
1

Java

John Mitchell

CS 242
Outline

u Language Overview
• History and design goals

uClasses and Inheritance
• Object features
• Encapsulation
• Inheritance

uTypes and Subtyping
• Primitive and ref types
• Interfaces; arrays
• Exception hierarchy
• Subtype polymorphism and

generic programming

u Java virtual machine
• Loader and initialization
• Linker and verifier
• Bytecode interpreter

uMethod lookup
• four different bytecodes

uSecurity
• Buffer overflow
• Java “sandbox”
• Type safety and attacks

History

uJames Gosling and others at Sun, 1990 - 95
uOak language for “set-top box”

• small networked device with television display
– graphics
– execution of simple programs
– communication between local program and remote site
– no “expert programmer” to deal with crash, etc.

uInternet application
• simple language for writing programs that can be

transmitted over network

Gates Saw Java as Real Threat

Publicly, Microsoft chief Bill Gates was
nearly dismissive when he talked in 1996
about Sun Microsystems' Java
programming language. But in internal
company discussions, he wrote to staff
members that Java and the threat the
cross-platform technology posed to his
company's Windows operating systems
"scares the hell out of me."

Wired News Report
8:09 a.m. 22.Oct.98.PDT
(material from ‘98 trial)

Design Goals

uPortability
• Internet-wide distribution: PC, Unix, Mac

uReliability
• Avoid program crashes and error messages

uSafety
• Programmer may be malicious

uSimplicity and familiarity
• Appeal to average programmer; less complex than C++

uEfficiency
• Important but secondary

General design decisions

uSimplicity
• Almost everything is an object
• All objects on heap, accessed through pointers
• No functions, no multiple inheritance, no go to, no

operator overloading, no automatic coercions

uPortability and network transfer
• Bytecode interpreter on many platforms

uReliability and Safety
• Typed source and bytecode language
• Run-time type and bounds checks
• Garbage collection

2

Java System

uThe Java programming language
uCompiler and run-time system

• Programmer compiles code
• Compiled code transmitted on network
• Receiver executes on interpreter (JVM)
• Safety checks made before/during execution

uLibrary, including graphics, security, etc.
• Large library made it easier for projects to adopt Java
• Interoperability

– Provision for “native” methods

Java Classes and Objects

uSyntax similar to C++
uObject

• has fields and methods
• is allocated on heap, not run-time stack
• accessible through reference (only ptr assignment)
• garbage collected

uDynamic lookup
• Similar in behavior to other languages
• Static typing => more efficient than Smalltalk
• Dynamic linking, interfaces => slower than C++

Sample Program

public class HelloWorld {
public static void main(String[] args) {

System.out.println{“Hello World!”);
}

}

Static method = class method
Function can be called without creating object of the class

Point Class

class Point {
private int x;
protected void setX (int y) {x = y;}
public int getX() {return x;}
Point(int xval) {x = xval;} // constructor

};

• Visibility similar to C++, but not exactly (next slide)

Language Terminology

uClass, object - as in other languages
uField – data member
uMethod - member function
uStatic members - class fields and methods
uthis - self
uPackage - set of classes in shared namespace
uNative method - method written in another

language, typically C

Object initialization

uJava guarantees constructor call for each object
• Memory allocated
• Constructor called to initialize memory
• Some interesting issues related to inheritance

– We’ll discuss later …

uCannot do this (would be bad C++ style):
• Obj* obj = (Obj*)malloc(sizeof(Obj));

use new instead …

uStatic fields of class initialized at class load time
• Talk about class loading later

3

Garbage Collection and Finalize

uObjects are garbage collected
• No explicit free
• Avoid dangling pointers, resulting type errors

uProblem
• What if object has opened file or holds lock?

uSolution
• finalize method, called by the garbage collector

– Before space is reclaimed, or when virtual machine exits
– Space overflow is not really the right condition to trigger

finalization when an object holds a lock...)

• Important convention: call super.finalize

Encapsulation and packages

uEvery field, method
belongs to a class

uEvery class is part of
some package
• Can be unnamed default

package
• File declares which

package code belongs to

package

class
field

method

package

class
field

method

Visibility and access

uFour visibility distinctions
• public, private, protected, package

uMethod can refer to
• private members of class it belongs to
• non-private members of all classes in same package
• protected members of superclasses (in diff package)
• public members of classes in visible packages

Visibility determined by files system, etc. (outside language)

uQualified names (or use import)
• java.lang.String.substring()

package class method

Inheritance

uSimilar to Smalltalk, C++
uSubclass inherits from superclass

• Single inheritance only (but see interfaces)

uSome additional features
• Conventions regarding super in constructor and

finalize methods
• Final classes and methods

Example subclass

class ColorPoint extends Point {
// Additional fields and methods
private Color c;
protected void setC (Color d) {c = d;}
public Color getC() {return c;}
// Define constructor
ColorPoint(int xval, Color cval) {

super(xval); // call Point constructor
c = cval; } // initialize ColorPoint field

};

Constructors and Super

uJava guarantees constructor call for each object
uThis must be preserved by inheritance

• Subclass constructor must call super constructor
– If first statement is not call to super, then call super()

inserted automatically by compiler
– If superclass does not have a constructor with no args,

then this causes compiler error (yuck)
– Exception to rule: if one constructor invokes another, then it

is responsibility of second constructor to call super, e.g.,
ColorPoint() { ColorPoint(0,blue);}

is compiled without inserting call to super

uDifferent conventions for finalize and super
– Compiler does not force call to super finalize

4

Final classes and methods

uRestrict inheritance
• Final classes and methods cannot be redefined

uExample
java.lang.System

uReasons for this feature
• Important for security

– Programmer controls behavior of all subclasses
– Critical because subclasses produce subtypes

• Compare to C++ virtual/non-virtual
– Method is “virtual” until it becomes final

Class Object

uEvery class extends another class
• Superclass is Object if no other class named

uMethods of class Object
• GetClass – return the Class object representing class

of the object
• ToString – returns string representation of object
• equals – default object equality (not ptr equality)
• hashCode
• Clone – makes a duplicate of an object
• wait, notify, notifyAll – used with concurrency
• finalize

Java Types and Subtyping

uPrimitive types – not objects
• Integers, Booleans, etc

uReference types
• Classes, interfaces, arrays
• No syntax distinguishing Object * from Object

uType conversion
• If A <: B, and B x, then can cast x to A

• Casts checked at run-time, may raise exception

Class and Interface Subtyping

uClass subtyping similar to C++
• Statically typed language
• Subclass produces subtype
• Single inheritance => subclasses form tree

uInterfaces
• Completely abstract classes

– no implementation
– Java also has abstract classes (without full impl)

• Multiple subtyping
– Interface can have multiple subtypes

Example

interface Shape {
public float center();
public void rotate(float degrees);

}
interface Drawable {

public void setColor(Color c);
public void draw();

}
class Circle implements Shape, Drawable {

// does not inherit any implementation
// but must define Shape, Drawable methods

}

Properties of interfaces

uFlexibility
• Allows subtype graph instead of tree
• Avoids problems with multiple inheritance of

implementations (remember C++ “diamond”)

uCost
• Offset in method lookup table not known at compile
• Different bytecodes for method lookup

– one when class is known
– one when only interface is known

• search for location of method
• cache for use next time this call is made (from this line)

5

Array types

uAutomatically defined
• Array type T[] exists for each class, interface type T
• Cannot extended array types (array types are final)
• Multi-dimensional arrays as arrays of arrays: T[] []

uReference type
• An array variable is a pointer to an array, can be null
• Example: Circle[] x = new Circle[array_size]
• Anonymous array expression: new int[] {1,2,3, ... 10}

uEvery array type is a subtype of Object[], Object
• Length of array is not part of its static type

Classification of Java types

Reference Types

Primitive Types

int

Shape

Object[]

Object

Shape[]

boolean …

Throwable

Square Square[]Circle Circle[]

longfloatbyte

Exception
types

user-defined arrays

Array subtyping

uCovariance
• if S <: T then S[] <: T[]

uStandard type error
class A {…}
class B extends A {…}
B[] bArray = new B[10]
A[] aArray = bArray // considered OK since B[] <: A[]

aArray[0] = new A() // allowed but run-time type error

// raises ArrayStoreException

Covariance problem again …

uRemember Simula problem
• If A <: B, then A ref <: B ref
• Needed run-time test to prevent bad assignment
• Covariance for assignable cells is not right in principle

uExplanation
• interface of “T reference cell” is

put : T → T ref
get : T ref → T

• Remember covariance/contravariance of functions

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: …[discussion about java genericity]

actually, java array covariance was done for less noble reasons …: it
made some generic "bcopy" (memory copy) and like operations much
easier to write...
I proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out...
it would have made adding genericity later much cleaner, and [array
covariance] doesn't pay for its complexity today.

wnj

But compare this to C++!!

uAccess by pointer: you can't do array subtyping.
B* barr[15];
A* aarr[] = barr; // not allowed

uDirect naming: allowed, but you get garbage !!
B barr[15];
A aarr[] = barr;

aarr[k] translates to *(aarr+sizeof(A)*k)
barr[k] translates to *(barr+sizeof(B)*k)
If sizeof(B) != sizeof(A), you just grab random bits.

Is there any sense to this?

6

Java Exceptions

uSimilar basic functionality to ML, C++
• Constructs to throw and catch exceptions
• Dynamic scoping of handler

uSome differences
• An exception is an object from an exception class
• Subtyping between exception classes

– Use subtyping to match type of exception or pass it on …
– Similar functionality to ML pattern matching in handler

• Type of method includes exceptions it can throw
– Actually, only subclasses of Exception (see next slide)

Exception Classes

uIf a method may throw a checked exception,
then this must be in the type of the method

Throwable

Exception Runtime
Exception

Error

User-defined
exception classes

Unchecked exceptions

checked
exceptions

Try/finally blocks

uExceptions are caught in try blocks
try {

statements
} catch (ex-type1 identifier1) {

statements
} catch (ex-type2 identifier2) {

statements
} finally {

statements
}

uImplementation: finally compiled to jsr

Why define new exception types?

uException may contain data
• Class Throwable includes a string field so that cause

of exception can be described
• Pass other data by declaring additional fields or

methods

uSubtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { … }
will catch any exception from any subtype of
exception-type and bind object to identifier

Java Generic Programming

uJava has class Object
• Supertype of all object types
• This allows “subtype polymorphism”

– Can apply operation on class T to any subclass S <: T

uJava does not have templates
• No parametric polymorphism
• Many consider this the biggest deficiency of Java

uJava type system does not let you cheat
• Can cast from supertype to subtype
• Cast is checked at run time

Example generic construct: Lists

uLists possible for any type of object
• For any type t, can have type list_of_t
• Operations cons, head, tail work for any type

uDefine C++ generic list class
template <type t> class List {

private: t* data; List<t> * next;
public: void Cons (t* x) { … }

t* Head () { … }
List<t> Tail () { … }

};

7

Example generic construct: Stack

uStack possible for any type of object
• For any type t, can have type stack_of_t
• Operations push, pop work for any type

uDefine C++ generic list class
template <type t> class Stack {

private: t data; Stack<t> * next;
public: void push (t* x) { … }

Stack<t>* pop () { … }
};

uNo equivalent Java mechanism

Current Java vs Templates

class Stack {
void push(Object o) { ... }
Object pop() { ... }
...}

String s = "Hello";
Stack st = new Stack();
...
st.push(s);
...
s = (String) st.pop();

class Stack<A> {
void push(A a) { ... }
A pop() { ... }
...}

String s = "Hello";
Stack<String> st =

new Stack<String>();
st.push(s);
...
s = st.pop();

Why no templates in Java?

uMany proposals
uBasic language goals seem clear
uDetails need to be worked out

• Exact typing constraints
• Implementation

– Existing virtual machine?
– Additional bytecodes?
– Duplicate code for each instance?
– Use same code (with casts) for all instances?

There is a Java Community proposal to add generics

Java Implementation

uCompiler and Virtual Machine
• Compiler produces bytecode
• Virtual machine loads classes on demand, verifies

bytecode properties, interprets bytecode

uWhy this design?
• Bytecode interpreter/compilers used before

– Pascal “pcode”; Smalltalk compilers use bytecode

• Minimize machine-dependent part of implementation
– Do optimization on bytecode when possible
– Keep bytecode interpreter simple

• For Java, this gives portability
– Transmit bytecode across network

A.classA.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine Architecture Class loader

uRuntime system loads classes as needed
• When class is referenced, loader searches for file of

compiled bytecode instructions

uDefault loading mechanism can be replaced
• Define alternate ClassLoader object

– Extend the abstract ClassLoader class and implementation
– ClassLoader does not implement abstract method loadClass,

but has methods that can be used to implement loadClass

• Can obtain bytecodes from alternate source
– VM restricts applet communication to site that supplied

applet

8

JVM Linker and Verifier

uLinker
• Adds compiled class or interface to runtime system
• Creates static fields and initializes them
• Resolves names

– Checks symbolic names and replaces with direct references

uVerifier
• Check bytecode for class or interface before loaded
• Throw VerifyError exception if error occurs

Example issue in class loading and linking:

Static members and initialization

class ... {
/* static variable with initial value */
static int x = initial_value
/* ---- static initialization block --- */
static { /* code executed once, when loaded */ }
}

uInitialization is important
• Cannot initialize class fields until loaded

uStatic block cannot raise an exception
• Handler may not be installed at class loading time

Verifier

uBytecode may not come from standard compiler
• Evil hacker may write dangerous bytecode

uVerifier checks correctness of bytecode
• Every instruction must have a valid operation code
• Every branch instruction must branch to the start of

some other instruction, not middle of instruction
• Every method must have a structurally correct

signature
• Every instruction obeys the Java type discipline

Last condition is fairly complicated .

Bytecode interpreter

uStandard virtual machine interprets instructions
• Perform run-time checks such as array bounds
• Possible to compile bytecode class file to native code

uJava programs can call native methods
• Typically functions written in C

uMultiple bytecodes for method lookup
• invokevirtual - when class of object known

• invokeinterface - when interface of object known

• invokestatic - static methods

• invokespecial - some special cases

JVM memory areas

uJava program has one or more threads
uEach thread has its own stack
uAll threads share same heap

method
area heap Java

stacks

PC
register

s

native
method
stacks

JVM uses stack machine

uJava
Class A extends Object {

int i
void f(int val) { i = val + 1;}

}

uBytecode
Method void f(int)

aload 0 ; object ref this
iload 1 ; int val
iconst 1
iadd ; add val +1
putfield #4 <Field int i>
return

data
area

local
variables

operand
stack

Return addr,
exception info,
Const pool res.

JVM Activation Record

refers to const pool

9

Type Safety of JVM

uRun-time type checking
• All casts are checked to make sure type safe
• All array references are checked to make sure the array

index is within the array bounds
• References are tested to make sure they are not null

before they are dereferenced.

uAdditional features
• Automatic garbage collection
• NO pointer arithmetic

If program accesses memory, the memory is allocated
to the program and declared with correct type

Field and method access

uInstruction includes index into constant pool
• Constant pool stores symbolic names
• Store once, instead of each instruction, to save space

uFirst execution
• Use symbolic name to find field or method

uSecond execution
• Use modified “quick” instruction to simplify search

invokeinterface <method-spec>

uSample code
void add2(Incrementable x) { x.inc(); x.inc(); }

uSearch for method
• find class of the object operand (operand on stack)

– must implement the interface named in <method-spec>

• search the method table for this class
• find method with the given name and signature

uCall the method
• Usual function call with new activation record, etc.

Why is search necessary?

interface Incrementable {
public void inc();

}
class IntCounter implements Incrementable {

public void add(int);
public void inc();
public int value();

}
class FloatCounter implements Incrementable {

public void inc();
public void add(float);
public float value();

}

invokevirtual <method-spec>

uSimilar to invokeinterface, but class is known
uSearch for method

• search the method table for this class
• find method with the given name and signature

uCan we use static type for efficiency?
• Each execution of an instruction will be to object

from subclass of statically-known class
• Constant offset into vtable

– like C++, but dynamic linking makes search useful first time

• See next slide

Bytecode rewriting: invokevirtual

uAfter search, rewrite bytcode to use fixed offset
into the vtable. No search on second execution.

inv_virt_quick

vtable offset

Constant pool

“A.foo()”

Bytecode

invokevirtual

10

Bytecode rewriting: invokeinterface

Cache address of method; check class on second use

inv_int_quick

Constant pool

“A.foo()”

Bytecode

invokeinterface “A.foo()”

Java Security

uSecurity
• Prevent unauthorized use of computational resources

uJava security
• Java code can read input from careless user or

malicious attacker
• Java code can be transmitted over network –

code may be written by careless friend or malicious
attacker

Java is designed to reduce many security risks

General Security Risks

uDenial of Service
• Tie up your CPU, network connection, subnet, …

uSteal private information
• User name, email address, password, credit card, …

uCompromise your system
• Erase files, introduce virus, ...

Java Security Mechanisms

uSandboxing
• Run program in restricted environment

– Analogy: child’s sandbox with only safe toys

• This term refers to
– features of loader, verifier, interpreter that restrict program
– Java Security Manager, a special object that acts as access

control “gatekeeper”

uCode signing
• Use cryptography to determine who wrote (or

shipped) class file
– This info can be used by security manager

Buffer Overflow Attack

uMost prevalent security problem today
• Approximately 80% of CERT advisories are related to

buffer overflow vulnerabilities in OS, other code

uGenerally network-based attack
• Attacker sends carefully designed network msgs
• Input causes privileged program (e.g., Sendmail) to

do something it was not designed to do

uDoes not work in Java
• This example illustrates what Java was designed to

prevent

Sample code to illustrate idea

void f (char *str) {
char buffer[16];
…
strcpy(buffer,str);

}
void main() {

char large_string[256];
int i;
for(i = 0; i < 255; i++)
large_string[i] = 'A';

f(large_string);
}

uFunction
• Copies str into buffer until null

character found
• Could write past end of buffer,

over function retun addr

uCalling program
• Writes 'A' over f activation record
• Function f “returns” to location

0x4141414141
• This causes segmentation fault

uVariations
• Put meaningful address in string
• Put code in string and jump to it !!

See: Smashing the stack for fun and profit

11

Java Sandbox

uFour complementary mechanisms
• Class loader

– Separate namespaces for separate class loaders
– Associates protection domain with each class

• Verifier and JVM run-time tests
– NO unchecked casts or other type errors, NO array overflow
– Preserves private, protected visibility levels

• Security Manager
– Called by library functions to decide if request is allowed
– Uses protection domain associated with code, user policy
– Recall: stack inspection problem on midterm

Why is typing a security feature?

uSandbox mechanisms all rely on type safety
uExample

• Unchecked cast lets applet make any system call

int (*fp)() /* variable "fp" is a function pointer */
...
fp = addr; /* assign address stored in an integer var */
(*fp)(n); /* call the function at this address */

Other examples using Java type confusion in reader

Java Summary

uObjects
• have fields and methods
• alloc on heap, access by pointer, garbage collected

uClasses
• Public, Private, Protected, Package (not exactly C++)
• Can have static (class) members
• Constructors and finalize methods

uInheritance
• Single inheritance
• Final classes and methods

Java Summary (II)

uSubtyping
• Determined from inheritance hierarchy
• Class may implement multiple interfaces

uVirtual machine
• Load bytecode for classes at run time
• Verifier checks bytecode
• Interpreter also makes run-time checks

– type casts
– array bounds
– …

• Portability and security are main considerations

Comparison with C++

uAlmost everything is object + Simplicity - Efficiency

• except for values from primitive types

uType safe + Safety +/- Code complexity - Efficiency
• Arrays are bounds checked
• No pointer arithmetic, no unchecked type casts
• Garbage collected

uInterpreted + Portability + Safety - Efficiency
• Compiled to byte code: a generalized form of

assembly language designed to interpret quickly.
• Byte codes contain type information

Comparison (cont’d)

uObjects accessed by ptr + Simplicity - Efficiency

• No problems with direct manipulation of objects

uGarbage collection: + Safety + Simplicity - Efficiency
• Needed to support type safety

uBuilt-in concurrency support + Portability

• Used for concurrent garbage collection (avoid waiting?)
• Concurrency control via synchronous methods
• Part of network support: download data while executing

uExceptions
• As in C++, integral part of language design

