
1

Midterm Review

John Mitchell

CS 242
Midterm

uThurs Nov 7, 7-9PM Terman Aud Closed book
uClass schedule

• Thurs Oct 31, Tues Nov 5 – topics not on midterm
• Thurs Nov 7 – optional review during lecture time

uHomework and Sample Midterm
• Homework due Tues Nov 5 as usual; no late HW
• HW 5 solutions available Nov 5
• Sample exam on web now – previous year’s handouts
• Sample exam solutions on web Tues Nov 5

Topics

uLisp, 1960
uFundamentals

• lambda calculus
• denotational semantics
• functional prog

uML and type systems
uBlock structure and

activation records
uExceptions and

continuations

uModularity
uOO concepts

• encapsulation
• dynamic lookup
• subtyping
• inheritance

uSimula and Smalltalk
uC++
uJava
uConcurrency

Lisp Summary

uSuccessful language
• Symbolic computation, experimental programming

uSpecific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with universal function eval
• Stack implementation of recursion via "public

pushdown list"
• Introduced garbage collection

Differentiation in Lisp

(define diff (lambda (y x)
(cond (

(atom y) (if (eq x y) 1 0)) ;; y is a var or constant
(;; expression y is sum
(eq (car y) '+) ;; (A + B)' = A' + B'
(cons '+ (maplist (cdr y)

(lambda (z) (diff (car z) x)))))
(;; expression is product
(eq (car y) '*) ;; (A * B)' = A'B'C + B'A
(cons '+ (maplist (cdr y)

(lambda (z) (cons '* (maplist …
))))))))))))

Fundamentals

uGrammars, parsing
uLambda calculus
uDenotational semantics
uFunctional vs. Imperative Programming

• Why don’t we use functional programming?
• Is implicit parallelism a good idea?
• Is implicit anything a good idea?

2

Declarations and reduction

function f(x)
return x+2

end;
f(5);

block body declared function

(λf. f(5)) (λx. x+2)

→ (λx. x+2) (5)
→ 5+2
→ 7 (if we add reduction rules for addition)

Initialize-before-use semantics

Values = {OK, bad})
State = { error } ∪ (Variables → {init, uninit})

E[[c]](s) = OK for c any symbol not a variable
E[[v]](s) = if s(v)= init then OK else bad

C[[x:= e]](s) = if E[[e]](s) = OK
then modify(s,x, init)
else error

C[[x:= 0; y:= x+1]](s) = state s’ with s’(x)=s’(y)=init
C[[x:= y; …]](s) = error if s(y) = uninit

ML

uTyped programming language
uIntended for interactive use
uCombination of Lisp and Algol-like features

• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions

uGeneral purpose non-C-like, non-OO language

Use of ML in this course

uSurvey a modern procedural language
uDiscuss general programming languages issues

• Types and type checking
– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management
– Static scope and block structure
– Function activation records, higher-order functions

• Control
– Force and delay
– Exceptions
– Tail recursion and continuations

Types and Type Inference

uType safety
• Can use compile-time or run-time typing
• Cannot have dangling pointers

uType inference
• Compute types from the way symbols are used
• Know how algorithm works (for simple examples)
• Know what an ML polymorphic type means

- fun f(g,x) = g(g(x));
> val it = fn : (t → t)*t → t

• Polymorphism different from overloading

fun sum(x) = x + sum(x-1);

@

@

sum x

@

+

x

@

−

1

@

λ

t

v

w

y

z

:r

:r

:s

u

r → t = int → (int → int)

r → u = int → (int → int)

u = int → v

s = v → w

t = w → y

z = r → y

s = z

v = int

w = int

…

s = v → w = int → int

3

Block structure and storage mgmt

uBlock-structured languages and stack storage
uIn-line Blocks

• activation records
• storage for local, global variables

uFirst-order functions
• parameter passing
• tail recursion and iteration

uHigher-order functions
• deviations from stack discipline
• language expressiveness => implementation complexity

Activation record for static scope

uControl link
• Link to previous (calling) block

uAccess link
• Link to record of enclosing block

uReturn address
• Next instruction after return

uReturn-result address
• Place to put return value

uParameters
• Set when function called

u Local variables
u Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return-result addr

Access link

Complex nesting structure

int x=1;
function g(z) = x+z;

function f(y) =
{ int x = y+1;
return g(y*x) };

f(3);

function m(…) {
int x=1;
…
function n(…){
function g(z) = x+z;
…
{ …

function f(y) {
int x = y+1;
return g(y*x) };

…
f(3); … }

… n(…) …}
… m(…)

Simplify to

Simplified code has same block nesting,
if we follow convention that each
declaration begins a new block.

Function Results and Closures

c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

1mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

{int→int mk_counter (int init) {
int count = init; int counter(int inc) { return count+=inc;}
}

int→int c = mk_counter(1);
print c(2) + c(2);

}

Summary of scope issues

uBlock-structured lang uses stack of activ records
• Activation records contain parameters, local vars, …
• Also pointers to enclosing scope

uSeveral different parameter passing mechanisms
uTail calls may be optimized
uFunction parameters/results require closures

• Closure environment pointer used on function call
• Stack deallocation may fail if function returned from call
• Closures not needed if functions not in nested blocks

Control

uStructured Programming
• Go to considered harmful

uExceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

uContinuation
• Function representing the rest of the program
• Generalized form of tail recursion

4

General Suggestions

uReview your notes and the reading assignments
uLook over homework
uDo the practice midterm
uRelax

