
1

Lisp

John Mitchell

CS 242
Lisp, 1960

uLook at Historical Lisp
• Perspective

– Some old ideas seem old
– Some old ideas seem new

• Example of elegant, minimalist language
• Not C: a chance to think differently
• Many general themes in language design

uSupplementary reading
• McCarthy, Recursive functions of symbolic 

expressions and their computation by machine, 
Communications of the ACM, Vol 3, No 4, 1960. 

John McCarthy

uPioneer in AI
• Formalize common-

sense reasoning

uAlso
• Proposed timesharing
• Mathematical theory
• ….

uLisp 
stems from interest in 
symbolic computation 
(math, logic)

Lisp summary

uMany different dialects
• Lisp 1.5, Maclisp, …, Scheme, ...
• CommonLisp has many additional features
• This course: a fragment of Lisp 1.5, approximately

But ignore static/dynamic scope until later in course

uSimple syntax
(+ 1 2 3)
(+ (* 2 3) (* 4 5))
(f x y)

Easy to parse. (Looking ahead: programs as data)

Atoms and Pairs

uAtoms include numbers, indivisible “strings”
<atom> ::=  <smbl>  |  <number>

<smbl> ::=  <char>   |  <smbl><char> | <smbl><digit>

<num>  ::=  <digit>  |  <num><digit>

uDotted pairs
• Write (A . B) for pair
• Symbolic expressions, called S-expressions:

<sexp>   ::=    <atom> |  (<sexp> . <sexp>)

Basic Functions

uFunctions on atoms and pairs:
cons     car cdr     eq     atom

uDeclarations and control:
cond     lambda     define eval     quote

uExample
(lambda  (x) (cond ((atom x) x)  (T (cons ‘A x))))
function f(x) = if atom(x) then x else cons(“A”,x)

uFunctions with side-effects
rplaca     rplacd     set setq



2

Evaluation of Expressions

uRead-eval-print loop
uFunction call  (function arg1 ... argn)

• evaluate each of the arguments
• pass list of argument values to function

uSpecial forms do not eval all arguments
• Example (cond (p1 e1)  ...   (pn en) )

– proceed from left to right

– find the first pi with value true, eval this ei

• Example (quote  A) does not evaluate A

Examples

(+ 4 5)
expression with value 9

(+ (+ 1 2) (+ 4 5)) 
evaluate 1+2, then 4+5, then 3+9 to get value 

(cons (quote A) (quote B))
pair of atoms A and B

(quote (+ 1 2))
evaluates to list  (+ 1 2)

'(+ 1 2)
same as (quote (+ 1 2))

McCarthy’s 1960 Paper

uInteresting paper with
• Good language ideas, succinct presentation
• Some feel for historical context
• Insight into language design process

uImportant concepts
• Interest in symbolic computation influenced design
• Use of simple machine model
• Attention to theoretical considerations

Recursive function theory, Lambda calculus

• Various good ideas: Programs as data, garbage collection

Motivation for Lisp

uAdvice Taker
• Process sentences as input, perform logical reasoning

uSymbolic integration, differentiation
• expression for function --> expression for integral

(integral   ‘(lambda (x)  (times 3 (square x))))

uMotivating application part of good lang design
• Keep focus on most important goals
• Eliminate appealing but inessential ideas

Lisp symbolic computation, logic, experimental prog.
C Unix operating system
Simula       simulation
PL/1 “kitchen sink”, not successful in long run

Execution Model   (Abstract Machine)

uLanguage semantics must be defined
• Too concrete

– Programs not portable, tied to specific architecture
– Prohibit optimization (e.g., C eval order undefined in expn)

• Too abstract
– Cannot easily estimate running time, space

uLisp: IBM 704, but only certain ideas …
• Address, decrement registers -> cells with two parts
• Garbage collection provides abstract view of memory

Abstract Machine

uConcept of abstract machine:
• Idealized computer, executes programs directly
• Capture programmer’s mental image of execution
• Not too concrete, not too abstract

uExamples
• Fortran

– Flat register machine; memory arranged as linear array 
– No stacks, no recursion. 

• Algol family
– Stack machine, contour model of scope, heap storage

• Smalltalk
– Objects, communicating by messages.



3

Theoretical Considerations

u“ … scheme for representing the partial 
recursive functions of a certain class of symbolic 
expressions.”
uLisp uses

• Concept of computable (partial recursive) functions
– Want to express all computable functions

• Function expressions
– known from lambda calculus (developed A. Church)
– lambda calculus equivalent to Turing Machines, but provide 

useful syntax and computation rules

Innovations in the Design of Lisp

uExpression-oriented
• function expressions 
• conditional expressions
• recursive functions

uAbstract view of memory
• Cells instead of array of numbered locations
• Garbage collection

uPrograms as data 
uHigher-order functions

Parts of Speech

uStatement                                load 4094 r1
• Imperative command
• Alters the contents of previously-accessible memory

uExpression (x+5)/2

• Syntactic entity that is evaluated
• Has a value, need not change accessible memory
• If it does, has a side effect

uDeclaration integer x

• Introduces new identifier
• May bind value to identifier, specify type, etc.

Function Expressions

uExample:  
(lambda ( parameters )  ( function_body ) )

u Syntax comes from lambda calculus:
λf. λx. f (f x)
(lambda (f) (lambda (x) (f  (f  x))))

Function expression defines a function but does 
not give a name to it.

( (lambda (f) (lambda (x) (f  (f  x))))
(lambda (y) (+ 2 y))) 

)

Conditional Expressions in Lisp

uGeneralized if-then-else
(cond   (p1 e1)   (p2 e2) …   (pn en) )

– Evaluate conditions p1 … pn left to right

– If pi is first condition true, then evaluate ei

– Value of ei is value of expression

Undefined if no pi true, or

p1 … pi false and pi+1 undefined, or
relevant pi true and ei undefined

Conditional statements in assembler 

Conditional expressions apparently new in Lisp

Examples

(cond ((<2 1) 2)  ((<1 2) 1)) 

has value 1

(cond ((<2 1 ) 2)  ((<3 2) 3)) 

is undefined

(cond (diverge 1) (true 0)) 

is undefined, where diverge is undefined

(cond (true 0) (diverge 1))

has value 0



4

Strictness

uAn operator or expression form is strict if it can 
have a value only if all operands or
subexpressions have a value. 
uLisp cond is not strict, but addition is strict 

• (cond (true 1) (diverge 0))
• (+  e1 e2)

Lisp Memory Model

uCons cells
uAtoms and lists represented by cells     

Address Decrement

Atom A

Atom B

Atom C

0

Sharing

(a)                                   (b)

uBoth structures could be printed as  (A.B).(A.B)

uWhich is result of evaluating
(cons (cons ‘A ‘B) (cons ‘A ‘B)) ?

A B A B A B

Garbage Collection

uGarbage:
At a given point in the execution of a program P, a 
memory location m is garbage if no continued execution 
of P from this point can access location m.

uGarbage Collection: 
• Detect garbage during program execution
• GC invoked when more memory is needed
• Decision made by run-time system, not program

This is can be very convenient. Example: in building text-formatting 
program, ~40% of programmer time on memory management.

Examples

(car (cons ( e1) ( e2 ) ))
Cells created in evaluation of e2 may be garbage,
unless shared by e1 or other parts of program

((lambda  (x)   (car (cons (… x…) (... x ...))) 
'(Big Mess))

The car and cdr of this cons cell may point to 
overlapping structures.

Mark-and-Sweep Algorithm

uAssume tag bits associated with data

uNeed list of heap locations named by program

uAlgorithm:
• Set all tag bits to 0. 

• Start from each location used directly in the program. 
Follow all links, changing tag bit to 1

• Place all cells with tag = 0 on free list



5

Why Garbage Collection in Lisp?

uMcCarthy's paper says that this is "more 
convenient for the programmer than a system in 
which he has to keep track of and erase 
unwanted lists." 

uDoes this reasoning apply equally well to C? 

uIs garbage collection "more appropriate" for 
Lisp than C?  Why?

Programs As Data

uPrograms and data have same representation
uEval function used to evaluate contents of list
uExample: substitute x for y in z and evaluate

(define substitute (lambda (x y z) 

(cond ((atom z) (cond ((eq z y) x ) (T z)))
(T  (cons (substitute x y (car z)) 

(substitute x y (cdr z))))))
(define substitute-and-eval 

(lambda (x y z) (eval (substitute x y z))))

Recursive Functions

uWant expression for function f such that
(f  x) = (cond  ((eq x 0)  0)  (true  (+ x (f  (- x 1)))))

uTry
(lambda (x) (cond ((eq x 0)  0)  (true  (+ x (f  (- x 

1))))))

but f in function body is not defined.

uMcCarthy's 1960 solution was operator “label”
(label f 

(lambda (x) (cond ((eq x 0) 0) (true (+ x (f (- x 
1)))))))

Higher-Order Functions

uFunction that either 
• takes a function as an argument
• returns a function as a result

uExample: function composition
(define  compose 

(lambda (f  g)   (lambda (x)  (f  (g   x)))))

uExample: maplist
(define  maplist  (f  x)  

(cond  ((null x)   nil) 
(true  (cons (f (car x))  (maplist f (cdr

x))))))

Efficiency and Side-Effects

uPure Lisp: no side effects
uAdditional operations added for “efficiency”

(rplaca x y)  replace car of cell x with y 

(rplacd x y)  replace cdr of cell x with y 

uWhat does “efficiency” mean here? 
• Is (rplaca x y) faster than (cons y (cdr x))   ?

• Is faster always better?

Summary: Contributions of Lisp

uSuccessful language 
• symbolic computation, experimental programming

uSpecific language ideas
• Expression-oriented: functions and recursion
• Lists as basic data structures
• Programs as data, with  universal function eval
• Stack implementation of recursion via "public 

pushdown list" 
• Idea of garbage collection. 


