramming methodology
• organize concepts into objects and classes
• build extensible systems

uLanguage concepts
• dynamic lookup
• encapsulation
• subtyping allows extensions of concepts
• inheritance allows reuse of implementation

Dynamic Lookup

u In object-oriented programming,
object à message (arguments)

code depends on object and message

uIn conventional programming,
operation (operands)

meaning of operation is always the same

Example

uAdd two numbers x à add (y)
different add if x is integer, complex

uConventional programming add (x, y)
function add has fixed meaning

Important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time.

3

Language concepts

u“dynamic lookup”
• different code for different object
• integer “+” different from real “+”

uencapsulation
usubtyping
uinheritance

Encapsulation

uBuilder of a concept has detailed view
uUser of a concept has “abstract” view
uEncapsulation is the mechanism for separating

these two views

message

Object

Comparison

uTraditional approach to encapsulation is through
abstract data types
uAdvantage

• Separate interface from implementation

uDisadvantage
• Not extensible in the way that OOP is

We will look at ADT’s example to see what problem is

Abstract data types

abstype q
with

mk_Queue : unit -> q
is_empty : q -> bool
insert : q * elem -> q
remove : q -> elem

is …
in

program
end

Priority Q, similar to Queue

abstype pq
with mk_Queue : unit -> pq

is_empty : pq -> bool
insert : pq * elem -> pq
remove : pq -> elem

is …
in

program
end

But cannot intermix pq’s and q’s

Abstract Data Types

uGuarantee invariants of data structure
• only functions of the data type have access to the

internal representation of data

uLimited “reuse”
• Cannot apply queue code to pqueue, except by

explicit parameterization, even though signatures
identical

• Cannot form list of points, colored points

uData abstraction is important part of OOP,
innovation is that it occurs in an extensible form

4

Language concepts

u“dynamic lookup”
• different code for different object
• integer “+” different from real “+”

uencapsulation
usubtyping
uinheritance

Subtyping and Inheritance

uInterface
• The external view of an object

uSubtyping
• Relation between interfaces

uImplementation
• The internal representation of an object

uInheritance
• Relation between implementations

Object Interfaces

uInterface
• The messages understood by an object

uExample: point
• x-coord : returns x-coordinate of a point
• y-coord : returns y-coordinate of a point
• move : method for changing location

uThe interface of an object is its type.

Subtyping

uIf interface A contains all of interface B, then
A objects can also be used B objects.

uColored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

Inheritance

uImplementation mechanism
uNew objects may be defined by reusing

implementations of other objects

Example

class Point
private

float x, y

public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

uSubtyping
• Colored points can be

used in place of points

• Property used by client
program

uInheritance
• Colored points can be

implemented by resuing
point implementation

• Propetry used by
implementor of classes

5

OO Program Structure

uGroup data and functions
uClass

• Defines behavior of all objects that are instances of
the class

uSubtyping
• Place similar data in related classes

uInheritance
• Avoid reimplementing functions that are already

defined

Example: Geometry Library

uDefine general concept shape
uImplement two shapes: circle, rectangle
uFunctions on implemented shapes

center, move, rotate, print

uAnticipate additions to library

Shapes

uInterface of every shape must include
center, move, rotate, print

uDifferent kinds of shapes are implemented
differently
• Square: four points, representing corners
• Circle: center point and radius

Subtype hierarchy

Shape

Circle Rectangle

uGeneral interface defined in the shape class
uImplementations defined in circle, rectangle
uExtend hierarchy with additional shapes

Code placed in classes

uDynamic lookup
• circle à move(x,y) calls function c_move

uConventional organization
• Place c_move, r_move in move function

r_printr_rotater_mover_centerRectangle

c_printc_rotatec_movec_centerCircle

printrotatemove center

Example use: Processing Loop

Remove shape from work queue
Perform action

Control loop does not know the
type of each shape

6

Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping

Inheritance

Design Patterns

uClasses and objects are useful organizing
concepts
uCulture of design patterns has developed

around object-oriented programming
• Shows value of OOP for program organization and

problem solving

What is a design pattern?

uGeneral solution that has developed from
repeatedly addressing similar problems.
uExample: singleton

• Restrict programs so that only one instance of a class
can be created

• Singleton design pattern provides standard solution

uNot a class template
• Using most patterns will require some thought
• Pattern is meant to capture experience in useful form

Standard reference: Gamma, Helm, Johnson, Vlissides

OOP in Conventional Language

uRecords provide “dynamic lookup”
uScoping provides another form of encapsulation

Try object-oriented programming in ML.

Will it work? Let’s see what’s fundamental to OOP

Dynamic Lookup (again)

receiver à operation (arguments)

code depends on receiver and operation

This is may be achieved in conventional languages
using record with function components

Stacks as closures

fun create_stack(x) =
let val store = ref [x] in

{push = fn (y) =>
store := y::(!store),

pop = fn () =>
case !store of

nil => raise Empty |
y::m => (store := m; y)

} end;

val stk = create_stack(1);
stk = {pop=fn,push=fn} : {pop:unit -> int, push:int -> unit}

7

Does this work ???

uDepends on what you mean by “work”
uProvides

• encapsulation of private data
• dynamic lookup

uBut
• cannot substitute extended stacks for stacks
• only weak form of inheritance

– can add new operations to stack
– not mutually recursive with old operations

Varieties of OO languages

uclass-based languages
• behavior of object determined by its class

uobject-based
• objects defined directly

umulti-methods
• operation depends on all operands

This course: class-based languages

History

uSimula 1960’s
• Object concept used in simulation

uSmalltalk 1970’s
• Object-oriented design, systems

uC++ 1980’s
• Adapted Simula ideas to C

uJava 1990’s
• Distributed programming, internet

Next lectures

uSimula and Smalltalk
uC++
uJava

Summary

uObject-oriented design
uPrimary object-oriented language concepts

• dynamic lookup
• encapsulation
• inheritance
• subtyping

uProgram organization
• Work queue, geometry program, design patterns

uComparison
• Objects as closures?

