
1

The Algol Family and ML

John Mitchell

CS 242
Language Sequence

Algol 60

Algol 68

Pascal

ML Modula

Lisp

Many other languages:
Algol 58, Algol W, Euclid, EL1, Mesa (PARC), …
Modula-2, Oberon, Modula-3 (DEC)

Algol 60

uBasic Language of 1960
• Simple imperative language + functions

• Successful syntax, BNF -- used by many successors
– statement oriented
– Begin … End blocks (like C { … })
– if … then … else

• Recursive functions and stack storage allocation
• Fewer ad hoc restrictions than Fortran

– General array references: A[x + B[3]*y]

• Type discipline was improved by later languages

• Very influential but not widely used in US

Algol 60 Sample

real procedure average(A,n);
real array A; integer n;
begin

real sum; sum := 0;
for i = 1 step 1 until n do

sum := sum + A[i];
average := sum/n

end;

no ; here

no array bounds

set procedure return value by assignment

Algol Joke

uQuestion
• Is x := x equivalent to doing nothing?

uInteresting answer in Algol
integer procedure p;
begin

….
p := p

….
end;

• Assignment here is actually a recursive call

Some trouble spots in Algol 60

uType discipline improved by later languages
• parameter types can be array

– no array bounds

• parameter type can be procedure
– no argument or return types for procedure parameter

uParameter passing methods
• Pass-by-name had various anomalies

– “Copy rule” based on substitution, interacts with side effects

• Pass-by-value expensive for arrays

uSome awkward control issues
• goto out of block requires memory management

2

Algol 60 Pass-by-name

uSubstitute text of actual parameter
• Unpredictable with side effects!

uExample
procedure inc2(i, j);

integer i, j;
begin

i := i+1;
j := j+1

end;
inc2 (k, A[k]);

begin
k := k+1;
A[k] := A[k] +1

end;

Is this what you expected?

Algol 68

uConsidered difficult to understand
• Idiosyncratic terminology

– types were called “modes”
– arrays were called “multiple values”

• vW grammars instead of BNF
– context-sensitive grammar invented by A. van Wijngaarden

• Elaborate type system
• Complicated type conversions

uFixed some problems of Algol 60
• Eliminated pass-by-name

uNot widely adopted

Algol 68 Modes

uPrimitive modes
• int
• real
• char
• bool
• string
• compl (complex)
• bits
• bytes
• sema (semaphore)
• format (I/O)
• file

uCompound modes
• arrays
• structures
• procedures
• sets
• pointers

Rich and structured
type system is a
major contribution of
Algol 68

Other features of Algol 68

uStorage management
• Local storage on stack
• Heap storage, explicit alloc and garbage collection

uParameter passing
• Pass-by-value
• Use pointer types to obtain Pass-by-reference

uAssignable procedure variables
• Follow “orthogonality” principle rigorously

Source: Tanenbaum, Computing Surveys

Pascal

uRevised type system of Algol
• Good data-structuring concepts

– records, variants, subranges

• More restrictive than Algol 60/68
– Procedure parameters cannot have procedure parameters

uPopular teaching language
uSimple one-pass compiler

Limitations of Pascal

uArray bounds part of type
procedure p(a : array [1..10] of integer)
procedure p(n: integer, a : array [1..n] of integer)

illegal

• Attempt at orthogonal design backfires
– parameter must be given a type
– type cannot contain variables

How could this have happened? Emphasis on teaching

uNot successful for “industrial-strength” projects
• Kernighan -- Why Pascal is not my favorite language
• Left niche for C; niche has expanded!!

3

ML

uTyped programming language
uIntended for interactive use
uCombination of Lisp and Algol-like features

• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions

uGeneral purpose non-C-like, not OO language

Goals in study of ML

uSurvey a modern procedural language
uDiscuss general programming languages issues

• Types and type checking
– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management
– Static scope and block structure
– Function activation records, higher-order functions

• Control
– Force and delay
– Exceptions
– Tail recursion and continuations

History of ML

uRobin Milner
uLogic for Computable

Functions
• Stanford 1970-71
• Edinburgh 1972-1995

uMeta-Language of the
LCF system
• Theorem proving
• Type system
• Higher-order functions

Logic for Computable Functions

uDana Scott, 1969
• Formulate logic for proving properties of typed

functional programs

uMilner
• Project to automate logic
• Notation for programs
• Notation for assertions and proofs
• Need to write programs that find proofs

– Too much work to construct full formal proof by hand

• Make sure proofs are correct

LCF proof search

uTactic: function that tries to find proof

succeed and return proof
tactic(formula) = search forever

fail

uExpress tactics in the Meta-Language (ML)
uUse type system to facilitate correctness

Tactics in ML type system

uTactic has a functional type
tactic : formula → proof

uType system must allow “failure”

succeed and return proof
tactic(formula) = search forever

fail and raise exception

4

Function types in ML

f : A → B means
for every x ∈ A,

some element y=f(x) ∈ B
f(x) = run forever

terminate by raising an exception

In words, “if f(x) terminates normally, then f(x)∈ B.”
Addition never occurs in f(x)+3 if f(x) raises exception.

This form of function type arises directly from motivating application
for ML. Integration of type system and exception mechanism
mentioned in Milner’s 1991 Turing Award.

Higher-Order Functions

uTactic is a function
uMethod for combining tactics is a function on

functions
uExample:

f(tactic1, tactic2) =

λ formula. try tactic1(formula)

else tactic2 (formula)

Basic Overview of ML

uInteractive compiler: read-eval-print
• Compiler infers type before compiling or executing

Type system does not allow casts or other loopholes.

uExamples
- (5+3)-2;
> val it = 6 : int
- if 5>3 then “Bob” else “Fido”;
> val it = “Bob” : string
- 5=4;
> val it = false : bool

Overview by Type

uBooleans
• true, false : bool
• if … then … else … (types must match)

uIntegers
• 0, 1, 2, … : int
• +, * , … : int * int → int and so on …

uStrings
• “Austin Powers”

uReals
• 1.0, 2.2, 3.14159, … decimal point used to disambiguate

Compound Types

uTuples
• (4, 5, “noxious”) : int * int * string

uLists
• nil
• 1 :: [2, 3, 4] infix cons notation

uRecords
• {name = “Fido”, hungry=true}

: {name : string, hungry : bool}

Patterns and Declarations

uPatterns can be used in place of variables
<pat> ::= <var> | <tuple> | <cons> | <record> …

uValue declarations
• General form

val <pat> = <exp>

• Examples
val myTuple = (“Conrad”, “Lorenz”);

val (x,y) = myTuple;

val myList = [1, 2, 3, 4];

val x::rest = myList;

• Local declarations
let val x = 2+3 in x*4 end;

5

Functions and Pattern Matching

uAnonymous function
• fn x => x+1; like Lisp lambda

uDeclaration form
• fun <name> <pat1> = <exp1>

| <name> <pat2> = <exp2> …

| <name> <patn> = <expn> …

uExamples
• fun f (x,y) = x+y; actual par must match pattern (x,y)

• fun length nil = 0
| length (x::s) = 1 + length(s);

Map function on lists

uApply function to every element of list
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

map (fn x => x+1, [1,2,3]); [2,3,4]

uCompare to Lisp
(define map
(lambda (f xs)
(if (eq? xs ()) ()
(cons (f (car xs)) (map f (cdr xs)))

)))

More functions on lists

uReverse a list
fun reverse nil = nil
| reverse (x::xs) = append ((reverse xs), [x]);

uAppend lists
fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);

uQuestions
• How efficient is reverse?
• Can you do this with only one pass through list?

More efficient reverse function

fun reverse xs =
let fun rev (nil, z) = (nil, z)
| rev(y::ys, z) = rev(ys, y::z)
val (u,v) = rev(xs,nil)
in v

end;

1

2

3 1

2

3 1

2

3 1

2

3

Datatype Declarations

uGeneral form
datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> |<contructor> of <type>

uExamples
• datatype color = red | yellow | blue

– elements are red, yellow, blue

• datatype atom = atm of string | nmbr of int
– elements are atm(“A”), atm(“B”), …, nmbr(0), nmbr(1), ...

• datatype list = nil | cons of atom*list
– elements are nil, cons(atm(“A”), nil), …

cons(nmbr(2), cons(atm(“ugh”), nil)), ...

Datatype and pattern matching

uRecursively defined data structure
datatype tree = leaf of int | node of int*tree*tree

node(4, node(3,leaf(1), leaf(2)),
node(5,leaf(6), leaf(7))

)

uRecursive function
fun sum (leaf n) = n
| sum (node(n,t1,t2)) = n + sum(t1) + sum(t2)

4

5

76

3

21

6

Core ML

uBasic Types
• Unit
• Booleans
• Integers
• Strings
• Reals
• Tuples
• Lists
• Records

uPatterns
uDeclarations
uFunctions
uPolymorphism
uOverloading
uType declarations
uExceptions
uReference Cells

Variables and assignment

uGeneral terminology: L-values and R-values
• Assignment y := x+3

– Identifier on left refers to a memory location, called L-value
– Identifier on right refers to contents, called R-value

uVariables
• Basic properties

– A variable names a storage location
– Contents of location can be read, can be changed

• ML
– A variable is another type of value
– Explicit operations to read contents or change contents
– Separates naming (declaration of identifiers) from “variables”

ML imperative constructs

uML reference cells
• Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer
!y the contents of location y
ref x expression creating new cell initialized to x

• ML assignment
operator := applied to memory cell and new contents

• Examples
y := x+3 place value of x+3 in cell y; requires x:int
y := !y + 3 add 3 to contents of y and store in location y

ML examples

uCreate cell and change contents
val x = ref “Bob”;
x := “Bill”;

uCreate cell and increment
val y = ref 0;
y := !y + 1;

uWhile loop
val i = ref 0;
while !i < 10 do i := !i +1;
!i;

